Relational Normalization Theory (supplemental material)

CSE 532, Theory of Database Systems Stony Brook University <u>http://www.cs.stonybrook.edu/~cse532</u>

• Consider a schema S with functional dependencies:

- {A \rightarrow BC, C \rightarrow FG, E \rightarrow HG, G \rightarrow A}.
- (a) Compute the attribute closure of A with respect to S.

• ABCFG

(b) Suppose we decompose S so that one of the subrelations, say called R, contains attributes AFE only. Find a projection of the functional dependencies in S on R (i.e., find the functional dependencies between attributes AFE).

• {A \rightarrow F, E \rightarrow AF} or {A \rightarrow F, E \rightarrow A, E \rightarrow F} or {A \rightarrow F, E \rightarrow A}

(c) Is R in BCNF?

• No, A is not a superkey.

Use one cycle of the BCNF decomposition algorithm to obtain two subrelations, and check BCNF cond.

• $R1 = \{AF, A \rightarrow F\}$ and $R2 = \{EA, E \rightarrow A\}$. They are in BCNF.

Quiz 8 (cont.)

- $\{A \rightarrow BC, C \rightarrow FG, E \rightarrow HG, G \rightarrow A\}$.
- Decomposition: $R1 = \{AF, A \rightarrow F\}$ and $R2 = \{EA, E \rightarrow A\}$.

(d) Show that your decomposition is lossless.

• ${AF} \cap {EA} = {A}$, which is a key of R1.

(e) Is your decomposition dependency preserving?

• Yes, because each of the FDs of R is entailed by FDs of R1 and R2.

(f) Is R in 3NF? Explain.

• No, F is not part of a key.

Use 3NF decomposition algorithm to obtain subrelations, and answer whether they are in 3NF.

• Obtain same R1={AF,A \rightarrow F} and R2={EA,E \rightarrow A}. They are in 3NF.

- Consider the following functional dependencies over the attribute set BCGHMVWY:
 - $W \rightarrow V$ $WY \rightarrow BV$ $WC \rightarrow V$ $V \rightarrow B$ $BG \rightarrow M$ $BV \rightarrow Y$ $BYH \rightarrow V$ $M \rightarrow W$ $Y \rightarrow H$ $CY \rightarrow W$
 - Find a minimal cover.
 - Decompose into lossless 3NF.
 - Check if all the resulting relations are in BCNF.
 - If not, decompose it into a lossless BCNF.

$W \rightarrow V$	WY \rightarrow BV	WC \rightarrow V	V → В
BG → M	$BV \rightarrow Y$	BYH → V	$M \rightarrow W$
ү → н	$CY \rightarrow W$		

- Minimal cover:
 - 1. Split WY \rightarrow BV into WY \rightarrow B and WY \rightarrow V.

$W \rightarrow V$	WY \rightarrow BV	WC \rightarrow V	$V \rightarrow B$
BG \rightarrow M	$BV \rightarrow Y$	BYH → V	$M \rightarrow W$
$Y \rightarrow H$	$CY \rightarrow W$		

• Minimal cover:

- 1. Split WY \rightarrow BV into WY \rightarrow B and WY \rightarrow V.
- 2. Since $W \rightarrow V$ and $W \rightarrow B$ are implied by the given set of FDs, we can replace $WY \rightarrow B$, $WY \rightarrow V$, and $WC \rightarrow V$ in the original set with $W \rightarrow B$ ($W \rightarrow V$ already exists in the original set, so we discard the duplicate).

$W \rightarrow V$	WY BV	$WC \rightarrow V$	$V \rightarrow B$
$BG \rightarrow M$	$BV \rightarrow Y$	BYH \rightarrow V	$M \rightarrow W$
$Y \rightarrow H$	$CY \rightarrow W$		

• Minimal cover:

- 1. Split WY \rightarrow BV into WY \rightarrow B and WY \rightarrow V.
- 2. Since $W \rightarrow V$ and $W \rightarrow B$ are implied by the given set of FDs, we can replace $WY \rightarrow B$, $WY \rightarrow V$, and $WC \rightarrow V$ in the original set with $W \rightarrow B$ ($W \rightarrow V$ already exists in the original set, so we discard the duplicate).
- 3. $V \rightarrow Y$ and $BY \rightarrow V$ can be derived from the original set so we can replace $BV \rightarrow Y$ and $BYH \rightarrow V$ with $V \rightarrow Y$ and $BY \rightarrow V$.

$W \rightarrow V$	WY BV	$WC \rightarrow V$	$V \rightarrow B$
$BG \rightarrow M$	$BV \rightarrow Y$	BYH \rightarrow V	$M \rightarrow W$
$Y \rightarrow H$	$CY \rightarrow W$		

• Minimal cover:

- 1. Split WY \rightarrow BV into WY \rightarrow B and WY \rightarrow V.
- 2. Since $W \rightarrow V$ and $W \rightarrow B$ are implied by the given set of FDs, we can replace $WY \rightarrow B$, $WY \rightarrow V$, and $WC \rightarrow V$ in the original set with $W \rightarrow B$ ($W \rightarrow V$ already exists in the original set, so we discard the duplicate).
- 3. $V \rightarrow Y$ and $BY \rightarrow V$ can be derived from the original set so we can replace $BV \rightarrow Y$ and $BYH \rightarrow V$ with $V \rightarrow Y$ and $BY \rightarrow V$.
- 4. We remove redundant FDs: $W \rightarrow B$.

$W \rightarrow V$	WY \rightarrow BV	$WC \rightarrow V$	$V \rightarrow B$
BG \rightarrow M	$BV \rightarrow Y$	BYH \rightarrow V	$M \rightarrow W$
$Y \rightarrow H$	$CY \rightarrow W$		

• Minimal cover:

- 1. Split WY \rightarrow BV into WY \rightarrow B and WY \rightarrow V.
- 2. Since $W \rightarrow V$ and $W \rightarrow B$ are implied by the given set of FDs, we can replace $WY \rightarrow B$, $WY \rightarrow V$, and $WC \rightarrow V$ in the original set with $W \rightarrow B$ ($W \rightarrow V$ already exists in the original set, so we discard the duplicate).
- 3. $V \rightarrow Y$ and $BY \rightarrow V$ can be derived from the original set so we can replace $BV \rightarrow Y$ and $BYH \rightarrow V$ with $V \rightarrow Y$ and $BY \rightarrow V$.
- 4. We remove redundant FDs: $W \rightarrow B$.
- 5. The final result is:

$W \rightarrow V$	$V \rightarrow B$	$BG \rightarrow M$	$V \rightarrow Y$
$BY \rightarrow V$	$M \rightarrow W$	$Y \rightarrow H$	$CY \rightarrow W$

Quiz 9 $W \rightarrow V$ $V \rightarrow B$ $BG \rightarrow M$ $V \rightarrow Y$ BY \rightarrow V $M \rightarrow W$ ү → н $CY \rightarrow W$ • Lossless 3NF: $(WV; \{W \rightarrow V\})$ $(VBY; \{BY \rightarrow V; V \rightarrow Y; V \rightarrow B\})$ $(BGM; \{BG \rightarrow M\})$ $(MW; \{M \rightarrow W\})$ $(YH; \{Y \rightarrow H\})$ $(CYW; \{CY \rightarrow W\})$

• Since BGM is a superkey of the original schema, we don't need to add anything to this decomposition.

• BCNF:

- The schema (BGM; {BG \rightarrow M}) is not in BCNF because M \rightarrow B is entailed by the original set of FDs.
 - Decompose BGM with respect to M → B into (BM; {M → B}) and (GM; {}), loosing the FD BG → M.
- The schema (CYW; {CY → W}) is not in BCNF because
 W→Y is entailed by the original set of FDs.
 - Decompose CYW using $W \rightarrow Y$ into (WY; $\{W \rightarrow Y\}$) and (WC; $\{\}$), loosing CY $\rightarrow W$.

- Prove that the following sets of FDs are equivalent:
- $F: A \rightarrow B, C \rightarrow A, AB \rightarrow C$

 $G: A \rightarrow C, C \rightarrow B, CB \rightarrow A$

 $F \equiv G \Leftrightarrow F$ entails G and G entails F

1. F entails G:

$$A_{F}^{+} = ABC$$
, so F entails $A \rightarrow C$
 $C_{F}^{+} = ABC$, so F entails $C \rightarrow B$
 $CB_{F}^{+} = ABC$, so F entails $CB \rightarrow A$

2. G entails F:

$$A^{+}_{G} = ABC$$
, so G entails $A \rightarrow B$
 $C^{+}_{G} = ABC$, so G entails $C \rightarrow A$
 $AB^{+}_{G} = ABC$, so G entails $AB \rightarrow C$

• Consider the schema R over the attributes ABCDEFG with the following functional dependencies:

 $AB \rightarrow C, C \rightarrow B, BC \rightarrow DE, E \rightarrow FG$

and the following multivalued dependencies:

 $R = BC \bowtie ABDEFG$

 $R = EF \bowtie FGABCD$

• Decompose this schema into 4NF while trying to preserve as many functional dependencies as possible: first use the 3NF synthesis algorithm, then the BCNF algorithm, and finally the 4NF algorithm.

• Is the resulting schema after decomposition dependency-preserving?

Extra problem 2 AB \rightarrow C, C \rightarrow B, BC \rightarrow DE, E \rightarrow FG

- **1.** 3NF: split the right-hand sides of the FDs and minimize the left-hand sides:
- $AB \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E, E \rightarrow F, E \rightarrow G$ Synthesize the 3NF schemas: R1 = (ABC; {AB \rightarrow C}), R2 = (CBDE; {C \rightarrow BDE}), R3 = (EFG; {E \rightarrow FG}) **2.** BCNF:
- R1 is not in BCNF, because $C \rightarrow B$ is implied by our original set of FDs (and C is not a superkey of R1): we decompose R1 further using $C \rightarrow B$: R11 = (AC; {}) and R12 = (BC; {C $\rightarrow B$ }).

Extra problem 2 $R11 = (AC; \{\}), R12 = (BC; \{C \rightarrow B\}),$ $R2 = (CBDE; \{C \rightarrow BDE\}), R3 = (EFG; \{E \rightarrow FG\})$ $R = BC \bowtie ABDEFG, R = EF \bowtie FGABCD$ 4NF: $R = BC \bowtie ABDEFG$ projects onto R2 as $R2 = BC \bowtie BDE$ and it violates 4NF because $B = BC \cap BDE$ is not a superkey. Therefore, we decompose R2 into $(BC; \{C \rightarrow B\})$ and $(BDE; \{\})$. MVD R = EF \bowtie FGABCD projects onto R3 as R3 = EF \bowtie FG and it violates 4NF because $F = EF \cap FG$ is not a superkey. Therefore, we decompose R3 into (EF; $\{E \rightarrow F\}$) and (FG; $\{\}$).

Extra problem 2 $AB \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E, E \rightarrow F, E \rightarrow G$ $R = BC \bowtie ABDEFG, R = EF \bowtie FGABCD$ $R11 = (AC; \{\}), R12 = (BC; \{C \rightarrow B\})$ $R21 = (BC; \{C \rightarrow B\}), R22 = (BDE; \{\})$ $R31 = (EF; \{E \rightarrow F\}), R32 = (FG; \{\})$

The decomposition is not dependency preserving:

• A \rightarrow B, which was present in the original schema, is now not derivable from the FDs attached to the schemas in the decomposition.

- Consider the schema R over the attributes ABCDEFG: $DE \rightarrow F, BC \rightarrow AD, FD \rightarrow G, F \rightarrow DE, D \rightarrow E$ $R = ABCFG \bowtie BCDE$
- Compute 4NF:
- 1. 3NF: minimal cover:
- Split the LHS:

DE \rightarrow F, BC \rightarrow A, BC \rightarrow D, FD \rightarrow G, F \rightarrow D, F \rightarrow E, D \rightarrow E *Reduce the RHS:*

Since $D \rightarrow E$, we can delete E in the LHS of $DE \rightarrow F: D \rightarrow F$ Since $F \rightarrow D$, we can delete D in the LHS of $FD \rightarrow G: F \rightarrow G$ *Remove redundant FDs:*

 $D \rightarrow F, BC \rightarrow A, BC \rightarrow D, F \rightarrow G, F \rightarrow D, D \rightarrow E$

Extra problem 3

$$D \rightarrow F, BC \rightarrow A, BC \rightarrow D, F \rightarrow G, F \rightarrow D, D \rightarrow E$$

 $R = ABCFG \bowtie BCDE$
3NF: (DEF; {D $\rightarrow EF$ })
(BCAD; {BC $\rightarrow AD$ })
(FGD; {F $\rightarrow GD$ })

This decomposition is *lossless* since BCAD⁺ = BCADEFG, i.e., the attribute set of the second schema is a superkey of the original schema.

BCNF: yes

4NF: We project the MVD on BCAD: BCAD = ABC ⋈ BCD.
ABC ∩ BCD = BC is a superkey of the schema (BC→AD), so, this MVD does not violate the 4NF.

• Consider R=BCEGVWY with the MVDs:

MVD1: $R = WBCY \bowtie YEVG$

MVD2: $R = WBCE \bowtie WBYVG$

MVD3: $R = WBY \bowtie CYEVG$

4NF 1: Use MVD1 to obtain the following decomposition: WBCY, YEVG.

Use MVD2 to WBCY to yield WBC, WBY.

- Use MVD3 cannot be used to decompose WBC because the join attribute, Y, is not in this attribute set.
- MVD3 cannot be used to decompose WBY or YEVG because it projects as a trivial dependency in these cases: WBY=WBY⋈Y and YEVG = Y ⋈YEVG.

4NF 2: the decomposition **4NF 1** is not unique: we can apply MVD3 and then MVD1 then will obtain: WBY, CY, YEVG.