
Propositional Logic and

Resolution

1

CSE 595 – Semantic Web

Instructor: Dr. Paul Fodor

Stony Brook University

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

(c) Paul Fodor (CS Stony Brook) and Elsevier

Propositional logic
Alphabet A:

Propositional symbols (identifiers)

Connectives:

∧ (conjunction),

∨ (disjunction),

¬ (negation),

↔ (logical equivalence),

 (implication).

2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Propositional logic
Well-formed formulas (wffs, denoted by F) over

alphabet A is the smallest set such that:

If p is a predicate symbol in A then p ∈ F.

If the wffs F, G ∈ F then so are (¬F), (F ∧
G), (F ∨ G), (F G) and (F ↔ G).

3

(c) Paul Fodor (CS Stony Brook) and Elsevier

Interpretation
An interpretation I is a subset of propositions in an

alphabet A.

Alternatively, you can view I as a mapping from

the set of all propositions in A to a 2-values

Boolean domain {true, false}.

This name, “interpretation”, is more commonly

used for predicate logic

in the propositional case, this is sometimes called a

“substitution” or “truth assignment”.

4

(c) Paul Fodor (CS Stony Brook) and Elsevier

Semantics of Well-Formed Formulae
 A formula’s meaning is given w.r.t. an interpretation I:

I ⊨ p iff p ∈ I

I ⊨ ¬F iff I ⊨ F (i.e., I does not entail F)

I ⊨ F ∧ G iff I ⊨ F and I ⊨ G

I ⊨ F ∨ G iff I ⊨ F or I ⊨ G (or both)

I ⊨ F G iff I ⊨ G whenever I ⊨ F

I ⊨ F ↔ G iff I ⊨ FG and I ⊨ GF

Notes: we read "⊨" as entails, models, is a semantic

consequence of"

We read I ⊨ p as "I entails p".
5

(c) Paul Fodor (CS Stony Brook) and Elsevier

Models
An interpretation I such that I ⊨ F is called “a

model” of F.

 “G is a logical consequence of F" (denoted by

F ⊨ G) iff every model of F is also a model of G.

 in other words, G holds in every model of F;

or G is true in every interpretation that makes F true

6

(c) Paul Fodor (CS Stony Brook) and Elsevier

Models
A formula that has at least one model is

said to be “satisfiable”.

A formula for which every

interpretation is a model is called a

“tautology”.

A formula is “inconsistent” if it has no

models.

7

(c) Paul Fodor (CS Stony Brook) and Elsevier

Models
Checking whether or not a formula is

satisfiable is NP-Complete (the SAT

problem) because there are exponentially

many interpretations

Many interesting combinatorial problems

can be reduced to checking satisfiability:

hence, there is a significant interest in

efficient algorithms/heuristics/systems for

solving the SAT problem.
8

(c) Paul Fodor (CS Stony Brook) and Elsevier

Logical Consequence
Let P be a set of clauses {C1, C2,…, Cn}, where

each clause Ci is of the form (L1 ∨ L2 ∨…∨ Lk),

and where

each Lj is a literal: i.e. a possibly negated proposition

A model for P makes every one of Cis in P true.

Let G be a literal (called “Goal”)

Consider the question: does P ⊨ G?
 We can use a proof procedure, based on resolution to answer

this question.

9

(c) Paul Fodor (CS Stony Brook) and Elsevier

Proof System for Resolution

 The above notation is of “inference rules” where each

rule is of the form:

 P ⊢ C is called as a “sequent”

P⊢C means C can be proved if P is assumed true
10

(c) Paul Fodor (CS Stony Brook) and Elsevier

Proof System for Resolution

The turnstile, ⊢, represents syntactic

consequence (or "derivability").

P ⊢ C means that C is derivable from P

It is often read as "yields" or "proves"

11

(c) Paul Fodor (CS Stony Brook) and Elsevier

Proof System for Resolution

 Modus ponens can be seen as a special case of resolution

(of a one-literal clause and a two-literal clause) because

is equivalent to

12

(c) Paul Fodor (CS Stony Brook) and Elsevier

Proof System for Resolution
 Given a sequent, a derivation of a sequent (sometimes

called its “proof ”) is a tree with:

 that sequent as the root,

 empty leaves, and

 each internal node is an instance of an inference rule.

 A proof system based on Resolution is

 Sound: i.e. if F ⊢ G then F ⊨ G.

not Complete: i.e. there are F,G s.t. F ⊨ G but F ⊢ G.

 E.g., p ⊨ (p ∨ q) but there is no way to derive p ⊢ (p ∨ q).

13

(c) Paul Fodor (CS Stony Brook) and Elsevier

Resolution Proof (in pictures)

14

(c) Paul Fodor (CS Stony Brook) and Elsevier

Resolution Proof (An Alternative View)

The clauses of P are all in a “pool”/table.

Resolution rule picks two clauses from the

“pool”, of the form A ∨ C1 and ¬A ∨ C2.

and adds C1 ∨ C2 to the “pool”.

The newly added clause can now interact with

other clauses and produce yet more clauses.

Ultimately, the “pool” consists of all clauses C

such that P ⊢ C.
15

(c) Paul Fodor (CS Stony Brook) and Elsevier

Resolution Proof (An Example)

P = {(p ∨ q), (¬p ∨ r), (¬q ∨ r)}

Here is a proof for P ⊨ r :

16

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation Proofs
 While resolution alone is incomplete for determining logical

consequences, resolution is sufficient to show inconsistency

(i.e. show when P has no model).

 Refutation proofs (Reductio ad absurdum = reduction to

absurdity) for showing logical consequence.

 Say we want to determine P ⊨ r? , where r is a proposition.

 This is equivalent to checking if P ∪ {¬r} has an empty

model.

 This we can check by constructing a resolution proof for

P ∪ {¬r} ⊢ □, where □ denotes the unsatisfiable empty

clause.
17

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation Proofs (An Example)
 Let P = {(p ∨ q), (¬p ∨ r), (¬q ∨ r), (p ∨ s)}, and

 G = (r ∨ s)

18

(c) Paul Fodor (CS Stony Brook) and Elsevier

Clausal form
 Propositional Resolution works only on expressions in clausal

form.

 There is a simple procedure for converting an arbitrary set of

Propositional Logic sentences to an equivalent set of clauses

 Implications (I):

 φ ψ → ¬φ ∨ ψ

 φ ψ → φ ∨ ¬ψ

 φ ↔ ψ → (¬φ ∨ ψ) ∧ (φ ∨ ¬ψ)

 Negations (N):

 ¬¬φ → φ

 ¬(φ ∧ ψ) → ¬φ ∨ ¬ψ

 ¬(φ ∨ ψ) → ¬φ ∧ ¬ψ

19

(c) Paul Fodor (CS Stony Brook) and Elsevier

Clausal form
Distribution (D):

 φ ∨ (ψ ∧ χ) → (φ ∨ ψ) ∧ (φ ∨ χ)

 (φ ∧ ψ) ∨ χ → (φ ∨ χ) ∧ (ψ ∨ χ)

 φ ∨ (φ1 ∨ ... ∨ φn) → φ ∨ φ1 ∨ ... ∨ φn

 (φ1 ∨ ... ∨ φn) ∨ φ → φ1 ∨ ... ∨ φn ∨ φ

 φ ∧ (φ1 ∧ ... ∧ φn) → φ ∧ φ1 ∧ ... ∧ φn

 (φ1 ∧ ... ∧ φn) ∧ φ → φ1 ∧ ... ∧ φn ∧ φ

Operators (O):

 φ1 ∨ ... ∨ φ → {φ1, ... , φn}

 φ1 ∧ ... ∧ φn → {φ1}, ... , {φn}

20

(c) Paul Fodor (CS Stony Brook) and Elsevier

Clausal form: Example
Convert the sentence (g ∧ (r f)) to clausal form:

g ∧ (r f)

I g ∧ (¬r ∨ f)

N g ∧ (¬r ∨ f)

D g ∧ (¬r ∨ f)

O {g}

{¬r, f}

21

(c) Paul Fodor (CS Stony Brook) and Elsevier

Clausal form: Example
 Convert the sentence ¬(g ∧ (r f)) to clausal form:

¬(g ∧ (r f))

I ¬(g ∧ (¬r ∨ f))

N ¬g ∨ ¬(¬r ∨ f)

¬g ∨ (¬¬r ∧ ¬f)

¬g ∨ (r ∧ ¬f)

D (¬g ∨ r) ∧ (¬g ∨ ¬f)

O {¬g,r}

{¬g, ¬f}

22

(c) Paul Fodor (CS Stony Brook) and Elsevier

Soundness of Resolution
 If F ⊢ G then F ⊨ G:

For F ⊢ G, we will have a derivation (aka “proof ”) of

finite length.

We can show that F ⊨ G by induction on the length of

derivation.

23

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation-Completeness of Resolution
 If F is inconsistent, then F ⊢ □:

Note that F is a set of clauses. A clause is called an unit

clause if it consists of a single literal.

 If all clauses in F are unit clauses, then for F to be

inconsistent, clearly a literal and its negation will be two

of the clauses in F. Then resolving those two will generate

the empty clause.

A clause with n + 1 literals has “n excess literals”. The

proof of refutation-completeness is by induction on the

number of excess literals in F.

24

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation-Completeness of Resolution
 If F is inconsistent, then F ⊢ □:

 Assume refutation completeness holds for all clauses with n excess

literals; show that it holds for clauses with n + 1 excess literals.

 From F, pick some clause C with excess literals. Pick some literal, say A

from C. Consider C’ = C-{A}.

 Both F1=(F–{C})∪{C’} and F2=(F–{C}) ∪ {A} are inconsistent and

have at most n excess literals.

 By induction hypothesis, both have refutations. If there is a refutation of

F1 not using C’, then that is a refutation for F as well.

 If refutation of F1 uses C’, then construct a resolution of F by adding A

to the first occurrence of C’ (and its descendants); that will end with

{A}. From here on, follow the refutation of F2. This constructs a

refutation of F.

25

