Definite Logic Programs: Derivation and Proof Trees

CSE 595 – Semantic Web

Instructor: Dr. Paul Fodor

Stony Brook University

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

Refutation in Predicate Logic

parent(pam, bob). parent(tom, bob).
parent(tom, liz). ...
anc(X,Y) :- parent(X,Y).
anc(X,Y) :- parent(X,Z), anc(Z,Y).

- <u>Goal G</u>: For what values of Q is :- anc (tom, Q) a logical consequence of the above program?
- <u>Negate the goal G</u>: i.e. $\neg G \equiv \forall Q \neg anc(tom, Q)$.
- Consider the clauses in the program P U \neg G and apply refutation
 - Note that a program clause written as p(A,B) :- q(A,C), r(B,C) can be rewritten as: \VA,B,C (p(A, B) V \(\ngred q(A, C) V \(\ngred r(B, C))\)

i.e., l.h.s. literal is **positive**, while all r.h.s. literals are **negative**

• Note also that all variables are universally quantified in a clause!

Refutation: An Example

parent(pam, bob).

- parent(tom, bob).
- parent(tom, liz).

parent(bob, ann).

parent(bob, pat).

```
parent(pat, jim).
```



```
anc(X,Y) :-
    parent(X,Y).
anc(X,Y) :-
    parent(X,Z),
    anc(Z,Y).
```


Unification

- Operation done to "*match*" the goal atom with the head of a clause in the program.
- Forms the basis for the *matching* operation we used for Prolog evaluation:
 - •f(a,Y) and f(X,b) unify when X=a and Y=b
 - •f(a,X) and f(X,b) do not unify
 - f(a,X) = f(X,b) fails in Prolog

Substitutions

- A substitution is a mapping between variables and values (terms)
 - Denoted by $\{X_1/t_1, X_2/t_2, \ldots, X_n/t_n\}$ such that • $X_i \neq t_i$, and
 - X_i and X_j are distinct variables when $i \neq j$.
 - \bullet The empty substitution is denoted by $\{\}$ (or $\epsilon).$
 - A substitution is said to be a *renaming* if it is of the form {X₁/Y₁, X₂/Y₂,..., X_n/Y_n} and Y₁, Y₂,..., Y_n is a permutation of X₁, X₂,..., X_n.
 Example: {X/Y, Y/X} is a renaming substitution.

Substitutions and Terms • Application of a substitution:

- $X\theta = t ext{ if } X/t \in \theta.$
- $X\theta = X$ if $X/t \notin \theta$ for any term t.
- Application of a substitution $\{X_1/t_1, \ldots, X_n/t_n\}$ to a *term/formula* F:
 - is a term/formula obtained by simultaneously replacing every <u>free</u> occurrence of X_i in F by t_i.
 - Denoted by $F\theta$ [and $F\theta$ is said to be an *instance* of F]

• Example:

 $p(f(X,Z),f(Y,a)) \{X/g(Y), Y/Z, Z/a\} = p(f(g(Y),a),f(Z,a))$

Composition of Substitutions

- Composition of substitutions $\theta = \{X_1 / s_1, \ldots, X_m / s_m\}$ and
- $\sigma = \{\mathbf{Y}_1/\mathbf{t}_1, \ldots, \mathbf{Y}_n/\mathbf{t}_n\}:$
 - First form the set $\{X_1/s_1\sigma, ..., X_m/s_m\sigma, Y_1/t_1, ..., Y_n/t_n\}$
 - Remove from the set $\mathbf{X}_{i} / \mathbf{s}_{i} \sigma$ if $\mathbf{s}_{i} \sigma = \mathbf{X}_{i}$
 - Remove from the set $\mathbf{Y}_{j}/\mathbf{t}_{j}$ if \mathbf{Y}_{j} is identical to some variable \mathbf{X}_{i}
 - Example: Let $\theta = \sigma = \{X/g(Y), Y/Z, Z/a\}$. Then
 - $\theta \sigma = \{X/g(Y), Y/Z, Z/a\}\{X/g(Y), Y/Z, Z/a\} = \{X/g(Z), Y/a, Z/a\}$
 - More examples: Let $\theta = \{X/f(Y)\}$ and $\sigma = \{Y/a\}$
 - $\theta \sigma = \{X/f(a), Y/a\}$
 - $\sigma\theta = \{Y/a, X/f(Y)\}$

• Composition is not commutative but is associative: $\theta(\sigma\gamma) = (\theta\sigma)\gamma$

Idempotence

- A substitution θ is *idempotent* iff $\theta\theta = \theta$.
- Examples:
 - {X/g(Y), Y/Z, Z/a} is not idempotent since {X/g(Y),Y/Z, Z/a} {X/g(Y),Y/Z, Z/a} = {X/g(Z),Y/a, Z/a}
 {X/g(Z), Y/a, Z/a} {X/g(Z),Y/a, Z/a} is not idempotent either since {X/g(Z),Y/a,Z/a} {X/g(Z),Y/a,Z/a} = {X/g(a),Y/a,Z/a}
 {X/g(a), Y/a, Z/a} is idempotent
- For a substitution $\theta = \{X_1/t_1, X_2/t_2, \ldots, X_n/t_n\},\$
 - $Dom(\theta) = \{X_1, X_2, ..., X_n\}$
 - Range(θ) = set of all variables in t_1, t_2, \ldots, t_n
- A substitution θ is *idempotent* iff $Dom(\theta) \cap Range(\theta) = \emptyset$

Unifiers

- A substitution θ is a <u>unifier of</u> two terms s and t if s θ is identical to t θ
 - θ is a unifier of a set of equations $\{s_1 = t_1, \ldots, s_n = t_n\}$, if for all $\mathbf{i}, s_{\mathbf{i}} \theta = t_{\mathbf{i}} \theta$
- A substitution θ is *more general* than σ (written as $\theta \ge \sigma$) if there is a substitution ω such that $\sigma = \theta \omega$
- A substitution θ is a <u>most general unifier</u> (<u>mgu</u>) of two terms (or a set of equations) if for every unifier σ of the two terms (or equations) $\theta \ge \sigma$
 - Example: Consider two terms f(g(X), Y, a) and f(Z, W, X). $\theta_1 = \{X/a, Y/b, Z/g(a), W/b\}$ is a unifier $\theta_2 = \{X/a, Y/W, Z/g(a)\}$ is also a unifier θ_2 is more general than θ_1 $\theta_1 = \theta_2 \omega$ where $\omega = \{W/b\}$ θ_2 is also the most general unifier of the 2 terms

(c) Paul Fodor (CS Stony Brook) and Elsevier

• A set of equations E is in <u>solved form</u> if it is of the form

- $\{X_1=t_1,\ldots, X_n=t_n\}$ iff no X_i appears in any t_j .
 - Given a set of equations $\mathbf{E} = \{\mathbf{X}_1 = \mathbf{t}_1, \ldots, \mathbf{X}_n = \mathbf{t}_n\}$, the substitution $\{\mathbf{X}_1/\mathbf{t}_1, \ldots, \mathbf{X}_n/\mathbf{t}_n\}$ is an idempotent mgu of \mathbf{E}
- Two sets of equations E₁ and E₂ are said to be <u>equivalent</u> iff they have the same set of unifiers.
- To find the mgu of two terms s and t, try to find a set of equations in solved form that is equivalent to {s = t}.

If there is no equivalent solved form, there is no mgu.

```
A Simple Unification Algorithm
 Given a set of equations E:
 repeat
   select s = t \in E;
   case s = t of
        1. f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n):
               replace the equation by s_i = t_i for all i
        2. f(s_1, \ldots, s_n) = g(t_1, \ldots, t_m), f \neq g or n \neq m:
               halt with failure
        3. X = X : remove the equation
        4. t = X : where t is not a variable, X is a variable
               replace equation by X = t
        5. X = t: where X \neq t and X occurs more than once in E:
               if X is a proper subterm of t
               then halt with failure
                                                         (5a)
               else replace all other X in E by t
                                                         (5b)
 until no action is possible for any equation in E
 return E
```

A Simple Unification Algorithm

Example: Find the mgu of f(X,g(Y)) and f(g(Z),Z)

$$\{f(X, g(Y)) = f(g(Z), Z)\} \Rightarrow \Rightarrow \{X = g(Z), g(Y) = Z\}$$
 case 1

$$\Rightarrow \{X = g(Z), Z = g(Y)\}$$
 case 4

$$\Rightarrow \{X = g(g(Y)), Z = g(Y)\}$$
 case 5b

A Simple Unification Algorithm

Example: Find the mgu of f(X, g(X)) and f(Z, Z)

$$\{f(X, g(X)) = f(Z, Z)\} \Rightarrow \Rightarrow \{X = Z, g(X) = Z\}$$
 case 1

$$\Rightarrow \{X = Z, g(Z) = Z\}$$
 case 5b

$$\Rightarrow \{X = Z, Z = g(Z)\}$$
 case 4

$$\Rightarrow fail$$
 case 5a

A Simple Unification Algorithm

Example: Find the mgu of f(X,g(X),b) and f(a,g(Z),Z){f(X,g(X),b)=f(a,g(Z),Z)} \Rightarrow

\Rightarrow {X = a,	g(X) = g(Z), b =	: Z}
\Rightarrow {X = a,	g(a) = g(Z), b =	: Z}
\Rightarrow {X = a,	a = Z, b = Z	
\Rightarrow {X = a,	Z = a, b = Z	
\Rightarrow {X = a,	Z = a, b = a	
\Rightarrow fail		

Complexity of the unification algorithm

• Consider the set of equations:

 $E = \{g(X_1, \ldots, X_n) = g(f(X_0, X_0), f(X_1, X_1), \ldots, f(X_{n-1}, X_{n-1})\}$

• By applying case 1 of the algorithm, we get

{ $X_1 = f(X_0, X_0), X_2 = f(X_1, X_1), X_3 = f(X_2, X_2), ..., X_n = f(X_{n-1}, X_{n-1})$ }

- If terms are kept as trees, the final value for X_n is a tree of size $O(2^n)$.
- Recall that for case 5 we need to first check if a variable appears in a term, and this could now take O(2ⁿ) time.
 - There are linear-time unification algorithms that share structures (terms as DAGs).
- X = t is the most common case for unification in Prolog.
 - The fastest algorithms are linear in **t**.
 - Prolog cuts corners by omitting case 5a (the occur check), thereby doing X = t in constant time.

Most General Unifiers Note that mgu stands for <u>a/one</u> most general

unifier.

• There may be more than one mgu.

• E.g. f(X) = f(Y) has two mgus:

• {X / Y} (by our simple algorithm) • {Y / X} (by definition of mgu)

- If θ is an mgu of **s** and **t**, and ω is a renaming, then $\theta\omega$ is a mgu of **s** and **t**.
- If θ and σ are mgus of **s** and **t**, then there is a renaming ω such that $\theta = \sigma \omega$.
 - MGU is unique up to renaming!

SLD Resolution • Selective Linear Definite clause (SLD) Resolution: $\leftarrow A_1, \ldots, A_{i-1}, A_i, A_{i+1}, \ldots, A_m \quad B_0 \leftarrow B_1, \ldots, B_n$ $\leftarrow (A_1,\ldots,A_{i-1},B_1,\ldots,B_n,A_{i+1},\ldots,A_m)\theta$ where: 1. \mathbf{A}_{i} are atomic formulas 2. $\mathbf{B}_0 \leftarrow \mathbf{B}_1, \ldots, \mathbf{B}_n$ is a (<u>renamed</u>) definite clause in the program 3. $\theta = mgu(\mathbf{A}_i, \mathbf{B}_0)$ • A; is called the *selected* atom • Given a goal $\leftarrow \mathbf{A_1}, \dots, \mathbf{A_n}$ a function called the *selection function* or *computation rule* selects **A**_i 18 (c) Paul Fodor (CS Stony Brook) and Elsevier

SLD Resolution (cont.)

When the resolution rule is applied, from a goal G and a clause C, we get a new goal G'
We then say that G' is *derived directly* from G and C:

 $G \stackrel{C}{\rightsquigarrow} G'$

• An *SLD Derivation* is a sequence:

 $G_0 \stackrel{C_0}{\leadsto} G_1 \cdots G_i \stackrel{C_i}{\leadsto} G_{i+1} \cdots$

(c) Paul Fodor (CS Stony Brook) and Elsevier

Computed Answer Substitution

- Let $\theta_0, \theta_1, \ldots, \theta_{n-1}$ be the sequence of mgus used in derivation $G_0 \stackrel{C_0}{\rightsquigarrow} G_1 \cdots G_{n-1} \stackrel{C_{n-1}}{\leadsto} G_n$
- Then $\theta = \theta_0 \theta_1 \cdots \theta_{n-1}$ is the *computed substitution* of the derivation.
- Example:

Goal	Clause Used	mgu	
anc(tom, Q)	anc(X',Y') :-		
	<pre>parent(X',Z'), anc(Z',Y')</pre>	$ heta_0 = \{X'/{ t tom}, Y'/Q\}$	
<pre>parent(tom, Z'),</pre>			
anc(Z', Q)	<pre>parent(tom, bob).</pre>	$ heta_1=\{Z'/{ t bob}\}$	
anc(bob, Q)	anc(X'', Y'') :-		
	<pre>parent(X'', Y'').</pre>	$ heta_2 = \{X''/ ext{bob}, Y''/Q\} \ heta_3 = \{Q/ ext{ann}\}$	
<pre>parent(bob, Q)</pre>	parent(bob, ann).	$ heta_3 = \{Q t ann\}$	
 Computed substitution for the above derivation is 			
$\theta_0 \theta_1 \theta_2 \theta_3 = \{x'/tom, y'/ann, z'/bob, x''/bob, y''/ann, Q/ann\}$			

Computed Answer Substitution

• A finite derivation of the form

 $G_0 \stackrel{C_0}{\leadsto} G_1 \cdots G_{n-1} \stackrel{C_{n-1}}{\leadsto} G_n$

where G_n=□ (i.e., an empty goal) is an <u>SLD refutation</u> of G₀
The computed substitution of an SLD refutation of G, restricted to variables of G, is a <u>computed answer</u> <u>substitution</u> for G.

• Example (contd.): The computed answer substitution for the previous SLD refutation is

 ${X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann}$ restricted to Q:

(c) Paul Fodor (CS Stony Brook) and Elsevier

 $\{ Q/ann \}$

Failed SLD Derivation

- A derivation of a goal clause G_0 whose last element is not empty, and cannot be resolved with any clause of the program.
- Example: consider the following program: grandfather(X,Z) :- father(X,Y), parent(Y,Z). parent(X,Y) :- father(X,Y). parent(X,Y) :- mother(X,Y). father(a,b). mother(b,c).

• A failed SLD derivation of grandfather(a,Q) is:

~> father(a,Y'), parent(Y',Q)

- \rightsquigarrow parent(b,Q)
- \rightsquigarrow father(b,Q)

OLD Resolution

- Prolog follows *OLD resolution* = SLD with left-to-right literal selection.
- Prolog searches for OLD proofs by expanding the resolution tree depth first.
 - This depth-first expansion is close to how procedural programs are evaluated:
 - Consider a goal G_1, G_2, \ldots, G_n as a "procedure stack" with G_1 , the selected literal on top.
 - Call G₁.
 - <u>If</u> and <u>when</u> G₁ returns, continue with the rest of the computation: call G₂, and upon its return call G₃, etc. until nothing is left
 - Note: G_2 is "opened up" only when G_1 returns, not after executing only some part of G_1 .

```
SLD Tree
 • A tree where every path is an SLD derivation
                                         \leftarrow grandfather(a, Q)
grandfather(X,Z) :-
                                    \leftarrow father(a,Z'), parent(Z', Q)
   father(X,Y), parent(Y,Z).
parent(X,Y) := father(X,Y).
                                            \leftarrow parent(b, Q)
parent(X,Y) := mother(X,Y).
father(a,b).
mother(b,c).
                                  \leftarrow father(b, Q)
                                                       \leftarrow mother(b, Q)
```

Soundness of SLD resolution

- Let P be a definite program, R be a <u>computation</u> <u>rule</u>, and θ be a <u>computed answer substitution</u> for a goal G.
- Then $\forall G \theta$ is a <u>logical consequence</u> of P.
 - Proof is by induction on the number of resolution steps used in the refutation of G.
 - Base case uses the following lemma:
 - Let F be a formula and F' be an instance of F, i.e., $F' = F\theta$ for some substitution θ . Then $(\forall F) \vDash (\forall F')$.