Relational Normalization Theory (supplemental material)

CSE 532, Theory of Database Systems
Stony Brook University
http: / / www.cs.stonybrook.edu/ ~ $\operatorname{cse} 532$

Quiz 8

- Consider a schema S with functional dependencies:
- $\{\mathrm{A} \rightarrow \mathrm{BC}, \mathrm{C} \rightarrow \mathrm{FG}, \mathrm{E} \rightarrow \mathrm{HG}, \mathrm{G} \rightarrow \mathrm{A}\}$.
(a) Compute the attribute closure of A with respect to S .
- ABCFG
(b) Suppose we decompose S so that one of the subrelations, say called R, contains attributes AFE only. Find a projection of the functional dependencies in S on R (i.e., find the functional dependencies between attributes AFE).
- $\{\mathrm{A} \rightarrow \mathrm{F}, \mathrm{E} \rightarrow \mathrm{AF}\}$ or $\{\mathrm{A} \rightarrow \mathrm{F}, \mathrm{E} \rightarrow \mathrm{A}, \mathrm{E} \rightarrow \mathrm{F}\}$ or $\{\mathrm{A} \rightarrow \mathrm{F}, \mathrm{E} \rightarrow \mathrm{A}\}$
(c) Is R in BCNF?
- No, A is not a superkey.

Use one cycle of the BCNF decomposition algorithm to obtain two subrelations, and check BCNF cond.

- $R 1=\{A F, A \rightarrow F\}$ and $R 2=\{E A, E \rightarrow A\}$. They are in BCNF.

Quiz 8 (cont.)

- $\{\mathrm{A} \rightarrow \mathrm{BC}, \mathrm{C} \rightarrow \mathrm{FG}, \mathrm{E} \rightarrow \mathrm{HG}, \mathrm{G} \rightarrow \mathrm{A}\}$.
- Decomposition: $\mathrm{R} 1=\{\mathrm{AF}, \mathrm{A} \rightarrow \mathrm{F}\}$ and $\mathrm{R} 2=\{\mathrm{EA}, \mathrm{E} \rightarrow \mathrm{A}\}$.
(d) Show that your decomposition is lossless.
- $\{A F\} \cap\{E A\}=\{A\}$, which is a key of $R 1$.
(e) Is your decomposition dependency preserving?
- Yes, because each of the FDs of R is entailed by FDs of R1 and R2.
(f) Is R in 3NF? Explain.
- No, F is not part of a key.

Use 3NF decomposition algorithm to obtain subrelations, and answer whether they are in 3 NF .

- Obtain same $\mathrm{R} 1=\{\mathrm{AF}, \mathrm{A} \rightarrow \mathrm{F}\}$ and $\mathrm{R} 2=\{\mathrm{EA}, \mathrm{E} \rightarrow \mathrm{A}\}$. They are in 3 NF .

Quiz 9

- Consider the following functional dependencies over the attribute set BCGHMVWY:

$\mathrm{W} \rightarrow \mathrm{V}$	$\mathrm{WY} \rightarrow \mathrm{BV}$	$\mathrm{WC} \rightarrow \mathrm{V}$	$\mathrm{V} \rightarrow \mathrm{B}$
$\mathrm{BG} \rightarrow \mathrm{M}$	$\mathrm{BV} \rightarrow \mathrm{Y}$	$\mathrm{BYH} \rightarrow \mathrm{V}$	$\mathrm{M} \rightarrow \mathrm{W}$
$\mathrm{Y} \rightarrow \mathrm{H}$	$\mathrm{CY} \rightarrow \mathrm{W}$		

- Find a minimal cover.
- Decompose into lossless 3NF.
- Check if all the resulting relations are in BCNF.
- If not, decompose it into a lossless BCNF.

Quiz 9

$$
\begin{array}{llll}
\mathrm{W} \rightarrow \mathrm{~V} & \mathrm{WY} \rightarrow \mathrm{BV} & \mathrm{WC} \rightarrow \mathrm{~V} & \mathrm{~V} \rightarrow \mathrm{~B} \\
\mathrm{BG} \rightarrow \mathrm{M} & \mathrm{BV} \rightarrow \mathrm{Y} & \mathrm{BYH} \rightarrow \mathrm{~V} & \mathrm{M} \rightarrow \mathrm{~W} \\
\mathrm{Y} \rightarrow \mathrm{H} & \mathrm{CY} \rightarrow \mathrm{~W} & &
\end{array}
$$

- Minimal cover:

1. Split $\mathrm{WY} \rightarrow \mathrm{BV}$ into $\mathrm{WY} \rightarrow \mathrm{B}$ and $\mathrm{WY} \rightarrow \mathrm{V}$.

Quiz 9

$$
\begin{array}{llll}
\mathrm{W} \rightarrow \mathrm{~V} & \mathrm{WY} \rightarrow \mathrm{BV} & \mathrm{WC} \rightarrow \mathrm{~V} & \mathrm{~V} \rightarrow \mathrm{~B} \\
\mathrm{BG} \rightarrow \mathrm{M} & \mathrm{BV} \rightarrow \mathrm{Y} & \mathrm{BYH} \rightarrow \mathrm{~V} & \mathrm{M} \rightarrow \mathrm{~W} \\
\mathrm{Y} \rightarrow \mathrm{H} & \mathrm{CY} \rightarrow \mathrm{~W} & &
\end{array}
$$

- Minimal cover:

1. Split $\mathrm{WY} \rightarrow \mathrm{BV}$ into $\mathrm{WY} \rightarrow \mathrm{B}$ and $\mathrm{WY} \rightarrow \mathrm{V}$.
2. Since $\mathrm{W} \rightarrow \mathrm{V}$ and $\mathrm{W} \rightarrow \mathrm{B}$ are implied by the given set of FDs, we can replace $\mathrm{WY} \rightarrow \mathrm{B}, \mathrm{WY} \rightarrow \mathrm{V}$, and $\mathrm{WC} \rightarrow \mathrm{V}$ in the original set with $\mathrm{W} \rightarrow \mathrm{B}$ ($\mathrm{W} \rightarrow \mathrm{V}$ already exists in the original set, so we discard the duplicate).

Quiz 9

$$
\begin{array}{llll}
\mathrm{W} \rightarrow \mathrm{~V} & \mathrm{WY} \rightarrow \mathrm{BV} & \mathrm{WC} \rightarrow \mathrm{~V} & \mathrm{~V} \rightarrow \mathrm{~B} \\
\mathrm{BG} \rightarrow \mathrm{M} & \mathrm{BV} \rightarrow \mathrm{Y} & \mathrm{BYH} \rightarrow \mathrm{~V} & \mathrm{M} \rightarrow \mathrm{~W} \\
\mathrm{Y} \rightarrow \mathrm{H} & \mathrm{CY} \rightarrow \mathrm{~W} & &
\end{array}
$$

- Minimal cover:

1. Split $\mathrm{WY} \rightarrow \mathrm{BV}$ into $\mathrm{WY} \rightarrow \mathrm{B}$ and $\mathrm{WY} \rightarrow \mathrm{V}$.
2. Since $\mathrm{W} \rightarrow \mathrm{V}$ and $\mathrm{W} \rightarrow \mathrm{B}$ are implied by the given set of FDs, we can replace $\mathrm{WY} \rightarrow \mathrm{B}, \mathrm{WY} \rightarrow \mathrm{V}$, and $\mathrm{WC} \rightarrow \mathrm{V}$ in the original set with $\mathrm{W} \rightarrow \mathrm{B}$ ($\mathrm{W} \rightarrow \mathrm{V}$ already exists in the original set, so we discard the duplicate).
3. $\mathrm{V} \rightarrow \mathrm{Y}$ and $\mathrm{BY} \rightarrow \mathrm{V}$ can be derived from the original set so we can replace $\mathrm{BV} \rightarrow \mathrm{Y}$ and BYH $\rightarrow \mathrm{V}$ with $\mathrm{V} \rightarrow \mathrm{Y}$ and $\mathrm{BY} \rightarrow \mathrm{V}$.

Quiz 9

$$
\begin{array}{llll}
\mathrm{W} \rightarrow \mathrm{~V} & \mathrm{WY} \rightarrow \mathrm{BV} & \mathrm{WC} \rightarrow \mathrm{~V} & \mathrm{~V} \rightarrow \mathrm{~B} \\
\mathrm{BG} \rightarrow \mathrm{M} & \mathrm{BV} \rightarrow \mathrm{Y} & \mathrm{BYH} \rightarrow \mathrm{~V} & \mathrm{M} \rightarrow \mathrm{~W} \\
\mathrm{Y} \rightarrow \mathrm{H} & \mathrm{CY} \rightarrow \mathrm{~W} & &
\end{array}
$$

- Minimal cover:

1. Split $\mathrm{WY} \rightarrow \mathrm{BV}$ into $\mathrm{WY} \rightarrow \mathrm{B}$ and $\mathrm{WY} \rightarrow \mathrm{V}$.
2. Since $\mathrm{W} \rightarrow \mathrm{V}$ and $\mathrm{W} \rightarrow \mathrm{B}$ are implied by the given set of FDs, we can replace $\mathrm{WY} \rightarrow \mathrm{B}, \mathrm{WY} \rightarrow \mathrm{V}$, and $\mathrm{WC} \rightarrow \mathrm{V}$ in the original set with $\mathrm{W} \rightarrow \mathrm{B}$ ($\mathrm{W} \rightarrow \mathrm{V}$ already exists in the original set, so we discard the duplicate).
3. $\mathrm{V} \rightarrow \mathrm{Y}$ and $\mathrm{BY} \rightarrow \mathrm{V}$ can be derived from the original set so we can replace $\mathrm{BV} \rightarrow \mathrm{Y}$ and $\mathrm{BYH} \rightarrow \mathrm{V}$ with $\mathrm{V} \rightarrow \mathrm{Y}$ and $\mathrm{BY} \rightarrow \mathrm{V}$.
4. We remove redundant FDs: $\mathrm{W} \rightarrow \mathrm{B}$.

Quiz 9

$$
\begin{array}{llll}
\mathrm{W} \rightarrow \mathrm{~V} & \mathrm{WY} \rightarrow \mathrm{BV} & \mathrm{WC} \rightarrow \mathrm{~V} & \mathrm{~V} \rightarrow \mathrm{~B} \\
\mathrm{BG} \rightarrow \mathrm{M} & \mathrm{BV} \rightarrow \mathrm{Y} & \mathrm{BYH} \rightarrow \mathrm{~V} & \mathrm{M} \rightarrow \mathrm{~W} \\
\mathrm{Y} \rightarrow \mathrm{H} & \mathrm{CY} \rightarrow \mathrm{~W} & &
\end{array}
$$

- Minimal cover:

1. Split $\mathrm{WY} \rightarrow \mathrm{BV}$ into $\mathrm{WY} \rightarrow \mathrm{B}$ and $\mathrm{WY} \rightarrow \mathrm{V}$.
2. Since $\mathrm{W} \rightarrow \mathrm{V}$ and $\mathrm{W} \rightarrow \mathrm{B}$ are implied by the given set of FDs, we can replace $\mathrm{WY} \rightarrow \mathrm{B}, \mathrm{WY} \rightarrow \mathrm{V}$, and $\mathrm{WC} \rightarrow \mathrm{V}$ in the original set with $\mathrm{W} \rightarrow \mathrm{B}$ ($\mathrm{W} \rightarrow \mathrm{V}$ already exists in the original set, so we discard the duplicate).
3. $\mathrm{V} \rightarrow \mathrm{Y}$ and $\mathrm{BY} \rightarrow \mathrm{V}$ can be derived from the original set so we can replace $\mathrm{BV} \rightarrow \mathrm{Y}$ and BYH $\rightarrow \mathrm{V}$ with $\mathrm{V} \rightarrow \mathrm{Y}$ and $\mathrm{BY} \rightarrow \mathrm{V}$.
4. We remove redundant FDs: $\mathrm{W} \rightarrow \mathrm{B}$.
5. The final result is:
$\mathrm{W} \rightarrow \mathrm{V}$
$\mathrm{V} \rightarrow \mathrm{B}$
$\mathrm{BG} \rightarrow \mathrm{M}$
$\mathrm{V} \rightarrow \mathrm{Y}$
BY \rightarrow V
$\mathrm{M} \rightarrow \mathrm{W}$
$\mathrm{Y} \rightarrow \mathrm{H}$
$\mathrm{CY} \rightarrow \mathrm{W}$

Quiz 9

$$
\begin{array}{llll}
\mathrm{W} \rightarrow \mathrm{~V} & \mathrm{~V} \rightarrow \mathrm{~B} & \mathrm{BG} \rightarrow \mathrm{M} & \mathrm{~V} \rightarrow \mathrm{Y} \\
\mathrm{BY} \rightarrow \mathrm{~V} & \mathrm{M} \rightarrow \mathrm{~W} & \mathrm{Y} \rightarrow \mathrm{H} & \mathrm{CY} \rightarrow \mathrm{~W}
\end{array}
$$

- Lossless 3NF:

$$
\begin{aligned}
& (\mathrm{WV} ;\{\mathrm{W} \rightarrow \mathrm{~V}\}) \\
& (\mathrm{VBY} ;\{\mathrm{BY} \rightarrow \mathrm{~V} ; \mathrm{V} \rightarrow \mathrm{Y} ; \mathrm{V} \rightarrow \mathrm{~B}\}) \\
& (\mathrm{BGM} ;\{\mathrm{BG} \rightarrow \mathrm{M}\}) \\
& (\mathrm{MW} ;\{\mathrm{M} \rightarrow \mathrm{~W}\}) \\
& (\mathrm{YH} ;\{\mathrm{Y} \rightarrow \mathrm{H}\}) \\
& (\mathrm{CYW} ;\{\mathrm{CY} \rightarrow \mathrm{~W}\})
\end{aligned}
$$

- Since BGM is a superkey of the original schema, we don't need to add anything to this decomposition.

Quiz 9

- BCNF:

- The schema (BGM; $\{B G \rightarrow M\}$) is not in BCNF because $M \rightarrow B$ is entailed by the original set of FDs.
- Decompose BGM with respect to $M \rightarrow$ B into (BM; $\{M \rightarrow B\}$) and (GM; $\}$), loosing the FD BG $\rightarrow \mathrm{M}$.
- The schema (CYW; \{CY $\rightarrow \mathrm{W}\}$) is not in BCNF because $\mathrm{W} \rightarrow \mathrm{Y}$ is entailed by the original set of FDs.
- Decompose CYW using W \rightarrow Y into (WY; $\{\mathrm{W} \rightarrow \mathrm{Y}\}$) and (WC; $\}$), loosing CY $\rightarrow \mathrm{W}$.

Extra problem 1

- Prove that the following sets of FDs are equivalent:
$\mathrm{F}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{C} \rightarrow \mathrm{A}, \mathrm{AB} \rightarrow \mathrm{C}$
$\mathrm{G}: \mathrm{A} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{B}, \mathrm{CB} \rightarrow \mathrm{A}$
$F \equiv G \Leftrightarrow F$ entails G and G entails F

1. F entails G :

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{F}}^{+}=\mathrm{ABC} \text {, so F entails } \mathrm{A} \rightarrow \mathrm{C} \\
& \mathrm{C}_{\mathrm{F}}^{+}=\mathrm{ABC} \text {, so F entails } \mathrm{C} \rightarrow \mathrm{~B} \\
& \mathrm{CB}_{\mathrm{F}}^{+}=\mathrm{ABC} \text {, so } \mathrm{F} \text { entails } \mathrm{CB} \rightarrow \mathrm{~A}
\end{aligned}
$$

2. G entails F:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{G}}^{+}=\mathrm{ABC} \text {, so } \mathrm{G} \text { entails } \mathrm{A} \rightarrow \mathrm{~B} \\
& \mathrm{C}_{\mathrm{G}}^{+}=\mathrm{ABC} \text {, so } \mathrm{G} \text { entails } \mathrm{C} \rightarrow \mathrm{~A} \\
& \mathrm{AB}_{\mathrm{G}}^{+}=\mathrm{ABC} \text {, so } \mathrm{G} \text { entails } \mathrm{AB} \rightarrow \mathrm{C}
\end{aligned}
$$

Extra problem 2

- Consider the schema R over the attributes ABCDEFG with the following functional dependencies:

$$
\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{~B}, \mathrm{BC} \rightarrow \mathrm{DE}, \mathrm{E} \rightarrow \mathrm{FG}
$$

and the following multivalued dependencies:

$$
\begin{aligned}
& \mathrm{R}=\mathrm{BC} \bowtie \mathrm{ABDEFG} \\
& \mathrm{R}=\mathrm{EF} \bowtie \mathrm{FGABCD}
\end{aligned}
$$

- Decompose this schema into 4NF while trying to preserve as many functional dependencies as possible: first use the 3NF synthesis algorithm, then the BCNF algorithm, and finally the 4NF algorithm.
- Is the resulting schema after decomposition dependency-preserving?

Extra problem 2

$$
\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{~B}, \mathrm{BC} \rightarrow \mathrm{DE}, \mathrm{E} \rightarrow \mathrm{FG}
$$

1. 3NF: split the right-hand sides of the FDs and minimize the left-hand sides:
$\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{B}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{C} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow \mathrm{F}, \mathrm{E} \rightarrow \mathrm{G}$
Synthesize the 3NF schemas: $\mathrm{R} 1=(\mathrm{ABC} ;\{\mathrm{AB} \rightarrow \mathrm{C}\})$,
$\mathrm{R} 2=(\mathrm{CBDE} ;\{\mathrm{C} \rightarrow \mathrm{BDE}\}), \mathrm{R} 3=(\mathrm{EFG} ;\{\mathrm{E} \rightarrow \mathrm{FG}\})$
2. BCNF:
$R 1$ is not in BCNF, because $C \rightarrow B$ is implied by our original set of FDs (and C is not a superkey of R1): we decompose R1 further using $\mathrm{C} \rightarrow \mathrm{B}: \mathrm{R} 11=(\mathrm{AC} ;\{ \})$ and $\mathrm{R} 12=(\mathrm{BC} ;\{\mathrm{C}$ $\rightarrow \mathrm{B}\}$).

Extra problem 2

$$
\begin{gathered}
\mathrm{R} 11=(\mathrm{AC} ;\{ \}), \mathrm{R} 12=(\mathrm{BC} ;\{\mathrm{C} \rightarrow \mathrm{~B}\}), \\
\mathrm{R} 2=(\mathrm{CBDE} ;\{\mathrm{C} \rightarrow \mathrm{BDE}\}), \mathrm{R} 3=(\mathrm{EFG} ;\{\mathrm{E} \rightarrow \mathrm{FG}\}) \\
\mathrm{R}=\mathrm{BC} \bowtie \mathrm{ABDEFG}, \mathrm{R}=\mathrm{EF} \bowtie \mathrm{FGABCD}
\end{gathered}
$$

$4 \mathrm{NF}: \mathrm{R}=\mathrm{BC} \bowtie \mathrm{ABDEFG}$ projects onto R 2 as $\mathrm{R} 2=\mathrm{BC} \bowtie \mathrm{BDE}$ and it violates 4 NF because $\mathrm{B}=\mathrm{BC} \cap \mathrm{BDE}$ is not a superkey. Therefore, we decompose R 2 into ($\mathrm{BC} ;\{\mathrm{C} \rightarrow \mathrm{B}\}$) and $(\mathrm{BDE} ;\{ \})$. $\mathrm{MVD} R=\mathrm{EF} \bowtie \mathrm{FGABCD}$ projects onto R 3 as $\mathrm{R} 3=\mathrm{EF} \bowtie \mathrm{FG}$ and it violates 4 NF because $\mathrm{F}=\mathrm{EF} \cap \mathrm{FG}$ is not a superkey. Therefore, we decompose R3 into (EF; $\{E \rightarrow F\}$) and ($F G ;\{ \}$).

Extra problem 2

$$
\begin{aligned}
& \mathrm{AB} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{~B}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{C} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow \mathrm{~F}, \mathrm{E} \rightarrow \mathrm{G} \\
& \mathrm{R}=\mathrm{BC} \bowtie \mathrm{ABDEFG}, \mathrm{R}=\mathrm{EF} \bowtie \mathrm{FGABCD} \\
& \mathrm{R} 11=(\mathrm{AC} ;\{ \}), \mathrm{R} 12=(\mathrm{BC} ;\{\mathrm{C} \rightarrow \mathrm{~B}\}) \\
& \mathrm{R} 21=(\mathrm{BC} ;\{\mathrm{C} \rightarrow \mathrm{~B}\}), \mathrm{R} 22=(\mathrm{BDE} ;\{ \}) \\
& \mathrm{R} 31=(\mathrm{EF} ;\{\mathrm{E} \rightarrow \mathrm{~F}\}), \mathrm{R} 32=(\mathrm{FG} ;\{ \})
\end{aligned}
$$

The decomposition is not dependency preserving:

- $A \rightarrow B$, which was present in the original schema, is now not derivable from the FDs attached to the schemas in the decomposition.

Extra problem 3

- Consider the schema R over the attributes ABCDEFG:

$$
\begin{gathered}
\mathrm{DE} \rightarrow \mathrm{~F}, \mathrm{BC} \rightarrow \mathrm{AD}, \mathrm{FD} \rightarrow \mathrm{G}, \mathrm{~F} \rightarrow \mathrm{DE}, \mathrm{D} \rightarrow \mathrm{E} \\
\mathrm{R}=\mathrm{ABCFG} \bowtie \mathrm{BCDE}
\end{gathered}
$$

- Compute 4NF:

1. 3NF: minimal cover:

Split the LHS:
$\mathrm{DE} \rightarrow \mathrm{F}, \mathrm{BC} \rightarrow \mathrm{A}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{FD} \rightarrow \mathrm{G}, \mathrm{F} \rightarrow \mathrm{D}, \mathrm{F} \rightarrow \mathrm{E}, \mathrm{D} \rightarrow \mathrm{E}$
Reduce the RHS:
Since $\mathrm{D} \rightarrow \mathrm{E}$, we can delete E in the LHS of $\mathrm{DE} \rightarrow \mathrm{F}: \mathrm{D} \rightarrow \mathrm{F}$ Since $\mathrm{F} \rightarrow \mathrm{D}$, we can delete D in the LHS of $\mathrm{FD} \rightarrow \mathrm{G}: \mathrm{F} \rightarrow \mathrm{G}$
Remove redundant FDs:

$$
\mathrm{D} \rightarrow \mathrm{~F}, \mathrm{BC} \rightarrow \underset{\text { (c) Peasson and P.F.ador (cs siony }}{\mathrm{A}, \text { rook) }} \mathrm{F} \rightarrow \mathrm{D}, \mathrm{D} \rightarrow \mathrm{E}
$$

Extra problem 3

$\mathrm{D} \rightarrow \mathrm{F}, \mathrm{BC} \rightarrow \mathrm{A}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{F} \rightarrow \mathrm{G}, \mathrm{F} \rightarrow \mathrm{D}, \mathrm{D} \rightarrow \mathrm{E}$

$$
\mathrm{R}=\mathrm{ABCFG} \bowtie \mathrm{BCDE}
$$

3NF: (DEF; $\{\mathrm{D} \rightarrow \mathrm{EF}\}$) ($\mathrm{BCAD} ;\{\mathrm{BC} \rightarrow \mathrm{AD}\}$) (FGD; \{F $\rightarrow \mathrm{GD}\}$)
This decomposition is lossless since $\mathrm{BCAD}^{+}=\mathrm{BCADEFG}$, i.e., the attribute set of the second schema is a superkey of the original schema.

BCNF: yes

4NF: We project the MVD on BCAD: BCAD = ABC \bowtie BCD.
$A B C \cap B C D=B C$ is a superkey of the schema $(B C \rightarrow A D)$, so, this MVD does not violate the 4NF.

Extra problem 4

- Consider R=BCEGVWY with the MVDs:

$$
\begin{aligned}
& \text { MVD1: } \mathrm{R}=\mathrm{WBCY} \bowtie \mathrm{YEVG} \\
& \text { MVD2: } \mathrm{R}=\mathrm{WBCE} \bowtie \mathrm{WBYVG} \\
& \text { MVD3: } \mathrm{R}=\mathrm{WBY} \bowtie \mathrm{CYEVG}
\end{aligned}
$$

4NF 1: Use MVD1 to obtain the following decomposition: WBCY, YEVG.

Use MVD2 to WBCY to yield WBC, WBY.
Use MVD3 cannot be used to decompose WBC because the join attribute, Y , is not in this attribute set.

MVD3 cannot be used to decompose WBY or YEVG because it projects as a trivial dependency in these cases: WBY=WBY $\bowtie \mathrm{Y}$ andYEVG $=\mathrm{Y}$ \bowtie YEVG.

4NF 2: the decomposition 4NF 1 is not unique: we can apply MVD3 and then MVD1 then will obtain:WBY, CY, YEVG.

