Predicate Logic

CSE 595 – Semantic Web

Instructor: Dr. Paul Fodor

Stony Brook University

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

The alphabet of predicate logic

- Variables
- Constants (identifiers, numbers etc.)
- Functors (identifiers with arity > 0; e.g. date/3).
- Predicate symbols (identifiers with arity >= 0; e.g. **append/3**)
- Connectives:
 - Λ (conjunction),
 - V (disjunction),
 - \neg (negation),
 - \longleftrightarrow (logical equivalence),
 - \rightarrow (implication).
- Quantifiers: \forall (universal), \exists (existential).
- Auxiliary symbols such as parentheses and comma.

Predicate Logic Formulas

- Terms (T) over an alphabet A is the smallest set such that:
 - Every constant $\mathbf{c} \in \mathbf{A}$ is also $\mathbf{c} \in \mathbf{T}$.
 - Every variable $\mathbf{X} \in A$ is also $\mathbf{X} \in T$.
 - If $f/n \in A$ and $t_1, t_2, ..., t_n \in T$ then $f(t_1, t_2, ..., t_n) \in T$.
- Well-formed formulas (*wffs*, denoted by *F*) over alphabet A is the smallest set such that:
 - If p/n is a predicate symbol in A and $t_1, t_2, ..., t_n \in T$ then $p(t_1, t_2, ..., t_n) \in F$.
 - If F,G \in *F* then so are (\neg F), (F \land G), (F \lor G), (F \rightarrow G) and (F \longleftrightarrow G)
 - If $F \in F$ and **X** is a variable in A then $(\forall X F)$ and $(\exists X F) \in F$.

Bound and Free Variables

- A variable **X** is *bound* in formula F if $(\forall X G)$ or $(\exists X G)$ is a sub-formula of F.
- A variable that occurs in F, but is not bound in F is said to be *free* in F.
- A formula F is *closed* if it has no free variables.
- Let X_1, X_2, \ldots, X_n be all the free variables in F. Then
 - $(\forall X_1 (... (\forall X_n F) ...))$ is the *universal closure* of F, and is denoted by $\forall F$.
 - $(\exists X_1 (... (\exists X_n F) ...))$ is the *existential closure* of F, and is denoted by $\exists F$.

Interpretation

- An *interpretation* I of an alphabet is
 - a non-empty domain D, and
 - a mapping that associates:
 - each constant $\mathbf{c} \in A$ with an element $\mathbf{c}_{\mathtt{I}} \in D$
 - each n-ary functor $\mathbf{f} \in A$ with an function $\mathbf{f}_{\mathbf{I}} : D^n \to D$
 - each n-ary predicate symbol $\mathbf{p} \in A$ with an relation $\mathbf{p}_{I} \subseteq D^{n}$
- For instance, one interpretation of the symbols in our "relations" program is that 'bob', 'pam' et. al. are people in some set, and parent/2 is the parent-of relation, etc.
- Another interpretation could be that 'bob', 'pam' etc are natural numbers, parent/2 is the greater-than relation, etc.

Valuation

• Given an interpretation I, the semantics of a variablefree (a.k.a. *ground*) term is clear from I itself:

 $I(f(t_1, t_2, ..., t_n)) = f_I(I(t_1), I(t_2), ..., I(t_n))$

- But to attach a meaning to terms with variables, we must first give a meaning to its variables!
 - This is done by a *valuation*: which is a mapping from variables to the domain D of an interpretation.

$$\varphi = \{ \mathbf{X}_1 \rightarrow \mathbf{d}_1, \mathbf{X}_2 \rightarrow \mathbf{d}_2, \dots, \mathbf{X}_n \rightarrow \mathbf{d}_n \}$$

$$\varphi[\mathbf{X} \rightarrow \mathbf{d}] \text{ is identical to } \varphi \text{ except that it maps } \mathbf{X} \text{ to } \varphi$$

Semantics of terms

- Terms are given a meaning with respect to a *valuation:*
 - Given an interpretation I and valuation φ , the meaning of a term t, denoted by $\varphi_{I}(t)$ is defined as:
 - if t is a constant c then $\phi_{I}(t) = c_{I}$
 - if **t** is a variable **X** then $\phi_{I}(t) = \phi X$
 - if **t** is a structure **f**(t₁, t₂,..., t_n) then $\varphi_{I}(t) = f_{I}(\varphi_{I}(t_{1}), \varphi_{I}(t_{2}), ..., \varphi_{I}(t_{n}))$

Example

- Let A be an alphabet containing constant zero, a unary functor s and a binary functor plus.
- I, defined as follows, is an interpretation with N (the set of natural numbers) as its domain:
 - $zero_I = 0$
 - $\bullet \mathbf{s}_{I}(\mathbf{x}) = \mathbf{1} + \mathbf{x}$
 - $plus_1(x, y) = x + y$
- Now, if $\boldsymbol{\phi} = \{ \boldsymbol{X} \rightarrow \boldsymbol{1} \}$, then

 $\phi_{\mathtt{I}}(\mathtt{plus}\,(\mathtt{s}\,(\mathtt{zero})\,,\mathtt{X})\,)=\phi_{\mathtt{I}}(\mathtt{s}\,(\mathtt{zero})\,)+\phi_{\mathtt{I}}(\mathtt{X})$

$$= (\mathbf{1} + \phi_{\mathbf{I}}(\mathbf{zero})) + \phi(\mathbf{X})$$

$$= (1 + 0) + 1 = 2$$

Semantics of Well-Formed Formulae

- \bullet A formula's meaning is given w.r.t. an interpretation I and valuation ϕ
 - $I \models \varphi p(t_1, t_2, ..., t_n) \text{ iff } (\varphi I(t_1), \varphi I(t_2), ..., \varphi I(t_n)) \in p_I$
 - I $\models \phi \neg F$ iff I $\models \phi F$
 - $I \vDash \phi F \land G \text{ iff } I \vDash \phi F \text{ and } I \vDash \phi G$
 - $I \vDash \phi F \lor G \text{ iff } I \vDash \phi F \text{ or } I \vDash \phi G \text{ (or both)}$
 - $I \models \phi F \rightarrow G \text{ iff } I \models \phi G \text{ whenever } I \models \phi F$
 - $I \models \phi F \longleftrightarrow G \text{ iff } I \models \phi F \rightarrow G \text{ and } I \models \phi G \rightarrow F$
 - $I \models \phi \forall X \text{ F iff } I[X \rightarrow d] \models \phi \text{ F for every } d \in |I| \text{ (domain D of I)}$
 - $I \vDash \phi \exists X F \text{ iff } I[X \rightarrow d] \vDash \phi F \text{ for some } d \in |I|$

Semantics of Well-Formed Formulae

• Given a set of closed formulas P, an interpretation I is said to be a *model* of P iff every formula of P is true in I.

Example 1.

- Consider the language with zero as the lone constant, s/1 as the only functor symbol, and a predicate symbol p/1.
- Consider an interpretation I with |I| = N, the set of natural numbers, zero_I = 0 and s_I(x) = 1 + x
- Now consider the formula:

 $F_1 = p(\text{zero}) \land (\forall X \ p(s(s(X))) \bigoplus p(X))$

• Find an interpretation for p/1 such that $I \models F_1$.

•
$$p_{I1} = \{0, 2, 4, 6, 8, 10, \ldots\}$$

•
$$p_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots\}$$

Example 2.

• Recall Example 1:

F₁ = p(zero) ∧ (∀X p(s(s(X))) → p(X))
Consider extending the previous example with another predicate symbol q/1, and consider the formula:

 $F_2 = q(s(zero)) \land (\forall X q(s(s(X))) [↔] q(X))$ • Now extend the previous interpretation such that $I \models F_1 \land F_2$

Example 2.

- $p_{I1} = \{0, 2, 4, 6, 8, 10, ...\}$
- $q_{I1} = \{1, 3, 5, 7, 9, 11, \ldots\}$

•
$$p_{I3} = \{0, 2, 4, 6, 8, 10, \ldots\}$$

- $q_{I3} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots\}$
- $p_{I4} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...\}$
- $q_{I4} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots\}$

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example 3.

• Recall Example 2:

- $F_{1} = p(\text{zero}) \land (\forall X \ p(s(s(X))) \bigoplus p(X))$ $F_{2} = q(s(\text{zero})) \land (\forall X \ q(s(s(X))) \bigoplus q(X))$ • In the previous example, consider a new formula: $F_{3} = (\forall X \ q(s(X)) \bigoplus p(X))$
- Now extend the previous interpretation such that $I \models F_1 \land F_2 \land F_3$

Example 3.

- $p_{I1} = \{0, 2, 4, 6, 8, 10, ...\}$
- $q_{I1} = \{1, 3, 5, 7, 9, 11, \ldots\}$

Interpretations and Consequences • Is there any interpretation I such that $I \models F_1 \land F_2$, but $I \not\models F_3$? •Yes: • $p_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots\}$ • $q_{12} = \{1, 3, 5, 7, 9, 11, \ldots\}$ • $p_{13} = \{0, 2, 4, 6, 8, 10, ...\}$ • $q_{I3} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots\}$

Logical Consequence •Let P and F be closed formulas. •F is a *logical consequence* of P (denoted by $P \models F$) iff •F is true in every model of P.

Logical Consequence: An Example

- 1) $(\forall X (\forall Y (mother (X) \land child(Y, X)) \rightarrow loves(X, Y)))$
- 2) mother (mary) Λ child(tom, mary)
- Is loves(mary, tom) a logical consequence of the above two statements?
 - Yes. Proof:
 - For 1) to be true in some interpretation I:
 - $I \vDash \phi \text{ (mother (X) } \land \text{ child}(Y, X)) \rightarrow \text{loves}(X, Y)$

must hold for any valuation φ .

- Specifically, for $\varphi = [X \rightarrow mary, Y \rightarrow tom]$
- $I \models \phi \pmod{(\text{mother}(\text{mary}) \land \text{child}(\text{tom},\text{mary}))} \rightarrow \text{loves}(\text{mary},\text{tom})$
- Hence loves(mary,tom) is true in I if 2) above is true in I.