Definite Logic Programs: Derivation and Proof Trees

CSE 595 - Semantic Web
Instructor: Dr. Paul Fodor
Stony Brook University
http: / /www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

Refutation in Predicate Logic

 parent(pam, bob). parent(tom, bob). parent(tom, liz). ... anc (X,Y) :- parent(X,Y). anc (X,Y) :- parent(X,Z), anc(Z,Y).- Goal G: For what values of Q is :- anc (tom, Q) a logical consequence of the above program?
- Negate the goal G: i.e. $\neg \mathrm{G} \equiv \forall \mathrm{Q} \quad \neg$ anc (tom, Q).
- Consider the clauses in the program $\mathrm{P} \cup \neg \mathrm{G}$ and apply refutation
- Note that a program clause written as $p(A, B):-q(A, C), r(B, C)$ can be rewritten as: $\forall A, B, C \quad(P(A, B) V \neg q(A, C) V \neg r(B, C))$
i.e., l.h.s. literal is positive, while all r.h.s. literals are negative
- Note also that all variables are universally quantified in a clause!
(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation: An Example

parent (pam, bob). parent(tom, bob). parent(tom, liz). parent(bob, ann). parent(bob, pat). parent(pat, jim).

```
\leftarrowanc(tom, Q)
```

\leftarrowanc(tom, Q)
\leftarrow\operatorname{parent(tom,Q)}

```
\leftarrow\operatorname{parent(tom,Q)}
```

$\operatorname{anc}(X, Y)$:-
parent(X,Y).
anc (X,Y) :-
parent(X,Z),
anc (Z,Y).

Refutation: An Example

parent(pam, bob). parent(tom, bob). parent(tom, liz). parent(bob, ann). parent (bob, pat). parent(pat, jim).
$\operatorname{anc}(X, Y)$:-
parent(X,Y). $\operatorname{anc}(X, Y)$:-

```
\leftarrowanc(tom, Q)
```



```
\leftarrowparent(tom, Z'), anc(Z', Q)
|
\leftarrow\operatorname{anc(bob,Q)}
\leftarrow \mp@code { p a r e n t ( b o b , Q ) }
    |/parent(bob, ann) \leftarrow
```

 parent(X,Z),
 anc (Z,Y).

Unification

- Operation done to "match" the goal atom with the head of a clause in the program.
- Forms the basis for the matching operation we used for Prolog evaluation:
- $\mathbf{f}(\mathrm{a}, \mathrm{Y})$ and $\mathrm{f}(\mathrm{X}, \mathrm{b})$ unify when $\mathbf{X}=\mathrm{a}$ and $\mathrm{Y}=\mathrm{b}$
- $\mathbf{f}(\mathbf{a}, \mathbf{X})$ and $\mathbf{f}(\mathbf{X , b})$ do not unify
- $\mathbf{f}(\mathrm{a}, \mathrm{X})=\mathrm{f}(\mathrm{X}, \mathrm{b})$ fails in Prolog

Substitutions

- A substitution is a mapping between variables and values (terms)
\bullet Denoted by $\left\{\mathrm{X}_{1} / \mathrm{t}_{1}, \mathrm{X}_{2} / \mathrm{t}_{2}, \ldots, \mathrm{X}_{\mathrm{n}} / \mathrm{t}_{\mathrm{n}}\right\}$ such that - $X_{i} \neq t_{i}$, and ${ }^{\circ} \mathbf{X}_{\mathbf{i}}$ and $\mathbf{X}_{\mathbf{j}}$ are distinct variables when $\mathbf{i} \neq \mathbf{j}$.
- The empty substitution is denoted by $\}$ (or ε).
- A substitution is said to be a renaming if it is of the form $\left\{X_{1} / Y_{1}, X_{2} / Y_{2}, \ldots, X_{n} / Y_{n}\right\}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a permutation of $X_{1}, X_{2}, \ldots, X_{n}$. \bullet Example: $\{\mathbf{X} / \mathbf{Y}, \mathbf{Y} / \mathbf{X}\}$ is a renaming substitution.

Substitutions and Terms

- Application of a substitution:
- $\mathrm{X} \theta=\mathrm{t}$ if $\mathrm{X} / \mathrm{t} \in \theta$.
- $\mathbf{x} \theta=\mathbf{x}$ if $\mathbf{x} / \mathrm{t} \notin \theta$ for any term t.
- Application of a substitution $\left\{\mathrm{X}_{1} / \mathrm{t}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} / \mathrm{t}_{\mathrm{n}}\right\}$ to a term /formula F:
${ }^{\circ}$ is a term/formula obtained by simultaneously replacing every free occurrence of $\mathbf{X}_{\mathbf{i}}$ in F by t_{i}.
- Denoted by F θ [and F θ is said to be an instance of F]
- Example:
$\mathrm{P}(\mathrm{f}(\mathrm{X}, \mathrm{Z}), \mathrm{f}(\mathrm{Y}, \mathrm{a}))\{\mathrm{X} / \mathrm{g}(\mathrm{Y}), \mathrm{Y} / \mathrm{Z}, \mathrm{Z} / \mathrm{a}\}=$ p(f(g(Y),a),f(Z,a))

Composition of Substitutions

- Composition of substitutions $\theta=\left\{\mathrm{X}_{1} / \mathbf{s}_{1}, \ldots, \mathrm{X}_{\mathrm{m}} / \mathbf{s}_{\mathrm{m}}\right\}$ and $\sigma=\left\{\mathbf{Y}_{1} / \mathrm{t}_{1}, \ldots, \mathbf{Y}_{\mathrm{n}} / \mathrm{t}_{\mathrm{n}}\right\}:$
- First form the set $\left\{\mathbf{X}_{1} / \mathbf{s}_{1} \sigma, \ldots, \mathbf{X}_{\mathrm{m}} / \mathbf{s}_{\mathrm{m}} \sigma, \mathbf{Y}_{1} / \mathrm{t}_{1}, \ldots, \mathbf{Y}_{\mathrm{n}} / \mathrm{t}_{\mathrm{n}}\right\}$
- Remove from the set $\mathbf{X}_{\mathbf{i}} / \mathbf{s}_{\mathbf{i}} \sigma$ if $\mathbf{s}_{\mathbf{i}} \sigma=\mathbf{X}_{\mathbf{i}}$
- Remove from the set $\mathbf{Y}_{\mathbf{j}} / \mathbf{t}_{\mathbf{j}}$ if $\mathbf{Y}_{\mathbf{j}}$ is identical to some variable $\mathbf{X}_{\mathbf{i}}$
- Example: Let $\boldsymbol{\theta}=\boldsymbol{\sigma}=\{\mathbf{X} / \mathbf{g}(\mathbf{Y}), \mathbf{Y} / \mathbf{Z}, \mathbf{Z} / \mathrm{a}\}$. Then $\theta \sigma=\{X / g(Y), Y / Z, Z / a\}\{X / g(Y), Y / Z, Z / a\}=$ $\{X / g(Z), Y / a, Z / a\}$
- More examples: Let $\boldsymbol{\theta}=\{\mathrm{X} / \mathrm{f}(\mathrm{Y})\}$ and $\boldsymbol{\sigma}=\{\mathrm{Y} / \mathrm{a}\}$
- $\theta \sigma=\{X / f(a), Y / a\}$
- $\sigma \theta=\{Y / a, X / f(Y)\}$
- Composition is not commutative but is associative: $\theta(\sigma \gamma)=(\theta \sigma) \gamma$

Idempotence

- A substitution θ is idempotent iff $\theta \theta=\theta$.
- Examples:
- $\{\mathbf{X} / \mathrm{g}(\mathrm{Y}), \mathbf{Y} / \mathbf{Z}, \mathbf{Z} / \mathbf{a}\}$ is not idempotent since
$\{\mathrm{X} / \mathrm{g}(\mathrm{Y}), \mathrm{Y} / \mathrm{Z}, \mathrm{Z} / \mathrm{a}\}\{\mathrm{X} / \mathrm{g}(\mathrm{Y}), \mathrm{Y} / \mathrm{Z}, \mathrm{Z} / \mathrm{a}\}=\{\mathrm{X} / \mathrm{g}(\mathrm{Z}), \mathrm{Y} / \mathrm{a}, \mathrm{Z} / \mathrm{a}\}$
- $\{X / g(Z), Y / a, Z / a\}$ is not idempotent either since $\{X / g(Z), Y / a, Z / a\}\{X / g(Z), Y / a, Z / a\}=\{X / g(a), Y / a, Z / a\}$
- $\{X / g(a), Y / a, Z / a\}$ is idempotent
- For a substitution $\theta=\left\{X_{1} / t_{1}, X_{2} / t_{2}, \ldots, X_{n} / t_{n}\right\}$,
$-\operatorname{Dom}(\theta)=\left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{\mathrm{n}}\right\}$
- Range $(\theta)=$ set of all variables in $t_{1}, t_{2}, \ldots, t_{n}$
- A substitution θ is idempotent $\operatorname{iff} \operatorname{Dom}(\theta) \cap \operatorname{Range}(\theta)=\varnothing$

Unifiers

- A substitution θ is a unifier of two terms s and t if $\mathrm{s} \theta$ is identical to $\mathrm{t} \theta$
- θ is a unifier of a set of equations $\left\{s_{1}=t_{1}, \ldots, s_{n}=t_{n}\right\}$, if for all $\mathbf{i}, \mathbf{s}_{\mathbf{i}} \boldsymbol{\theta}=\mathrm{t}_{\mathbf{i}} \boldsymbol{\theta}$
- A substitution θ is more general than σ (written as $\theta \geq \sigma$) if there is a substitution ω such that $\sigma=\theta \omega$
- A substitution θ is a most general unifier (mgu) of two terms (or a set of equations) if for every unifier σ of the two terms (or equations) $\theta \geq \sigma$
- Example: Consider two terms $\mathbf{f}(\mathbf{g}(\mathbf{X}), \mathbf{Y}, \mathbf{a})$ and $\mathbf{f}(\mathbf{Z}, \mathbf{W}, \mathbf{X})$.

$$
\theta_{1}=\{X / a, Y / b, Z / g(a), W / b\} \text { is a unifier }
$$

$\theta_{2}=\{X / a, Y / W, Z / g(a)\}$ is also a unifier
θ_{2} is more general than θ_{1}
$\theta_{1}=\theta_{2} \omega$ where $\omega=\{W / b\}$
θ_{2} is also the most general unifier of the 2 terms

Equations and Unifiers

- A set of equations E is in solved form if it is of the form $\left\{\mathbf{X}_{1}=\mathbf{t}_{1}, \ldots, \mathbf{X}_{\mathrm{n}}=\mathrm{t}_{\mathrm{n}}\right\}$ iff no \mathbf{X}_{i} appears in any t_{j}.
- Given a set of equations $\mathbf{E}=\left\{\mathbf{X}_{1}=\mathbf{t}_{1}, \ldots, \mathbf{X}_{\mathrm{n}}=\mathbf{t}_{\mathrm{n}}\right\}$, the substitution $\left\{\mathbf{X}_{1} / \mathrm{t}_{1}, \ldots, \mathbf{X}_{\mathrm{n}} / \mathrm{t}_{\mathrm{n}}\right\}$ is an idempotent mgu of \mathbf{E}
- Two sets of equations \mathbf{E}_{1} and \mathbf{E}_{2} are said to be equivalent iff they have the same set of unifiers.
- To find the mgu of two terms \mathbf{s} and \mathbf{t}, try to find a set of equations in solved form that is equivalent to $\{\mathbf{s}=\boldsymbol{t}\}$.
If there is no equivalent solved form, there is no mgu.

A Simple Unification Algorithm

Given a set of equations E :
repeat

```
select s \(=\mathrm{t} \in \mathrm{E}\);
case \(s=t\) of
    1. \(f\left(s_{1}, \ldots, s_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right):\)
        replace the equation by \(s_{i}=t_{i}\) for all \(i\)
    2. \(f\left(s_{1}, \ldots, s_{n}\right)=g\left(t_{1}, \ldots, t_{m}\right), f \neq g\) or \(n \neq m\) :
        halt with failure
    3. \(X=X\) : remove the equation
    4. \(t=X\) : where \(t\) is not a variable, \(X\) is a variable
        replace equation by \(X=t\)
```

 5. \(X=t\) : where \(X \neq t\) and \(X\) occurs more than once in \(E:\)
 if \(X\) is a proper subterm of \(t\)
 then halt with failure
 else replace all other \(X\) in \(E\) by \(t\)
 until no action is possible for any equation in E return E

A Simple Unification Algorithm

Example: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$
$\{f(X, g(Y))=f(g(Z), Z)\} \Rightarrow$
$\Rightarrow\{X=g(Z), g(Y)=Z\}$
$\Rightarrow\{X=g(Z), Z=g(Y)\}$
$\Rightarrow\{X=g(g(Y)), \quad Z=g(Y)\}$
case 1
case 4
case 5b

A Simple Unification Algorithm

Example: Find the mgu of $f(\mathbf{X}, \mathrm{~g}(\mathrm{X}))$ and $\mathbf{f}(\mathbf{Z}, \mathbf{Z})$
$\{\mathrm{f}(\mathrm{X}, \mathrm{g}(\mathrm{X}))=\mathrm{f}(\mathrm{Z}, \mathrm{Z})\} \Rightarrow$
$\Rightarrow\{X=Z, g(X)=Z\}$
$\Rightarrow\{X=Z, g(Z)=Z\}$
$\Rightarrow\{X=Z, Z=g(Z)\}$
\Rightarrow fail
case 1
case 5b
case 4
case 5a

A Simple Unification Algorithm

Example: Find the mgr of $f(X, g(X), b)$ and $f(a, g(Z), Z)$
$\{f(X, g(X), b)=f(a, g(Z), Z)\} \Rightarrow$

$$
\begin{aligned}
& \Rightarrow\{X=a, g(X)=g(Z), b=Z\} \\
& \Rightarrow\{X=a, g(a)=g(Z), b=Z\} \\
& \Rightarrow\{X=a, a=Z, b=Z\} \\
& \Rightarrow\{X=a, Z=a, b=Z\} \\
& \Rightarrow\{X=a, Z=a, b=a\} \\
& \Rightarrow \text { fail }
\end{aligned}
$$

Complexity of the unification algorithm

- Consider the set of equations:

$$
E=\left\{g\left(X_{1}, \ldots, X_{n}\right)=g\left(f\left(X_{0}, X_{0}\right), f\left(X_{1}, X_{1}\right), \ldots, f\left(X_{n-1}, X_{n-1}\right)\right\}\right.
$$

- By applying case 1 of the algorithm, we get
$\left\{X_{1}=f\left(X_{0}, X_{0}\right), X_{2}=f\left(X_{1}, X_{1}\right), X_{3}=f\left(X_{2}, X_{2}\right), \ldots, X_{n}=f\left(X_{n-1}, X_{n-1}\right)\right\}$
- If terms are kept as trees, the final value for X_{n} is a tree of size $\left.\mathbf{O (2 n}\right)$.
- Recall that for case 5 we need to first check if a variable appears in a term, and this could now take $O\left(2^{n}\right)$ time.
- There are linear-time unification algorithms that share structures (terms as DAGs).
- $\mathbf{X}=\mathrm{t}$ is the most common case for unification in Prolog.
- The fastest algorithms are linear in t.
- Prolog cuts corners by omitting case 5 a (the occur check), thereby doing $\mathbf{X}=\mathbf{t}$ in constant time.

Most General Unifiers

- Note that mgu stands for a/one most general unifier.
- There may be more than one mgu.
- E.g. $\mathrm{f}(\mathrm{X})=\mathrm{f}(\mathrm{Y})$ has two mgus:
- $\{\mathrm{X} / \mathrm{Y}\}$ (by our simple algorithm)
- $\{Y / X\}$ (by definition of mgu)
- If θ is an mgu of \boldsymbol{s} and t, and ω is a renaming, then $\theta \omega$ is a mgu of s and t.
- If θ and σ are mgus of s and t, then there is a renaming ω such that $\theta=\sigma \omega$.
- MGU is unique up to renaming!

SLD Resolution

- Selective Linear Definite clause (SLD) Resolution:
$\leftarrow A_{1}, \ldots, A_{i-1}, A_{i}, A_{i+1}, \ldots, A_{m} \quad B_{0} \leftarrow B_{1}, \ldots, B_{n}$
$\leftarrow\left(A_{1}, \ldots, A_{i-1}, B_{1}, \ldots, B_{n}, A_{i+1}, \ldots, A_{m}\right) \theta$
where:

1. $\mathbf{A}_{\mathbf{j}}$ are atomic formulas
2. $\mathrm{B}_{0} \leftarrow \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}$ is a (renamed) definite clause in the program
3. $\theta=\operatorname{mgu}\left(\mathbf{A}_{\mathrm{i}}, \mathbf{B}_{0}\right)$

- $\mathbf{A}_{\mathbf{i}}$ is called the selected atom
- Given a goal $\leftarrow \mathbf{A}_{1}, \ldots, \mathbf{A}_{\mathrm{n}}$ a function called the selection function or computation rule selects $\mathbf{A}_{\mathbf{i}}$

SLD Resolution (cont.)

- When the resolution rule is applied, from a goal G and a clause C, we get a new goal G^{\prime} - We then say that G^{\prime} is derived directly from G and C :

$$
G \stackrel{C}{\rightsquigarrow} G^{\prime}
$$

- An SLD Derivation is a sequence:

$$
G_{0} \stackrel{C_{0}}{\rightsquigarrow} G_{1} \cdots G_{i} \stackrel{C_{i}}{\rightsquigarrow} G_{i+1} \cdots
$$

Refutation \& SLD Derivation

```
parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).
anc(X,Y) :-
    parent(X,Y).
anc(X,Y) :-
    parent(X,Z),
    anc(Z,Y).
```

$\leftarrow \operatorname{anc}($ tom, Q)

\leftarrow parent (tom, Q)


```
anc(tom, Q)
    mparent(tom, Q)
    \rightsquigarrow
```


Refutation \& SLD Derivation

Computed Answer Substitution

- Let $\theta_{0}, \theta_{1}, \ldots, \theta_{\mathrm{n}-1}$ be the sequence of mgus used in derivation

$$
G_{0} \stackrel{C_{0}}{\leadsto} G_{1} \cdots G_{n-1} \stackrel{C_{n-1}}{\sim} G_{n}
$$

Then $\theta=\theta_{0} \theta_{1} \cdots \theta_{\mathrm{n}-1}$ is the computed substitution of the derivation.

- Example:

Goal	Clause Used	mgu
anc (tom, Q)	```anc(X',Y') :- parent(X',Z'), anc(Z',Y')```	$\theta_{0}=\left\{X^{\prime} /\right.$ tom, $\left.Y^{\prime} / Q\right\}$
$\begin{aligned} & \text { parent (tom, } \left.Z^{\prime}\right), \\ & \operatorname{anc}\left(Z^{\prime}, Q\right) \end{aligned}$	parent(tom, bob)	$\theta_{1}=\left\{Z^{\prime} / \mathrm{bob}\right\}$
anc (bob, Q)	$\begin{aligned} & \operatorname{anc}\left(X^{\prime}, Y^{\prime},\right)^{\prime}:- \\ & \quad \text { parent }\left(X, \prime, Y^{\prime} \prime\right) . \end{aligned}$	$\theta_{2}=\left\{X^{\prime \prime} / \text { bob }, Y^{\prime \prime} / Q\right\}$
parent (bob, Q)	parent(bob, ann).	$\theta_{3}=\{Q / \mathrm{ann}\}$

- Computed substitution for the above derivation is

Computed Answer Substitution

- A finite derivation of the form

$$
G_{0} \stackrel{C_{0}}{\leadsto} G_{1} \cdots G_{n-1} \stackrel{C_{n-1}}{\sim} G_{n}
$$

where $G_{n}=\square$ (i.e., an empty goal) is an SLD refutation of G_{0}

- The computed substitution of an SLD refutation of G, restricted to variables of G , is a computed answer substitution for G.
- Example (contd.): The computed answer substitution for the previous SLD refutation is
\{X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann\} restricted to Q :
$\{2 / a n n\}$

Failed SLD Derivation

- A derivation of a goal clause G_{0} whose last element is not empty, and cannot be resolved with any clause of the program.
- Example: consider the following program: grandfather (X,Z) :- father (X,Y), parent(Y,Z). parent(X,Y) :- father (X,Y). parent(X,Y) :- mother (X,Y). father (a, b). mother (b, c).
- A failed SLD derivation of grandfather (a, Q) is:
\rightsquigarrow father (a, Y^{\prime}), parent (Y^{\prime}, Q)
\rightsquigarrow parent (b,Q)
\rightsquigarrow father (b,Q)

OLD Resolution

- Prolog follows OLD resolution $=$ SLD with left-to-right literal selection.
- Prolog searches for OLD proofs by expanding the resolution tree depth first.
- This depth-first expansion is close to how procedural programs are evaluated:
- Consider a goal $G_{1}, G_{2}, \ldots, G_{n}$ as a "procedure stack" with G_{1}, the selected literal on top.
- Call G ${ }_{1}$.
- If and when G_{1} returns, continue with the rest of the computation: call G_{2}, and upon its return call G_{3}, etc. until nothing is left
- Note: G_{2} is "opened up" only when G_{1} returns, not after executing only some part of G_{1}.

SLD Tree

- A tree where every path is an SLD derivation

\leftarrow grandfather (a, Q)
grandfather(X,Z) :father(X,Y), parent(Y,Z).
parent (X,Y) :- father (X,Y). parent (X,Y) :- mother (X,Y).
father (a,b).
mother (b, c).
\leftarrow father (a, Z'), parent(Z', Q)

\leftarrow father (b, Q) $\quad \leftarrow$ mother (b, Q)

Soundness of SLD resolution

- Let P be a definite program, R be a computation rule, and θ be a computed answer substitution for a goal G.
Then $\forall \mathrm{G} \theta$ is a logical consequence of P .
- Proof is by induction on the number of resolution steps used in the refutation of G .
- Base case uses the following lemma:
- Let F be a formula and F^{\prime} be an instance of F , i.e., $\mathrm{F}^{\prime}=\mathrm{F} \theta$ for some substitution θ.

Then $(\forall F) \vDash\left(\forall F^{\prime}\right)$.

