
Definite Logic Programs:

Derivation and Proof Trees

1

CSE 595 – Semantic Web

Instructor: Dr. Paul Fodor

Stony Brook University

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation in Predicate Logic
parent(pam, bob). parent(tom, bob).

parent(tom, liz). ...

anc(X,Y) :- parent(X,Y).

anc(X,Y) :- parent(X,Z), anc(Z,Y).

 Goal G: For what values of Q is :- anc(tom,Q) a logical

consequence of the above program?

 Negate the goal G: i.e. ¬G ≡ ∀Q ¬anc(tom, Q).

 Consider the clauses in the program P ∪ ¬G and apply refutation

 Note that a program clause written as p(A,B) :- q(A,C), r(B,C)

can be rewritten as: ∀A,B,C (p(A, B) ∨ ¬q(A, C) ∨ ¬r(B, C))

i.e., l.h.s. literal is positive, while all r.h.s. literals are negative

 Note also that all variables are universally quantified in a clause!

 Note on syntax: we use :- , ?- and for IMPLICATION2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation: An Example
parent(pam, bob).

parent(tom, bob).

parent(tom, liz).

parent(bob, ann).

parent(bob, pat).

parent(pat, jim).

anc(X,Y) :-

parent(X,Y).

anc(X,Y) :-

parent(X,Z),

anc(Z,Y).

3

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation: An Example
parent(pam, bob).

parent(tom, bob).

parent(tom, liz).

parent(bob, ann).

parent(bob, pat).

parent(pat, jim).

anc(X,Y) :-

parent(X,Y).

anc(X,Y) :-

parent(X,Z),

anc(Z,Y).

4

(c) Paul Fodor (CS Stony Brook) and Elsevier

Unification
Operation done to “match” the goal atom with

the head of a clause in the program.

Forms the basis for the matching operation

we used for Prolog evaluation:

f(a,Y) and f(X,b) unify when X=a and Y=b

f(a,X) and f(X,b) do not unify

f(a,X)=f(X,b) fails in Prolog

5

(c) Paul Fodor (CS Stony Brook) and Elsevier

Substitutions
A substitution is a mapping between variables and

values (terms)

Denoted by {X1/t1,X2/t2,..., Xn/tn} such that

Xi ≠ ti , and

Xi and Xj are distinct variables when i ≠ j.

The empty substitution is denoted by {} (or ε).

A substitution is said to be a renaming if it is of the

form {X1/Y1, X2/Y2,..., Xn/Yn} and

Y1,Y2,...,Yn is a permutation of X1,X2,...,Xn.

Example: {X/Y, Y/X} is a renaming substitution.
6

(c) Paul Fodor (CS Stony Brook) and Elsevier

Substitutions and Terms
Application of a substitution:

Xθ = t if X/t ∈ θ.

Xθ = X if X/t ∉ θ for any term t.

Application of a substitution {X1/t1,..., Xn/tn}

to a term/formula F:
 is a term/formula obtained by simultaneously replacing

every free occurrence of Xi in F by ti .

Denoted by Fθ [and Fθ is said to be an instance of F]

Example:
p(f(X,Z),f(Y,a)){X/g(Y), Y/Z, Z/a} =

p(f(g(Y),a),f(Z,a))

7

(c) Paul Fodor (CS Stony Brook) and Elsevier

Composition of Substitutions
 Composition of substitutions θ = {X1/s1,..., Xm/sm} and

σ = {Y1/t1,..., Yn/tn}:

 First form the set {X1/s1σ, ..., Xm/smσ, Y1/t1,...,Yn/tn}

 Remove from the set Xi/siσ if siσ = Xi
 Remove from the set Yj/tj if Yj is identical to some variable Xi

 Example: Let θ = σ = {X/g(Y), Y/Z, Z/a}. Then

θσ={X/g(Y), Y/Z, Z/a}{X/g(Y), Y/Z, Z/a}=

{X/g(Z), Y/a, Z/a}

 More examples: Let θ = {X/f(Y)} and σ = {Y/a}

 θσ = {X/f(a), Y/a}

 σθ = {Y/a, X/f(Y)}

 Composition is not commutative but is associative: θ(σγ) = (θσ)γ

8

(c) Paul Fodor (CS Stony Brook) and Elsevier

Idempotence
 A substitution θ is idempotent iff θθ = θ.

 Examples:

{X/g(Y), Y/Z, Z/a} is not idempotent since

{X/g(Y), Y/Z, Z/a}{X/g(Y), Y/Z, Z/a} = {X/g(Z), Y/a, Z/a}

{X/g(Z), Y/a, Z/a} is not idempotent either since

{X/g(Z), Y/a, Z/a}{X/g(Z), Y/a, Z/a} = {X/g(a), Y/a, Z/a}

{X/g(a), Y/a, Z/a} is idempotent

 For a substitution θ = {X1/t1,X2/t2,..., Xn/tn},

 Dom(θ) = {X1,X2,..., Xn}

 Range(θ) = set of all variables in t1,t2,...,tn

 A substitution θ is idempotent iff Dom(θ) ∩ Range(θ) = ∅
9

(c) Paul Fodor (CS Stony Brook) and Elsevier

Unifiers
 A substitution θ is a unifier of two terms s and t if sθ is identical to tθ

 θ is a unifier of a set of equations {s1=t1,...,sn=tn}, if

for all i, siθ = tiθ

 A substitution θ is more general than σ (written as θ ≥ σ) if there is a

substitution ω such that σ = θω
 A substitution θ is a most general unifier (mgu) of two terms (or a set

of equations) if for every unifier σ of the two terms (or equations)

θ≥σ
 Example: Consider two terms f(g(X),Y,a) and f(Z,W,X).

θ1 = {X/a, Y/b, Z/g(a), W/b} is a unifier

θ2 = {X/a, Y/W , Z/g(a)} is also a unifier

θ2 is more general than θ1

θ1= θ2ω where ω={W/b}

θ2 is also the most general unifier of the 2 terms
10

(c) Paul Fodor (CS Stony Brook) and Elsevier

Equations and Unifiers
 A set of equations E is in solved form if it is of the form

{X1=t1,..., Xn=tn} iff no Xi appears in any tj.

Given a set of equations E = {X1=t1,..., Xn=tn}, the

substitution {X1/t1,..., Xn/tn} is an idempotent

mgu of E

 Two sets of equations E1 and E2 are said to be equivalent iff

they have the same set of unifiers.

 To find the mgu of two terms s and t, try to find a set of

equations in solved form that is equivalent to {s = t}.

If there is no equivalent solved form, there is no mgu.

11

(c) Paul Fodor (CS Stony Brook) and Elsevier

A Simple Unification Algorithm
Given a set of equations E:
repeat

select s = t ∈ E;

case s = t of

1. f(s1, ...,sn) = f(t1, ...,tn):

replace the equation by si = ti for all i

2. f(s1, ...,sn) = g(t1, ...,tm), f ≠ g or n ≠ m:

halt with failure

3. X = X : remove the equation

4. t = X : where t is not a variable, X is a variable

replace equation by X = t

5. X = t : where X ≠ t and X occurs more than once in E:

if X is a proper subterm of t

then halt with failure (5a)

else replace all other X in E by t (5b)

until no action is possible for any equation in E

return E

12

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: Find the mgu of f(X,g(Y)) and f(g(Z),Z)

{f(X, g(Y)) = f(g(Z), Z)} ⇒
⇒ {X = g(Z), g(Y) = Z} case 1

⇒ {X = g(Z), Z = g(Y)} case 4

⇒ {X = g(g(Y)), Z = g(Y)} case 5b

13

A Simple Unification Algorithm

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: Find the mgu of f(X, g(X)) and f(Z, Z)

{f(X, g(X)) = f(Z, Z)} ⇒
⇒ {X = Z, g(X) = Z} case 1

⇒ {X = Z, g(Z) = Z} case 5b

⇒ {X = Z, Z = g(Z)} case 4

⇒ fail case 5a

14

A Simple Unification Algorithm

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: Find the mgu of f(X,g(X),b) and f(a,g(Z),Z)

{f(X,g(X),b)=f(a,g(Z),Z)} ⇒

⇒ {X = a, g(X) = g(Z), b = Z}

⇒ {X = a, g(a) = g(Z), b = Z}

⇒ {X = a, a = Z, b = Z}

⇒ {X = a, Z = a, b = Z}

⇒ {X = a, Z = a, b = a}

⇒ fail

15

A Simple Unification Algorithm

(c) Paul Fodor (CS Stony Brook) and Elsevier

Complexity of the unification algorithm
 Consider the set of equations:

E={g(X1,...,Xn)=g(f(X0,X0),f(X1, X1),…,f(Xn-1,Xn-1)}

 By applying case 1 of the algorithm, we get

{X1=f(X0, X0),X2=f(X1,X1),X3=f(X2,X2),…,Xn=f(Xn-1,Xn-1)}

 If terms are kept as trees, the final value for Xn is a tree of size O(2n).

 Recall that for case 5 we need to first check if a variable appears in a term,

and this could now take O(2n) time.

 There are linear-time unification algorithms that share structures (terms as DAGs).

 X = t is the most common case for unification in Prolog.

 The fastest algorithms are linear in t.

 Prolog cuts corners by omitting case 5a (the occur check), thereby doing X = t in

constant time.

16

(c) Paul Fodor (CS Stony Brook) and Elsevier

Most General Unifiers
Note that mgu stands for a/one most general

unifier.
There may be more than one mgu.

E.g. f(X) = f(Y) has two mgus:
{X / Y} (by our simple algorithm)

{Y / X} (by definition of mgu)

 If θ is an mgu of s and t, and ω is a renaming,

then θω is a mgu of s and t.

 If θ and σ are mgus of s and t, then there is a

renaming ω such that θ = σω.
MGU is unique up to renaming!

17

(c) Paul Fodor (CS Stony Brook) and Elsevier

SLD Resolution
Selective Linear Definite clause (SLD) Resolution:

where:

1. Aj are atomic formulas

2. B0 ← B1,...,Bn is a (renamed) definite clause in

the program

3. θ = mgu(Ai, B0)
Ai is called the selected atom

 Given a goal ← A1, ..., An a function called the selection

function or computation rule selects Ai
18

(c) Paul Fodor (CS Stony Brook) and Elsevier

SLD Resolution (cont.)
When the resolution rule is applied, from a

goal G and a clause C, we get a new goal G’
We then say that G’ is derived directly from G

and C:

An SLD Derivation is a sequence:

19

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation & SLD Derivation

20

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation & SLD Derivation

21

(c) Paul Fodor (CS Stony Brook) and Elsevier

Computed Answer Substitution
 Let θ0, θ1, . . . , θn-1 be the sequence of mgus used in derivation

Then θ=θ0θ1 · · · θn-1 is the computed substitution of the derivation.

 Example:

 Computed substitution for the above derivation is

θ0θ1θ2θ3 = {X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann}
22

(c) Paul Fodor (CS Stony Brook) and Elsevier

Computed Answer Substitution
 A finite derivation of the form

where Gn=□ (i.e., an empty goal) is an SLD refutation of G0

 The computed substitution of an SLD refutation of G,

restricted to variables of G, is a computed answer

substitution for G.

 Example (contd.): The computed answer substitution for

the previous SLD refutation is

{X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann}

restricted to Q:

{Q/ann}
23

(c) Paul Fodor (CS Stony Brook) and Elsevier

Failed SLD Derivation
 A derivation of a goal clause G0 whose last element is not empty,

and cannot be resolved with any clause of the program.

 Example: consider the following program:
grandfather(X,Z) :- father(X,Y), parent(Y,Z).

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

father(a,b).

mother(b,c).

 A failed SLD derivation of grandfather(a,Q) is:

24

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution
 Prolog follows OLD resolution = SLD with left-to-right

literal selection.
 Prolog searches for OLD proofs by expanding the resolution tree depth

first.
 This depth-first expansion is close to how procedural programs are

evaluated:

 Consider a goal G1, G2,…, Gn as a “procedure stack” with G1, the

selected literal on top.

 Call G1.

 If and when G1 returns, continue with the rest of the computation: call

G2, and upon its return call G3, etc. until nothing is left

 Note: G2 is “opened up” only when G1 returns, not after executing only

some part of G1.

25

(c) Paul Fodor (CS Stony Brook) and Elsevier

SLD Tree
A tree where every path is an SLD derivation

26

(c) Paul Fodor (CS Stony Brook) and Elsevier

Soundness of SLD resolution
Let P be a definite program, R be a computation

rule, and θ be a computed answer substitution for a

goal G.

Then ∀Gθ is a logical consequence of P.
Proof is by induction on the number of resolution

steps used in the refutation of G.
Base case uses the following lemma:

 Let F be a formula and F’ be an instance of F, i.e., F’ = Fθ
for some substitution θ.

Then (∀F) ⊨ (∀F’).

27

