Predicate Logic

CSE 595 - Semantic Web
Instructor: Dr. Paul Fodor

Stony Brook University
http: / /www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

The alphabet of predicate logic

- Variables
- Constants (identifiers, numbers etc.)
- Functors (identifiers with arity >0; e.g. date/3).
- Predicate symbols (identifiers with arity $>=0$; e.g. append/3)
- Connectives:
- \wedge (conjunction),
- V (disjunction),
- $ᄀ$ (negation),
- Θ (logical equivalence),
\rightarrow (implication).
- Quantifiers: \forall (universal), \exists (existential).
- Auxiliary symbols such as parentheses and comma.

Predicate Logic Formulas

- Terms (T) over an alphabet A is the smallest set such that:
- Every constant $\mathbf{c} \in A$ is also $\mathbf{c} \in T$.
- Every variable $\mathbf{x} \in \mathrm{A}$ is also $\mathbf{x} \in \mathrm{T}$.
- If $f / n \in A$ and $t_{1}, t_{2}, \ldots, t_{n} \in T$ then $f\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in T$.
- Well-formed formulas (wffs, denoted by \boldsymbol{F}) over alphabet A is the smallest set such that:
- If p / n is a predicate symbol in \mathbf{A} and $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}} \in \mathrm{T}$ then $p\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in F$.
- If $F, G \in F$ then so are $(\neg F)$, $(F \wedge G)$, $(F \vee G),(F \rightarrow G)$ and ($\mathrm{F} \rightarrow \mathrm{G}$)
- If $\mathrm{F} \in F$ and \mathbf{X} is a variable in A then $(\forall \mathbf{X} \mathrm{F})$ and $(\exists \mathbf{X} \mathrm{F}) \in \boldsymbol{F}$.

Bound and Free Variables

- A variable \mathbf{X} is bound in formula F if $(\forall \mathbf{X} G)$ or $(\exists \mathbf{X} G)$ is a sub-formula of F.
- A variable that occurs in F, but is not bound in F is said to be free in F .
- A formula F is closed if it has no free variables.
- Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{\mathrm{n}}$ be all the free variables in F . Then
$\bullet\left(\forall \mathbf{X}_{1}\left(\ldots\left(\forall \mathbf{X}_{\mathrm{n}} \mathrm{F}\right) \ldots\right)\right)$ is the universal closure of F , and is denoted by $\forall \mathrm{F}$.
- $\left(\exists \mathbf{X}_{1}\left(\ldots\left(\exists \mathbf{X}_{\mathrm{n}} \mathrm{F}\right) \ldots\right)\right)$ is the existential closure of F , and is denoted by $\exists \mathrm{F}$.

Interpretation

- An interpretation I of an alphabet is
- a non-empty domain D , and
- a mapping that associates:
${ }^{-}$each constant $\mathbf{c} \in \mathrm{A}$ with an element $\mathbf{C}_{\mathbf{I}} \in \mathrm{D}$
${ }^{\bullet}$ each n-ary functor $\mathbf{f} \in A$ with an function $\mathbf{f}_{\mathrm{I}}: \mathrm{D}^{\mathrm{n}} \rightarrow \mathrm{D}$
- each n-ary predicate symbol $p \in A$ with an relation $p_{I} \subseteq D^{n}$
- For instance, one interpretation of the symbols in our "relations" program is that 'bob', 'pam' et. al. are people in some set, and parent/2 is the parent-of relation, etc.
- Another interpretation could be that 'bob', 'pam' etc are natural numbers, parent/2 is the greater-than relation, etc.

Valuation

- Given an interpretation I, the semantics of a variablefree (a.k.a. ground) term is clear from I itself:

$$
I\left(f\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)=f_{I}\left(I\left(t_{1}\right), I\left(t_{2}\right), \ldots, I\left(t_{n}\right)\right)
$$

- But to attach a meaning to terms with variables, we must first give a meaning to its variables!
- This is done by a valuation: which is a mapping from variables to the domain D of an interpretation.
$\varphi=\left\{\mathrm{X}_{1} \rightarrow \mathrm{~d}_{1}, \mathrm{X}_{2} \rightarrow \mathrm{~d}_{2}, \ldots, \mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{d}_{\mathrm{n}}\right\}$
$\varphi[\mathbf{X} \rightarrow \mathrm{d}]$ is identical to φ except that it maps \mathbf{X} to d

Semantics of terms

- Terms are given a meaning with respect to a valuation:
- Given an interpretation I and valuation φ, the meaning of a term \mathbf{t}, denoted by $\varphi_{\mathbf{I}}(\mathbf{t})$ is defined as:
- if \mathbf{t} is a constant \mathbf{C} then $\varphi_{I}(\mathbf{t})=\mathbf{C}_{\mathbf{I}}$
- if \mathbf{t} is a variable \mathbf{X} then $\varphi_{\mathbf{I}}(\mathbf{t})=\varphi \mathbf{X}$
- if t is a structure $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ then

$$
\varphi_{I}(\mathrm{t})=\mathrm{f}_{\mathrm{I}}\left(\varphi_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \varphi_{\mathrm{I}}\left(\mathrm{t}_{2}\right), \ldots, \varphi_{\mathrm{I}}\left(\mathrm{t}_{\mathrm{n}}\right)\right)
$$

Example

- Let A be an alphabet containing constant zero, a unary functor \mathbf{s} and a binary functor plus.
- I, defined as follows, is an interpretation with N (the set of natural numbers) as its domain:
- zero $_{\text {I }}=0$
- $S_{I}(x)=1+x$
${ }^{-} \operatorname{plus}_{\mathrm{I}}(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y}$
- Now, if $\varphi=\{\mathbf{x} \rightarrow \mathbf{1}\}$, then
$\varphi_{\mathrm{I}}(\mathrm{plus}(\mathrm{s}($ zero $), \mathrm{X}))=\varphi_{\mathrm{I}}(\mathrm{s}($ zero $))+\varphi_{\mathrm{I}}(\mathrm{X})$

$$
\begin{aligned}
& =\left(1+\varphi_{\mathrm{I}}(\text { zero })\right)+\varphi(\mathbf{x}) \\
& =(1+0)+1=2
\end{aligned}
$$

Semantics of Well-Formed Formulae

- A formula's meaning is given w.r.t. an interpretation I and valuation φ
- IF $\mathcal{F} p\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ iff $\left(\varphi \mathrm{I}\left(\mathrm{t}_{1}\right), \varphi \mathrm{I}\left(\mathrm{t}_{2}\right), \ldots, \varphi \mathrm{I}\left(\mathrm{t}_{\mathrm{n}}\right)\right) \in \mathrm{p}_{\mathrm{I}}$
- I $\vDash \varphi \neg$ Fiff I $\| \neq \varphi$ F
- I $\vDash \varphi \mathrm{F} \wedge \mathrm{G}$ iff $\mathrm{I} \vDash \varphi \mathrm{F}$ and $\mathrm{I} \vDash \varphi \mathrm{G}$
- I $\vDash \varphi$ F V Giff $I \vDash \varphi$ F or $I \vDash \varphi$ G (or both)
- $\mathrm{I} \vDash \varphi \mathrm{F} \rightarrow \mathrm{G}$ iff $\mathrm{I} \vDash \varphi \mathrm{G}$ whenever $\mathrm{I} \vDash \varphi \mathrm{F}$
- I $\vDash \varphi \mathrm{F} \rightarrow \mathrm{G}$ iff $\mathrm{I} \vDash \varphi \mathrm{F} \rightarrow \mathrm{G}$ and $\mathrm{I} \vDash \varphi \mathrm{G} \rightarrow \mathrm{F}$
- I $\vDash \varphi \forall \mathrm{X}$ F iff $\mathrm{I}[\mathrm{X} \rightarrow \mathrm{d}] \vDash \varphi \mathrm{F}$ for every $\mathrm{d} \in|\mathrm{I}|$ (domain D of I)
- I $\vDash \varphi \exists \mathrm{X}$ F iff $\mathrm{I}[\mathrm{X} \rightarrow \mathrm{d}] \vDash \varphi \mathrm{F}$ for some $\mathrm{d} \in|\mathrm{I}|$

Semantics of Well-Formed Formulae

- Given a set of closed formulas P , an interpretation I is said to be a model of P iff every formula of P is true in I .

Example 1.

- Consider the language with zero as the lone constant, s/1 as the only functor symbol, and a predicate symbol $\mathrm{p} / 1$.
- Consider an interpretation I with $|\mathrm{I}|=\mathrm{N}$, the set of natural numbers, zero $_{\mathrm{I}}=0$ and $\mathrm{s}_{\mathrm{I}}(\mathrm{x})=1+\mathrm{x}$
- Now consider the formula:

$$
\mathrm{F}_{1}=\mathrm{p}(\text { zero }) \wedge(\forall \mathrm{X} \mathrm{p}(\mathrm{~s}(\mathrm{~s}(\mathrm{X}))) \leftrightarrow \mathrm{p}(\mathrm{X}))
$$

- Find an interpretation for $p / 1$ such that $I \vDash F_{1}$.

$$
\begin{aligned}
\bullet{ }^{\bullet} \mathrm{p}_{11} & =\{0,2,4,6,8,10, \ldots\} \\
\bullet \mathrm{p}_{\mathrm{I} 2} & =\{0,1,2,3,4,5,6,7,8,9,10, \ldots\}
\end{aligned}
$$

Example 2.

- Recall Example 1:

$$
\mathrm{F}_{1}=\mathrm{p}(\text { zero }) \wedge(\forall \mathrm{Xp}(\mathrm{~s}(\mathrm{~s}(\mathrm{X}))) \leftrightarrow \mathrm{p}(\mathrm{X}))
$$

- Consider extending the previous example with another predicate symbol q/1, and consider the formula:

$$
\mathrm{F}_{2}=\mathrm{q}(\mathrm{~s}(\mathrm{zero})) \wedge(\forall \mathrm{Xq}(\mathrm{~s}(\mathrm{~s}(\mathrm{X}))) \leftrightarrow \mathrm{q}(\mathrm{X}))
$$

- Now extend the previous interpretation such that

$$
\mathrm{I} \vDash \mathrm{~F}_{1} \wedge \mathrm{~F}_{2}
$$

Example 2.

- $\mathrm{P}_{\mathrm{I} 1}=\{0,2,4,6,8,10, \ldots\}$
- $\mathrm{q}_{\mathrm{II}}=\{1,3,5,7,9,11, \ldots\}$
- $\mathrm{p}_{\mathrm{t} 2}=\{0,1,2,3,4,5,6,7,8,9,10, \ldots\}$
- $\mathrm{q}_{\mathrm{I} 2}=\{1,3,5,7,9,11, \ldots\}$
- $p_{13}=\{0,2,4,6,8,10, \ldots\}$
- $\mathrm{q}_{\mathrm{I} 3}=\{0,1,2,3,4,5,6,7,8,9,10, \ldots\}$
- $\mathrm{P}_{\mathrm{I} 4}=\{0,1,2,3,4,5,6,7,8,9,10, \ldots\}$
- $\mathrm{q}_{\mathrm{I} 4}=\{0,1,2,3,4,5,6,7,8,9,10, \ldots\}$

Example 3.

- Recall Example 2:

$$
\begin{aligned}
& \mathrm{F}_{1}=\mathrm{p}(\text { zero }) \wedge(\forall \mathrm{X} p(\mathrm{~s}(\mathrm{~s}(\mathrm{X}))) \leftrightarrows \mathrm{p}(\mathrm{X})) \\
& \mathrm{F}_{2}=\mathrm{q}(\mathrm{~s}(\text { zero })) \wedge(\forall \mathrm{X} \mathrm{q}(\mathrm{~s}(\mathrm{~s}(\mathrm{X}))) \boldsymbol{\mathrm { q }})
\end{aligned}
$$

- In the previous example, consider a new formula:

$$
\mathrm{F}_{3}=(\forall \mathrm{Xq}(\mathrm{~s}(\mathrm{X})) \leftrightarrow \mathrm{p}(\mathrm{X}))
$$

- Now extend the previous interpretation such that

$$
\mathrm{I} \vDash \mathrm{~F}_{1} \wedge \mathrm{~F}_{2} \wedge \mathrm{~F}_{3}
$$

Example 3.

- $\mathrm{p}_{\mathrm{II}}=\{0,2,4,6,8,10, \ldots\}$
- $\mathrm{q}_{\mathrm{II}}=\{1,3,5,7,9,11, \ldots\}$
- $\mathrm{p}_{\mathrm{I} 4}=\{0,1,2,3,4,5,6,7,8,9,10, \ldots\}$
- $\mathrm{q}_{\mathrm{IL}}=\{0,1,2,3,4,5,6,7,8,9,10, \ldots\}$

Interpretations and Consequences

- Is there any interpretation I such that

$\mathrm{I} \vDash \mathrm{F}_{1} \wedge \mathrm{~F}_{2}$, butI $\| \neq \mathrm{F}_{3}$?

- Yes:
${ }^{\circ} \mathrm{P}_{12}=\{0,1,2,3,4,5,6,7,8,9,10, \ldots\}$
${ }^{\circ} \mathrm{q}_{12}=\{1,3,5,7,9,11, \ldots\}$
${ }^{\circ} \mathrm{P}_{\mathrm{I} 3}=\{0,2,4,6,8,10, \ldots\}$
${ }^{\circ} \mathrm{q}_{13}=\{0,1,2,3,4,5,6,7,8,9,10, \ldots\}$

Logical Consequence - Let P and F be closed formulas.

-F is a logical consequence of P (denoted by P F F) iff
$\bullet F$ is true in every model of P.

Logical Consequence: An Example

1) $(\forall \mathrm{X}(\forall \mathrm{Y}($ mother $(\mathrm{X}) \wedge \operatorname{child}(\mathrm{Y}, \mathrm{X})) \rightarrow \operatorname{loves}(\mathrm{X}, \mathrm{Y})))$
2) mother (mary) \wedge child(tom, mary)

- Is loves(mary, tom) a logical consequence of the above two statements?
- Yes. Proof:
- For 1) to be true in some interpretation I:
$\mathrm{I} \vDash \varphi($ mother $(\mathrm{X}) \wedge \operatorname{child}(\mathrm{Y}, \mathrm{X})) \rightarrow \operatorname{loves}(\mathrm{X}, \mathrm{Y})$ must hold for any valuation φ.
- Specifically, for $\varphi=[\mathrm{X} \rightarrow$ mary, $\mathrm{Y} \rightarrow$ tom $]$

I $\vDash \varphi$ (mother(mary) \wedge child(tom,mary)) \rightarrow loves(mary,tom)

- Hence loves(mary,tom) is true in I if 2) above is true in I.

