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" Propositional logic
* Alphabet A:

*Propositional symbols (identifiers)

® Connectives:
A (conjunction),
V (disjunction),

1 (negation),

| (logical equivalence),

- (implication).
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" Propositional logic

® Well-formed formulas (wffs, denoted by F) over
alphabet A is the smallest set such that:

OI:?p is a predicate symbol inA thenp € E
o[f the wits F, G € F then so are (TF), (F A

G), (FV G), (F=2 G)and (F [<] G).
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" Interpretation

® An interpretation | is a subset of propositions in an

alphabet A.

® Alternatively, you can view I as a mapping from
the set of all propositions in A to a 2-values

Boolean domain {true, false}.
® This name, “interpretation”, is more commonly
used for predicate logic

*in the propositional case, this is sometimes called a

“substitution’ or “truth assignment”.
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Semantics of Well-Formed Formulae

* A formula’s meaning is given w.r.t. an interpretation I:
[Epiffp €1

[ E “FiffI ¥ F (i.e., I does not entail F)
I[IEFAGiUfIEFandI EG

FV Giffl EForlE G (or both)

F 2Giff | E G whenever | E F

F|~| Giff IEF2Gand 1 E G2F

Notes: we read "E" as entails, models, is a semantic

consequence cy” '

We read I = p as "l entails p".
(-,
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"Models

® An interpretation I such that I E F is called “a
model” of F.

*“Gisa ]ogical consequence of F" (denoted by

F E G)itt every model of F is also a model of G.

®in other words, G holds in every model of F;

or G is true in every interpretation that makes F true
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"Models

e A formula that has at least one model is
said to be “Satisﬁab]e”.

e A formula for which every
interpretation is a model is called a

“tautol o )/”.

e A formula is “inconsistent” it it has no

models.
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"Models

® Checking whether or not a formula is
satistiable is NP-Complete (the SAT
problem) because there are exponentially

many interpretations

® Many interesting combinatorial problems
can be reduced to checking satisfiability:
hence, there is a significant interest in

efficient algorithms /heuristics/ systems for

@ solving the SAT problem.
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"Logical Consequence

® Let P be a set of clauses {C,, C,,..., C_}, where
® cach clause C, is of the form (L, VL,V ...V L)),

and where

® cach Lj is a literal:i.e. a possibly negated proposition
e A model for P makes every one of Csin P true.

® et G be a literal (called “Goal”)

® Consider the question: does P E G?

We can use a proof procedure, based on resolution to answer

this question.
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"Proof System for Resolution
(€ P)

e P

PF(AV (1) PE(-AV ()
PFH(CV (G)

® The above notation is of “1'njérence rules” where each

Resolution

rule is of the torm:
Antecedent(s)

Conclusion

® P - Cis called as a “sequent”

® PC means C can be proved if P is assumed true
(-
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"Proof System for Resolution

® The turnstile, I, represents syntactic

consequence (or "derivability").

®P - C means that C is derivable from P

e [t is often read as "yields" or "proves"
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"Proof System for Resolution
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® Modus ponens can be seen as a special case of resolution

(of a one-literal clause and a two-literal clause) because

P —+q,p isequivalent to 7P Vg,p
q q
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"Proof System for Resolution

* Given a sequent, a derivation of a sequent (sometimes
called its “proot™) is a tree with:
® that sequent as the root,
® empty leaves, and

® cach internal node is an instance of an inference rule.

e A proof system based on Resolution is
e Sound:i.e.if F+ G then F E G.

® not Complete: i.e. there are FG s.t. F = G but F I7L G.
E.g.,p F (p V q) but there is no way to derive p = (p V q).
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Resolution Proof (in pictures)

P={(pVaq).(mpVr),(mqgVr)}

(pVq) (mpVr)
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(gVr)
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Resolution Proof (An Alternative View)

®*The clauses of P are all in a “pool”/table.

(-

® Resolution rule picks two clauses from the

“pool”; of the form AV C;and 7A V C,.
®and adds C, V C, to the “pool”.

® The newly added clause can now interact with

ot

o Ul

her clauses and produce yet more clauses.

timately, the “pool” consists of all c

such that P F C.
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Resolution Proof (An Example)
*P={(pVq),(TpVr),(TqVr)}

®Here is a proof forPET:

Clause Number | Clause

How Derived

pVg

“pVr

—q Vr

qVvr

Res. 1 & 2

Res. 3 & 4
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"Refutation Proofs
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e While resolution alone is incomplete for determining logical

consequences, resolution is sufficient to show inconsistency

(i.e. show when P has no model).

* Refutation proofs (Reductio ad absurdum = reduction to

absurdity) for showing logical consequence.
® Say we want to determine P E r? | whererisa proposition.

® This is equivalent to checking if PU {7r} hasan empty

model.
¢ This we can check by constructing a resolution proof for

P U {7r} F O, where O denotes the unsatistiable empty

clause.
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Refutation Proofs (AN Example?

*LetP={(pVq),(TpVr),(7qVr),(pVs)},and
°*G=(rVs)

Clause Number | Clause | How Derived

pVvg | € PUAG
-pVr | €ePUAG
~gVr | ePUAG
—r c PU-G
—S c PU-G
qVr Res. 1 & 2
r Res. 3 & 6
Res. 4 & 7

CO| | O O & W MR =
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Clausal form

o Propositional Resolution works only on expressions in clausal

form.

® There is a simple procedure for converting an arbitrary set of

Propositional Logic sentences to an equivalent set of clauses

Implications (I):

P2V - eVy
A - eV
KON iad Rl - (CeVY)A (e V1Y)
Negations (N):
® 171 (P (P
* (e AY) KA
* (e V) ATy
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Clausal form
Distribution (D):

@V (PUAYx) - (eVY)A(pVX)
(pAY) VY - (ev)A(dVvy)
eV (plV..V @n) — @V @lV..V@n
*(@lV..Vn)V @ — @elVv.VonV @
c@A(PL1A..A®n) — @AQPLA..A@n
* (@1 A..AN@n)A @ — PLIA..AQEnA @
Operators (O):

c@lV..V@ {p], .., Pn}

@l A..A\@n {pl}, .., {¢@n}
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Clausal form: Example
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* Convert the sentence (g A (r =2 f)) to clausal form:

g\ (r 21
[ gA(TrVH)
N gA(TrVi)

D g/\("er}

O {gf
{7 £}
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Clausal form: Example

* Convert the sentence 7(g A (r =2 {)) to clausal form:
(g A (2 D)

T(gA (Tr Vi)
_Ig \V _I(_Ir V f)

gV (TTr A —t)
gV (r AT
(TgVr)A(TgV i)
{7gr}

{7g, 1}
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"Soundness of Resolution

o [f FF GthenF E G:

* For F = G, we will have a derivation (aka “proot™) of

finite length.

® We can show that F E G by induction on the length of

derivation.
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Refutation-Completeness of Resolution

e [f F is inconsistent, then F F O:

® Note that F is a set of clauses. A clause is called an unit

clause if it consists of a single literal.

e [f all clauses in F are unit clauses, then for F to be
inconsistent, clearly a literal and its negation will be two
of the clauses in F. Then resolving those two will generate

the empty clause.

® A clause with n + 1 literals has “n excess literals”. The
proof of refutation—completeness is by induction on the

number of excess literals in F.
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Refutation-Completeness of Resolution

e [f F is inconsistent, then F F O:

® Assume refutation completeness holds for all clauses with n excess

literals; show that it holds for clauses with n + 1 excess literals.

® From F, pick some clause C with excess literals. Pick some literal, say A

from C. Consider C’ = C-{A}.
® Both F1=(F—{C})U{C’} and F2=(F—{C}) U {A} are inconsistent and
have at most n excess literals.

* By induction hypothesis, both have refutations. If there is a refutation of

F1 not using C’, then that is a refutation for F as well.

® If refutation of F1 uses C’, then construct a resolution of F by adding A
to the first occurrence ot C’ (and its descendants); that will end with
{A}. From here on, follow the refutation of F2.This constructs a

refutation of F.
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