Propositional Logic and Resolution

CSE 595 – Semantic Web

Instructor: Dr. Paul Fodor

Stony Brook University

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

Propositional logic

- Alphabet A:
 - Propositional symbols (identifiers)
 - Connectives:
 - Λ (conjunction),
 - •V (disjunction),
 - \neg (negation),
 - ↔ (logical equivalence),
 - \rightarrow (implication).

Propositional logic

- *Well-formed formulas (wffs*, denoted by *F*) over alphabet A is the smallest set such that:
 - If p is a predicate symbol in A then $p \in F$.
 - If the wffs F, $G \in F$ then so are $(\neg F)$, $(F \land G)$, $(F \lor G)$, $(F \lor G)$ and $(F \oiint G)$.

Interpretation

- An *interpretation* I is a subset of propositions in an alphabet A.
- Alternatively, you can view I as a mapping from the set of all propositions in A to a 2-values Boolean domain {true, false}.
- This name, *"interpretation*", is more commonly used for predicate logic
 - in the propositional case, this is sometimes called a *"substitution"* or *"truth assignment"*.

Semantics of Well-Formed Formulae

- A formula's meaning is given w.r.t. an interpretation I:
 - $I \vDash p \text{ iff } p \in I$
 - $I \models \neg F \text{ iff } I \notin F \text{ (i.e., I does not entail } F)$
 - $I \vDash F \land G \text{ iff } I \vDash F \text{ and } I \vDash G$
 - $I \vDash F \lor G \text{ iff } I \vDash F \text{ or } I \vDash G \text{ (or both)}$
 - $I \vDash F \rightarrow G \text{ iff } I \vDash G \text{ whenever } I \vDash F$ $I \vDash F \rightarrow G \text{ iff } I \vDash F \rightarrow G \text{ and } I \vDash G \rightarrow F$

Notes: we read " \models " as *entails, models, is a semantic* consequence of"

We read
$$I \vDash p$$
 as "I *entails* p".

(c) Paul Fodor (CS Stony Brook) and Elsevier

Models

- An interpretation I such that I ⊨ F is called "*a model*" of F.
- "G is a *logical consequence* of F" (denoted by
 F ⊨ G) iff every model of F is also a model of G.
 in other words, G holds in every model of F;
 or G is true in every interpretation that makes F true

Models

- A formula that has at least one model is said to be "*satisfiable*".
- A formula for which every interpretation is a model is called a *"tautology"*.
- A formula is "*inconsistent*" if it has no models.

Models

- Checking whether or not a formula is satisfiable is NP-Complete (the SAT problem) because there are exponentially many interpretations
- Many interesting combinatorial problems can be reduced to checking satisfiability: hence, there is a significant interest in efficient algorithms/heuristics/systems for solving the SAT problem.

(c) Paul Fodor (CS Stony Brook) and Elsevier

Logical Consequence

- Let P be a set of clauses $\{C_1, C_2, \dots, C_n\}$, where
 - each clause C_i is of the form $(L_1 \vee L_2 \vee ... \vee L_k)$, and where
 - each L_i is a *literal*: i.e. a possibly negated proposition
- A **model** for P makes every one of C_i s in P true.
- Let G be a literal (called "Goal")
 - Consider the question: does $P \vDash G$?
 - We can use a proof procedure, based on *resolution* to answer this question.

Proof System for Resolution
$$\overline{\{C\} \cup P \vdash C}$$
 $(\in P)$ $P \vdash (A \lor C_1)$ $P \vdash (\neg A \lor C_2)$ Resolution $P \vdash (C_1 \lor C_2)$ Resolution• The above notation is of "inference rules" where each rule is of the form:

Antecedent(s)

Conclusion

• $P \vdash C$ is called as a "sequent"

• $P \vdash C$ means C can be *proved* if P is assumed true

(c) Paul Fodor (CS Stony Brook) and Elsevier

Proof System for Resolution

- The turnstile, ⊢, represents <u>syntactic</u>
 <u>consequence</u> (or "derivability").
 - $P \vdash C$ means that C is derivable from P
- It is often read as "yields" or "proves"

Proof System for Resolution

 Modus ponens can be seen as a special case of resolution (of a one-literal clause and a two-literal clause) because

 $\frac{p \to q, p}{q} \quad \text{is equivalent to } \frac{\neg p \lor q, p}{q}$

Proof System for Resolution

- Given a sequent, a *derivation* of a sequent (sometimes called its "proof") is a tree with:
 - that sequent as the root,
 - empty leaves, and
 - each internal node is an instance of an inference rule.
- A proof system based on Resolution is
 - Sound: i.e. if $F \vdash G$ then $F \models G$.
 - <u>not Complete</u>: i.e. there are F,G s.t. $F \models G$ but $F \not\models G$.
 - E.g., $p \models (p \lor q)$ but there is no way to derive $p \vdash (p \lor q)$.

Resolution Proof (An Alternative View)

- The clauses of P are all in a "pool"/table.
- Resolution rule picks two clauses from the "pool", of the form A V C_1 and $\neg A V C_2$.
- and adds $C_1 \vee C_2$ to the "pool".
- The newly added clause can now interact with other clauses and produce yet more clauses.
- Ultimately, the "pool" consists of all clauses C such that P ⊢ C.

Resolution Proof (An Example)			
• P = {(p V q), (\neg p V r), (\neg q V r)}			
• Here is a proof for $P \vDash r$:			
Clause Number	Clause	How Derived	
1	$p \lor q$	$\in P$	
2	$\neg p \lor r$	$\in P$	
3	$\neg q \lor r$	$\in P$	
4	$q \lor r$	Res. 1 & 2	
5	r	Res. 3 & 4	

Refutation Proofs

- While resolution alone is incomplete for determining logical consequences, resolution is <u>sufficient to show inconsistency</u> (i.e. show when <u>P has no model</u>).
- **Refutation** proofs (*Reductio ad absurdum* = *reduction to absurdity*) for showing logical consequence.
- Say we want to determine $P \vDash r?$, where r is a proposition.
- This is equivalent to checking if P U $\{\neg r\}$ has an empty model.
- This we can check by constructing a resolution proof for

P U {¬r} ⊢ □, where □ denotes the unsatisfiable empty clause.

Refutation Proofs (An Example)

- Let $P = \{(p V q), (\neg p V r), (\neg q V r), (p V s)\}, and$
- $G \equiv (r V s)$

Clause Number	Clause	How Derived
1	$p \lor q$	$\in P \cup \neg G$
2	$\neg p \lor r$	$\in P \cup \neg G$
3	$\neg q \lor r$	$\in P \cup \neg G$
4	$\neg r$	$\in P \cup \neg G$
5	$\neg s$	$\in P \cup \neg G$
6	$q \vee r$	Res. 1 & 2
7	r	Res. 3 & 6
8		Res. 4 & 7

(c) Paul Fodor (CS Stony Brook) and Elsevier

Clausal form

- Propositional Resolution works only on expressions in <u>clausal</u> <u>form</u>.
 - There is a simple procedure for <u>converting</u> an arbitrary set of Propositional Logic sentences to an equivalent set of clauses
 Implications (I):
 - $\begin{array}{cccc} & & & & & \\ \bullet & \phi \not \rightarrow & & & & \\ \bullet & \phi \not \leftarrow \psi & \rightarrow & & & \\ \bullet & \phi \not \leftarrow \psi & \rightarrow & & & \\ \bullet & \phi \not \leftarrow \psi & \rightarrow & & & \\ \bullet & \phi \not \leftarrow \psi & \rightarrow & & & \\ \bullet & \phi \not \leftarrow \psi & \rightarrow & & \\ \bullet & & & \\ \bullet & & & \\ \bullet & & \\ \bullet$
 - $\neg \neg \phi \rightarrow \phi$
 - $\neg(\phi \land \psi) \rightarrow \neg \phi \lor \neg \psi$
 - $\neg(\phi \lor \psi) \rightarrow \neg \phi \land \neg \psi$

Clausal form

- Distribution (D):
 - $\phi \lor (\psi \land \chi) \rightarrow$
 - $(\phi \land \psi) \lor \chi \rightarrow$
 - φ V (φ1 V ... V φn)
 - (φ1 V ... V φn) V φ
 - φ Λ (φ1 Λ ... Λ φn)
 - $(\phi 1 \land ... \land \phi n) \land \phi$
- Operators (O):
 - $\phi 1 \vee ... \vee \phi \rightarrow$
 - φ1 Λ ... Λ φn

- (φ∨ψ)∧(φ∨χ) (φ∨χ)∧(ψ∨χ)
 - $\rightarrow \phi \lor \phi 1 \lor ... \lor \phi n$
 - $\rightarrow \phi 1 \vee ... \vee \phi n \vee \phi$
 - $\rightarrow \phi \wedge \phi 1 \wedge \dots \wedge \phi n$
 - $\rightarrow \qquad \phi 1 \wedge \dots \wedge \phi n \wedge \phi$
- $\{ \phi 1, ..., \phi n \}$ $\{ \phi 1 \}, ..., \{ \phi n \}$

 \rightarrow

Clausal form: Example • Convert the sentence $(g \land (r \rightarrow f))$ to clausal form: $g \wedge (r \rightarrow f)$ I $g \land (\neg r \lor f)$ N $g \land (\neg r \lor f)$ D $g \land (\neg r \lor f)$ $O \{g\}$ $\{\neg r, f\}$

Clausal form: Example

- Convert the sentence $\neg(g \land (r \rightarrow f))$ to clausal form:
 - \neg (g \land (r \rightarrow f)) \neg (g \land (\neg r V f)) Ι N $\neg g \vee \neg (\neg r \vee f)$ $\neg g V (\neg \neg r \land \neg f)$ $\neg g V (r \land \neg f)$ $(\neg g \vee r) \wedge (\neg g \vee \neg f)$ D $\{\neg g, r\}$ \mathbf{O} $\{\neg g, \neg f\}$

Soundness of Resolution

- If $F \vdash G$ then $F \models G$:
 - For F ⊢ G, we will have a derivation (aka "proof") of finite length.
 - We can show that $F \vDash G$ by induction on the length of derivation.

Refutation-Completeness of Resolution

- If F is inconsistent, then $F \vdash \Box$:
 - Note that F is a set of clauses. A clause is called an unit clause if it consists of a single literal.
 - If all clauses in F are unit clauses, then for F to be inconsistent, clearly a literal and its negation will be two of the clauses in F. Then resolving those two will generate the empty clause.
 - A clause with n + 1 literals has "n excess literals". The proof of refutation-completeness is by induction on the number of excess literals in F.

Refutation-Completeness of Resolution

- If F is inconsistent, then $F \vdash \Box$:
 - Assume refutation completeness holds for all clauses with n excess literals; show that it holds for clauses with n + 1 excess literals.
 - From F, pick some clause C with excess literals. Pick some literal, say A from C. Consider C' = C-{A}.
 - Both F1=(F-{C})U{C'} and F2=(F-{C}) U {A} are inconsistent and have at most n excess literals.
 - By induction hypothesis, both have refutations. If there is a refutation of F1 not using C', then that is a refutation for F as well.
 - If refutation of F1 uses C', then construct a resolution of F by adding A to the first occurrence of C' (and its descendants); that will end with {A}. From here on, follow the refutation of F2. This constructs a refutation of F.