Tabled Resolution

CSE 595 - Semantic Web
Instructor: Dr. Paul Fodor
Stony Brook University

http: / /www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

Recap: OLD Resolution

- Prolog follows OLD resolution $=$ SLD with left-to-right literal selection.
- Prolog searches for OLD proofs by expanding the resolution tree depth first.
- This depth-first expansion is close to how procedural programs are evaluated:
- Consider a goal $\mathbf{G}_{1}, \mathbf{G}_{2}, \ldots, \mathbf{G}_{\mathrm{n}}$ as a "procedure stack" with \mathbf{G}_{1}, the selected literal on top.
- Call G_{1}.
- If and when \mathbf{G}_{1} returns, continue with the rest of the computation: call \boldsymbol{G}_{2}, and upon its return call \mathbf{G}_{3}, etc. until nothing is left
- Note: $\mathbf{G}_{\mathbf{2}}$ is "opened up" only when \mathbf{G}_{1} returns, not after executing only some part of \mathbf{G}_{1}.

OLD Resolution

- Depth-first expansion, however, contributes to the incompleteness of Prolog's evaluation, which may not terminate even when the least model is finite (see the next example!)

Example:Reachability in Directed Graphs

- Determining whether there is a path between two vertices in a directed graph is an important and widespread problem
- For instance, consider checking whether (or not) a program accesses a shared resource before obtaining a lock:
- A program itself can be considered as a graph with vertices representing program states!
- A state may be characterized by the program counter value, and values of variables.
- There are richer models for representing program evaluation, but a directed graph is most basic.
- If we can go from state \mathbf{s} by executing one instruction to \mathbf{s}^{\prime}, then we can place an edge from \mathbf{s} to \mathbf{s}^{\prime}
- The reachability question may be whether we can reach from the start state to a state accessing a shared resource, without going through a state that obtained a lock.

Graph Reachability as a Logic Program

- A finite directed graph can be represented by a set of binary facts representing an "edge" relation
- Predicate " q " on right is an example
- Reachability can then be written as a "transitive closure" over the edge relation
- Observe the predicate "r" defined on right using two clauses:
- The first clause: there is a path from \mathbf{X} to \mathbf{Y} if there is an edge from \mathbf{X} to \mathbf{Y}
- The second clause: there is a path from \mathbf{X} to \mathbf{Y} if there
 an intermediate vertex \mathbf{Z} such that:
- there is an edge from \mathbf{X} to \mathbf{Z}, and

$$
r(X, Y):-q(X, Y) .
$$

- there is a path from \mathbf{Z} to \mathbf{Y}
r(X,Y) :-

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

$$
\mathrm{q}(\mathrm{X}, \mathrm{Z}), \mathrm{r}(\mathrm{Z}, \mathrm{Y}) .
$$

Bottom-Up Evaluation

- Note that the program on the left is a Datalog program: no function symbols
- Its Herbrand Universe is finite, and its least model computation using the bottom up evaluation will terminate:

$$
\begin{aligned}
& M_{0}=\emptyset \\
& M_{1}=T_{p}\left(M_{0}\right)=M_{0} \cup\{q(\mathrm{a}, \mathrm{a}), \\
& \mathrm{q}(\mathrm{a}, \mathrm{~b}), \mathrm{q}(\mathrm{a}, \mathrm{c}), \mathrm{q}(\mathrm{~b}, \mathrm{~b}), \\
& \mathrm{q}(\mathrm{~b}, \mathrm{~d}), \mathrm{q}(\mathrm{~b}, \mathrm{e}), \mathrm{q}(\mathrm{e}, \mathrm{~d})\} \\
& M_{2}=T_{p}\left(M_{1}\right)=M_{1} \cup\{\mathrm{r}(\mathrm{a}, \mathrm{a}), \\
& r(\mathrm{a}, \mathrm{~b}), r(\mathrm{a}, \mathrm{c}), r(\mathrm{~b}, \mathrm{~b}), \\
& r(\mathrm{~b}, \mathrm{~d}), r(\mathrm{~b}, \mathrm{e}), r(\mathrm{e}, \mathrm{~d})\} \\
& M_{3}=T_{p}\left(M_{2}\right)=M_{2} \cup\{r(\mathrm{a}, \mathrm{~d}), \\
& r(\mathrm{a}, \mathrm{e})\} \\
& M_{4}=T_{p}\left(M_{3}\right) \underset{\text { (c) Paul Foo (CS Stony Brock) and Elsevier }}{=M_{2}}
\end{aligned}
$$

Bottom-Up Evaluation

$$
\begin{aligned}
& M_{4}=\{q(a, a), q(a, b), q(a, c) \\
& q(b, b), q(b, d), q(b, e) \\
& q(e, d), r(a, a), r(a, b) \\
& r(a, c), r(b, b), r(b, d) \\
& r(b, e), r(e, d), r(a, d) \\
& r(a, e)\}
\end{aligned}
$$

- With care, using bottom-up evaluation allpairs reachability can be computed in $\mathbf{O}(\mathbf{V} \cdot \mathbf{E})$ time for a graph with \mathbf{V} vertices and \mathbf{E} edges

$$
\begin{aligned}
& \hline q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) . \\
& r(X, Y):-q(X, Y) . \\
& r(X, Y):- \\
& q(X, Z), r(Z, Y) .
\end{aligned}
$$

OLD Resolution with Depth-First Expansion

 ? $-r(a, N)$.Consider initial query "?- r(a,N)."
Let's construct the SLD tree for this query

$$
\mathrm{q}(\mathrm{a}, \mathrm{a}) .
$$

$$
\mathrm{q}(\mathrm{a}, \mathrm{~b}) .
$$

$$
\mathrm{q}(\mathrm{a}, \mathrm{c}) .
$$

$$
q(b, b)
$$

$$
q(b, d)
$$

$$
q(b, e)
$$

$$
q(e, d) .
$$

$$
r(X, Y):-q(X, Y) .
$$

r(X,Y) :-

$$
q(X, Z), r(Z, Y)
$$

OLD Resolution with Depth-First Expansion

Resolving this goal with the first clause of \mathbf{r}, we get a new goal "?- q(a,N)."

OLD Resolution with Depth-First Expansion

Resolving "?- $\mathrm{q}(\mathrm{a}, \mathrm{N})$." results in the empty goal, under three answer substitutions:
a, b, and c . There are no more ways to resolve"?- q(a,N)."

$$
\begin{aligned}
& \hline q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) . \\
& r(X, Y):-q(X, Y) . \\
& r(X, Y):-
\end{aligned}
$$

$$
q(X, Z), r(Z, Y) .
$$

OLD Resolution with Depth-First Expansion

Resolving "?-r(a,N)." with the second clause of r results in goal "?- $q(a, Z), r(Z, N) . "$

Note: We will use same variable names as in the program clause when possible, instead of mechanically inventing new variable names in every step.

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

$$
r(X, Y):-q(X, Y) .
$$

r(X,Y) :-

$$
q(X, Z), r(Z, Y) .
$$

OLD Resolution with Depth-First Expansion

The selected literal is $q(a, z)$ which unifies with fact $q(a, a)$ with $Z=a$. Thus we get the goal "?-r(a,N)."

Note: This is the same goal that we had at the beginning.

$$
\begin{aligned}
& \hline q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) . \\
& r(X, Y):-q(X, Y) . \\
& r(X, Y):- \\
& q(X, Z), r(Z, Y) .
\end{aligned}
$$

OLD Resolution with Depth-First Expansion

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) .
\end{aligned}
$$

Resolving "?-r(a,N)." leads to "?-q(a,N)." (one of two options).

OLD Resolution with Depth-First Expansion

$$
\begin{aligned}
& q(a, ~ a) . \\
& q(a, b) . \\
& q(a, ~ c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

"?-q(a,N).", in turn, leads to empty goal with answers $\mathrm{N}=\mathrm{a}, \mathrm{b}$, and c .

$$
\begin{aligned}
& r(X, Y):-q(X, Y) . \\
& r(X, Y):- \\
& q(X, Z), r(Z, Y) .
\end{aligned}
$$

OLD Resolution with Depth-First Expansion

\{ $\mathrm{N}=\mathrm{a}\}$ \{ $\mathrm{N}=\mathrm{b}\}\{\mathrm{N}=\mathrm{c}\}$
The other way to resolve "?-r $(a, N) . "$ is ...
You get the drift: we are repeating work done before, and there is an infinite branch here.

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

$$
r(X, Y):-q(X, Y) .
$$

r(X,Y) :-

OLD Resolution with Depth-First Expansion

Depth-First Expansion of the OLD tree

- If the underlying graph is acyclic, all branches in the OLD tree will be finite
- If the graph is cyclic, nothing to the right of an infinite branch is expanded.
- This renders the evaluation incomplete: goals for which there are OLD derivations, but they are not found.
- Moreover, the same answer may be returned multiple times (even infinitely!)
- Even if the underlying graph is acyclic, this evaluation is not efficient
- For query of the form $\mathbf{r}(\mathbf{a}, \mathbf{N})$ we will return $\mathbf{N}=\mathbf{b}$ for each path from "a" to "b".

Depth-First Expansion of the OLD tree

- Breadth-First expansion does have the completeness property:
- Every OLD derivation will be eventually constructed.
- If something is a logical consequence, we will eventually confirm it in a finite number of levels
- But we may not be able to conclude negative information
- If something is not a logical consequence, we may never be able to identify it because we don't know when to stop?

Depth-First Expansion of the OLD tree

- Moreover, Breadth-First expansion does not give a natural operational understanding:
- If we view predicates as being defined by "procedures", then breadth first expansion steps through a procedure's evaluation, switching contexts at the end of each step.
- As in procedural programming, context switching is expensive (in this case, we've to switch substitutions)

Programming our way around the problem

- Is there a path from \mathbf{X} to \mathbf{Y} that does not visit any vertex already seen in L?

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~L}, \mathrm{X}, \mathrm{Y}):- \\
& \mathrm{q}(\mathrm{X}, \mathrm{Y}), \\
& \mathrm{not} \operatorname{member}(\mathrm{Y}, \mathrm{~L}) . \\
& \mathrm{P}(\mathrm{~L}, \mathrm{X}, \mathrm{Y}):- \\
& \mathrm{q}(\mathrm{X}, \mathrm{Z}), \\
& \\
& \mathrm{not} \operatorname{member}(\mathrm{Z}, \mathrm{~L}), \\
& \quad \mathrm{P}([\mathrm{Z} \mid \mathrm{L}], \mathrm{Z}, \mathrm{Y}) .
\end{aligned}
$$

- Now, start from $\mathbf{L}=[$] to look for reachable vertices

$$
\begin{aligned}
\mathrm{r}(\mathrm{X}, \mathrm{Y}) & :- \\
\mathrm{P} & ([], \mathrm{X}, \mathrm{Y}) .
\end{aligned}
$$

- In \mathbf{L} we remember the path so far, and use this to avoid loops

Programming our way around the problem

- We are assured termination for reachability queries
- We stop if a node has been seen before on the same branch.
- Still, this is inefficient: may take exponential time
- We re-execute queries on different branches of the SLD/OLD tree

What is Tabled Resolution?

- Memoize calls and results to avoid repeated subcomputations.
- Termination: Avoid performing computations that repeat infinitely often.
- Complete for Datalog programs
- Efficiency: Dynamically share common subexpressions.
(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.


```
?- r(a,N)
```

```
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b,e).
q(e, d).
r(X,Y) :- q(X,Y).
r(X,Y) :-
        q(X,Z), r(Z,Y).
```


Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

$$
\begin{aligned}
& \hline q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) . \\
& r(X, Y):-q(X, Y) . \\
& r(X, Y):- \\
& \quad q(X, Z), r(Z, Y) .
\end{aligned}
$$

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

$$
\overline{q(a, a)} .
$$

$$
q(a, b) .
$$

$$
q(a, c) .
$$

$$
q(b, b) .
$$

$$
q(b, d) .
$$

$$
q(b, e) .
$$

$$
q(e, d) .
$$

$$
r(X, Y):-q(X, Y) .
$$

$$
r(X, Y):-
$$

$$
\mathrm{q}(\mathrm{X}, \mathrm{Z}), \mathrm{r}(\mathrm{Z}, \mathrm{Y}) .
$$

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

q(a, a).
$q(a, b)$.
$q(a, c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

$$
\mathrm{q}(\mathrm{a}, \mathrm{a}) .
$$

$$
q(a, b) .
$$

$$
\mathrm{q}(\mathrm{a}, \mathrm{c}) .
$$

$$
q(b, b) .
$$

$$
q(b, d) .
$$

$$
\mathrm{q}(\mathrm{~b}, \mathrm{e}) .
$$

$$
q(e, d) .
$$

$r(X, Y):-q(X, Y)$.
$r(X, Y):-$ $q(X, Z), r(Z, Y)$.

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

$$
\mathrm{q}(\mathrm{a}, \mathrm{a}) .
$$

$$
q(a, b) .
$$

$$
\mathrm{q}(\mathrm{a}, \mathrm{c}) .
$$

$$
q(b, b) .
$$

$$
\mathrm{q}(\mathrm{~b}, \mathrm{~d}) .
$$

$$
q(b, e) .
$$

$$
q(e, d) .
$$

$$
\begin{aligned}
& r(X, Y):-q(X, Y) . \\
& r(X, Y):- \\
& q(X, Z), r(Z, Y) .
\end{aligned}
$$

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

q(a, a).
$q(a, b)$.
$q(a, c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.
$r(X, Y):-q(X, Y)$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

$$
\begin{aligned}
& r(X, Y):-q(X, Y) . \\
& r(X, Y):- \\
& q(X, Z), r(Z, Y) .
\end{aligned}
$$

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

q(a, a).
$q(a, b)$.
q(a, c).
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.
$r(X, Y):-q(X, Y)$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

$$
r(X, Y):-q(X, Y) .
$$

$$
r(X, Y):-
$$

$$
\mathrm{q}(\mathrm{X}, \mathrm{Z}), \mathrm{r}(\mathrm{Z}, \mathrm{Y}) .
$$

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

$$
\mathrm{q}(\mathrm{a}, \mathrm{a}) .
$$

$$
q(a, b) .
$$

$$
\mathrm{q}(\mathrm{a}, \mathrm{c}) .
$$

$$
q(b, b) .
$$

$$
q(b, d) .
$$

$$
\mathrm{q}(\mathrm{~b}, \mathrm{e}) .
$$

$$
q(e, d) .
$$

$$
r(X, Y):-q(X, Y) .
$$

$$
r(X, Y):-
$$

$$
\mathrm{q}(\mathrm{X}, \mathrm{Z}), \mathrm{r}(\mathrm{Z}, \mathrm{Y}) .
$$

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

$q(a, a)$
$q(a, b)$.
$q(a, c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

$$
\begin{aligned}
& r(X, Y):-q(X, Y) . \\
& r(X, Y):- \\
& q(X, Z), r(Z, Y) .
\end{aligned}
$$

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

STOP

$$
r(X, Y):-q(X, Y) .
$$

$$
r(X, Y) \quad:-
$$

$$
\mathrm{q}(\mathrm{X}, \mathrm{Z}), \mathrm{r}(\mathrm{Z}, \mathrm{Y}) .
$$

Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

Rationale for goal-based stopping

- The OLD tree is a representation of search for successful derivations
- which are finite sequences of goals terminating in an empty goal.
- If there is a successful derivation, then there is an equivalent one that does not repeat the same goal (compare to reachability via loop-free paths in a graph).
- Hence ignoring paths with repeated goals is sound: the derivations pruned away by stopping have equivalent ones that will not be ignored.
- Unfortunately, this scheme still does not fix the problem of infinite derivations

Infinite Derivations Despite Stopping Condition


```
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).
```

\%Alternative formulation
\% of reachability: Note
$\%$ use of LEFT recursion
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$\mathrm{p}(\mathrm{X}, \mathrm{Z}), \mathrm{q}(\mathrm{Z}, \mathrm{Y})$.

Infinite Derivations Despite Stopping Condition


```
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).
```

Expand tree as usual
\%Alternative formulation
\% of reachability: Note
\% use of LEFT recursion
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$p(X, Z), q(Z, Y)$.

Infinite Derivations Despite Stopping Condition

Expand tree as usual
\%Alternative formulation
\% of reachability: Note
\% use of LEFT recursion
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$p(X, Z), q(Z, Y)$.

Infinite Derivations Despite Stopping Condition

Note that the right-most branch has ever-growing goals.

```
%Alternative formulation
% of reachability: Note
% use of LEFT recursion
p(X,Y) :- q(X,Y).
p(X,Y) :-
    p(X,Z), q(Z,Y).
```


OLD Resolution with Tabling (OLDT)

- The selected literal at a step in a derivation is known as a call.
- OLDT maintains a table of calls (initially empty).
- With each call, it maintains a table of computed answers (initially empty).
- Start resolution as in OLD.
- When a literal is selected, check the call table.
- If the literal is in the table, resolve it with its answers in its answer table.
- If the literal is not in the table, resolve with program clauses (as in OLD), and add computed answers to its answer table.

OLDT Example

?- $p(a, N)$

```
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).
```

\%Alternative formulation
\% of reachability: Note
\% use of LEFT recursion
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$p(X, Z), q(Z, Y)$.

Calls	Answers

Start with empty tables

OLDT Example

$$
?-p(a, N)
$$

$$
\begin{aligned}
& \mathrm{q}(\mathrm{a}, \mathrm{a}) . \\
& \mathrm{q}(\mathrm{a}, \mathrm{~b}) . \\
& \mathrm{q}(\mathrm{a}, \mathrm{c}) . \\
& \mathrm{q}(\mathrm{~b}, \mathrm{~b}) . \\
& \mathrm{q}(\mathrm{~b}, \mathrm{~d}) . \\
& \mathrm{q}(\mathrm{~b}, \mathrm{e}) . \\
& \mathrm{q}(\mathrm{e}, \mathrm{~d}) .
\end{aligned}
$$

\%Alternative formulation
\% of reachability: Note
\% use of LEFT recursion
$p(X, Y):-q(X, Y)$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$p(X, Z), q(Z, Y)$.

Calls	Answers

Pick selected literal. Is it in call table?

OLDT Example

$$
\text { ?- } p(a, N)
$$

```
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).
```

\%Alternative formulation
\% of reachability: Note
\% use of LEFT recursion
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$\mathrm{p}(\mathrm{X}, \mathrm{Z}), \mathrm{q}(\mathrm{Z}, \mathrm{Y})$.

Calls	Answers
$\mathrm{p}(\mathrm{a}, \mathrm{W})$	

Add to call table

OLDT Example

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

\%Alternative formulation \% of reachability: Note
\% use of LEFT recursion $\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$\mathrm{p}(\mathrm{X}, \mathrm{Z}), \mathrm{q}(\mathrm{Z}, \mathrm{Y})$.

Do OLD resolution with program clauses

OLDT Example

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

\%Alternative formulation
\% of reachability: Note
\% use of LEFT recursion
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$\mathrm{p}(\mathrm{X}, \mathrm{Z}), \mathrm{q}(\mathrm{Z}, \mathrm{Y})$.

Add computed answer to table (if not already there)

OLDT Example

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

Calls	Answers
$p(a, W)$	$\{p(a, a), p(a, b), p(a, c)$

Add computed answer to table (if not already there)

OLDT Example

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

\%Alternative formulation \% of reachability: Note
\% use of LEFT recursion
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$p(X, Z), q(Z, Y)$.

Calls	Answers
$p(a, w)$	$\{p(a, a), p(a, b), p(a, c)$

Continue with OLD resolution

OLDT Example

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

\%Alternative formulation
\% of reachability: Note
\% use of LEFT recursion
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$p(X, Z), q(Z, Y)$.

Calls	Answers
$p(a, W)$	$\{p(a, a), p(a, b), p(a, c)$

Pick selected literal. Is it in call table?

OLDT Example

$$
\begin{aligned}
& \mathrm{q}(\mathrm{a}, \mathrm{a}) . \\
& \mathrm{q}(\mathrm{a}, \mathrm{~b}) . \\
& \mathrm{q}(\mathrm{a}, \mathrm{c}) . \\
& \mathrm{q}(\mathrm{~b}, \mathrm{~b}) . \\
& \mathrm{q}(\mathrm{~b}, \mathrm{~d}) . \\
& \mathrm{q}(\mathrm{~b}, \mathrm{e}) . \\
& \mathrm{q}(\mathrm{e}, \mathrm{~d}) .
\end{aligned}
$$

\%Alternative formulation \% of reachability: Note
\% use of LEFT recursion
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$p(X, Z), q(Z, Y)$.

Calls	Answers
$p(a, W)$	$\{p(a, a), p(a, b), p(a, c)$

Yes, resolve with answers in table

OLDT Example

$$
q(a, a) .
$$

$$
\mathrm{q}(\mathrm{a}, \mathrm{~b}) .
$$

$$
q(a, c) .
$$

$$
q(b, b) .
$$

$$
q(b, d) .
$$

$$
q(b, e) .
$$

$$
q(e, d) \text {. }
$$

Calls	Answers
$\mathrm{p}(\mathrm{a}, \mathrm{W})$	$\{\mathrm{p}(\mathrm{a}, \mathrm{a}), \mathrm{p}(\mathrm{a}, \mathrm{b}), \mathrm{p}(\mathrm{a}, \mathrm{c})$

\% of reachability: Note
\% use of LEFT recursion
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$p(X, Z), q(Z, Y)$.

OLDT Example

q(a, a).
$q(a, b)$.
$q(a, c)$.
q(b, b).
q(b, d).
$q(b, e)$.
$q(e, d)$.
\%Alternative formulation
\% of reachability: Note
\% use of LEFT recursion
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$p(X, Z), q(Z, Y)$.

Calls	Answers
$p(a, W)$	$\{p(a, a), p(a, b), p(a, c)$

Continue resolving with answers in table

OLDT Example

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

\%Alternative formulation \% of reachability: Note \% use of LEFT recursion $\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$p(X, Z), q(Z, Y)$.

Calls	Answers
$p(a, W)$	$\{p(a, a), p(a, b), p(a, c)$ $p(a, d), p(a, e)$

Add computed answer to table (if not already there)

OLDT Example

q(a, a).
$q(a, b)$.
$q(a, c)$.
q(b, b).
q(b, d).
$q(b, e)$.
$\mathrm{q}(\mathrm{e}, \mathrm{d})$.

Calls	Answers
$\mathrm{p}(\mathrm{a}, \mathrm{W})$	$\{\mathrm{p}(\mathrm{a}, \mathrm{a}), \mathrm{p}(\mathrm{a}, \mathrm{b}), \mathrm{p}(\mathrm{a}, \mathrm{c})$ $\mathrm{p}(\mathrm{a}, \mathrm{d}), \mathrm{p}(\mathrm{a}, \mathrm{e})\}$

\%Alternative formulation
\% of reachability: Note
\% use of LEFT recursion
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{p}(\mathrm{X}, \mathrm{Y})$:-
$p(X, Z), q(Z, Y)$.

Complete when all answers have been considered for resolution

OLDT Forest

- When we get new answer, we will have to return to previous queries to continue their execution.
- When a literal is selected, mark it as a consumer.
- Check the call table.
- If the literal is not in the table, start a new tree for that literal with its root marked as generator.
- Resolve generator with program clauses (as in OLD), and add computed answers to its answer table.
- Resolve consumer with answers in its generator's table.

Calls and answers in tables

- Calls in table are standardized apart: i.e. their variables are renamed so that they are not identical to any other variable.
- Answers in a call's computed answer table share variables with their call. Any other variables are standardized apart.
- When checking if a literal is in call table:
- We can check for variance: for a call \mathbf{c} that is identical to the given literal $\mathbf{1}$, modulo names of variables.
- All answers to \mathbf{C} are answers to \mathbf{l}, and vice versa.
- We can check for subsumption: for a call \mathbf{c} that is more general than a given literal \mathbf{l}, i.e. if there is a substitution $\boldsymbol{\theta}$ such that $\mathbf{c} \boldsymbol{\theta}=\mathbf{1}$.
- Not all answers to \mathbf{C} may be answers to \mathbf{l}, but every answer to \mathbf{l} is an answer to \mathbf{C}

Notes on OLDT

- We can selectively mark which predicates we want to maintain tables for. (e.g. "p" in the previous example).
- In general, no need to maintain tables for predicates defined solely by facts (i.e. clauses with empty bodies).
- For a Datalog program, there can be only finitely many distinct calls and answers.
- So the size of tables is bounded.
- The number of literals in each goal is limited by the largest clause in the program (or original goal).
- Hence for Datalog, the OLDT forest as well as table sizes are bounded

OLDT: Second Example

$$
?-r(a, N)
$$

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$\mathrm{r}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

- Construct a forest: one tree for each call
- Root of each tree (blue) is a generator
- Selected literal that matches a tabled call (green) is a consumer

OLDT: Second Example


```
q(a, a).
q(a,b).
q(a, c).
q(b, b).
q(b, d)
q(b, e).
q(e, d).
```

\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$\mathrm{q}(\mathrm{X}, \mathrm{Z}), \mathrm{r}(\mathrm{Z}, \mathrm{Y})$.

OLDT: Second Example

q(a, a).
$q(a, b)$.
$q(a, c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.

\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$\mathrm{q}(\mathrm{a}, \mathrm{a})$.
$q(a, b)$.
$q(a, c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.
\%ORIGINAL formulation
\% of reachability: Note
$\%$ use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

q(a, a).
$q(a, b)$.
$q(a, c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.
\%ORIGINAL formulation
\% of reachability: Note
$\%$ use of RIGHT recursion

$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$$
\begin{aligned}
& q(a, b) . \\
& q(a, b) . \\
& q(a, d) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

[^0]
OLDT: Second Example

$$
\begin{aligned}
& q(a, b) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

[^1]
OLDT: Second Example

$\mathrm{q}(\mathrm{a}, \mathrm{a})$.
q(a, b).
$q(a, c)$.
$q(b, b)$.
q(b, d).
$q(b, e)$.
q(e, d).
\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y)$:-
$\mathrm{q}(\mathrm{X}, \mathrm{Z}), \mathrm{r}(\mathrm{Z}, \mathrm{Y})$.

OLDT: Second Example

$q(a, a)$.
$q(a, b)$.
$q(a, c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.

\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$\mathrm{q}(\mathrm{a}, \mathrm{a})$.
$q(a, b)$.
$q(a, c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.

\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$q(a, a)$.
$q(a, b)$.
$q(a, c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.

\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$\mathrm{q}(\mathrm{a}, \mathrm{a})$.
$q(a, b)$.
$q(a, c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.

\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y)$:-
$\mathrm{q}(\mathrm{X}, \mathrm{Z}), \mathrm{r}(\mathrm{Z}, \mathrm{Y})$.

OLDT: Second Example

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$$
\begin{aligned}
& q(a, b) . \\
& q(a, b) . \\
& q(a, d) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

[^2]
OLDT: Second Example

$$
\begin{aligned}
& q(a, b) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

$\% O R / G I N A L$ formulation \% of reachability: Note $\%$ use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$$
\begin{aligned}
& q(a, a) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

\%ORIGINAL formulation \% of reachability: Note \% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

\%ORIGINAL formulation $\%$ of reachability: Note
\% use of RIGHT recursion
$\mathrm{r}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$$
\begin{aligned}
& q(a, b) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

\%ORIGINAL formulation \% of reachability: Note
\% use of RIGHT recursion
$\mathrm{r}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$$
\begin{aligned}
& q(a, b) . \\
& q(a, b) . \\
& q(a, c) . \\
& q(b, b) . \\
& q(b, d) . \\
& q(b, e) . \\
& q(e, d) .
\end{aligned}
$$

\%ORIGINAL formulation \% of reachability: Note
\% use of RIGHT recursion
$\mathrm{r}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$q(a, a)$.
$q(a, b)$.
$q(a, ~ c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.
\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$q(a, a)$.
$q(a, b)$.
$q(a, c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.

?- $r(d, N)$
\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$q(a, b)$.
$q(a, b)$.
$q(a, d)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.

\%ORIGINAL formulation \% of reachability: Note
$\%$ use of RIGHT recursion
$\mathrm{r}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$\mathrm{r}(\mathrm{X}, \mathrm{Y})$:-
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$q(a, a)$.
$q(a, b)$.
$q(a, ~ c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.

\%ORIGINAL formulation \% of reachability: Note
$\%$ use of RIGHT recursion
$\mathrm{r}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

OLDT: Second Example


```
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).
```


[^3]
OLDT: Second Example


```
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).
```


$$
\begin{aligned}
& \text { \%ORIGINAL formulation } \\
& \% \text { of reachability: Note } \\
& \% \text { use of RIGHT recursion } \\
& \mathrm{r}(\mathrm{X}, \mathrm{Y}):-\mathrm{q}(\mathrm{X}, \mathrm{Y}) . \\
& \mathrm{r}(\mathrm{X}, \mathrm{Y}):- \\
& \mathrm{q}(\mathrm{X}, \mathrm{Z}), \mathrm{r}(\mathrm{Z}, \mathrm{Y}) .
\end{aligned}
$$

OLDT: Second Example

$q(a, a)$.
$q(a, b)$.
$q(a, ~ c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.
\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$q(a, a)$.
$q(a, b)$.
$q(a, c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.
\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$q(a, a)$.
$q(a, b)$.
$q(a, ~ c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.
\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y)$:-
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$q(a, a)$.
$q(a, b)$.
$q(a, ~ c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.
\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y):-$
$q(X, Z), r(Z, Y)$.

OLDT: Second Example

$q(a, a)$.
$q(a, b)$.
$q(a, ~ c)$.
$q(b, b)$.
$q(b, d)$.
$q(b, e)$.
$q(e, d)$.

\%ORIGINAL formulation
\% of reachability: Note
\% use of RIGHT recursion
$r(X, Y):-q(X, Y)$.
$r(X, Y) \quad:-$
$q(X, Z), r(Z, Y)$.

OLD Resolution with Tabling (OLDT)

- OLDT evaluation can be used to infer negative answers: e.g. a vertex is not reachable from another.
- Note that Breadth-First evaluation, or even the evaluation with goal-based stopping condition cannot do this.

Tabled Resolution in XSB

reach (X,Y) :- edge (X,Y). reach (X,Y) :- reach (X,Z), edge(Z,Y). edge (a,a). edge (a,b). edge (b, c) .
:- table(reach/2). \%OR :- auto table.

- Call:
?- reach (a,V).

Tabled Resolution

reach (X,Y) :- edge (X,Y).
reach (X, Y) :- reach (X, Z), edge (Z,Y).
edge (a, a).
edge (a, b). edge (b, c).

- Calls
?- reach (a, V).
Answers

Tabled Resolution

reach (X, Y) :- edge (X, Y).
reach (X, Y) :- reach (X, Z), edge (Z,Y).
edge (a, a).
edge (a, b). edge (b, c).

- Calls
?- reach (a, V).
Answers

$$
V=\mathbf{a}
$$

Tabled Resolution

reach (X, Y) : - edge (X, Y).
reach (X,Y) :- reach (X,Z), edge (Z,Y).
edge (a, a).
edge (a,b). edge (b, c).

- Calls
?- reach (a,V).
Answers

$$
\begin{aligned}
& \mathbf{V}=\mathbf{a} \\
& \mathbf{V}=\mathbf{b}
\end{aligned}
$$

Tabled Resolution

reach (X, Y) : : edge (X, Y).
reach (X,Y) :- reach (X,Z), edge (Z,Y).
edge (a, a).
edge (a,b). edge (b, c).

- Calls
?- reach (a,V).
Answers

$$
\begin{aligned}
& \mathbf{V}=\mathbf{a} \\
& \mathbf{V}=\mathbf{b}
\end{aligned}
$$

Tabled Resolution

reach (X, Y) : : edge (X, Y).
reach (X,Y) :- reach (X,Z), edge (Z,Y).
edge (a, a).
edge (a,b). edge (b, c).

- Calls
?- reach (a,V).
Answers

$$
\begin{aligned}
& \mathbf{V}=\mathbf{a} \\
& \mathbf{V}=\mathbf{b}
\end{aligned}
$$

Tabled Resolution

reach (X, Y) : : edge (X, Y).
reach (X,Y) :- reach (X,Z), edge (Z,Y).
edge (a, a).
edge (a,b). edge (b, c).

- Calls ?- reach (a,V).

Answers

$$
\begin{aligned}
& \mathbf{V}=\mathbf{a} \\
& \mathbf{V}=\mathbf{b} \\
& \mathbf{V}=\mathbf{c}
\end{aligned}
$$

Tabled Resolution

reach (X, Y) :- edge (X, Y).
reach (X,Y) :- reach (X,Z), edge (Z,Y).
edge (a, a).
edge (a,b). edge (b, c).

- Calls ?- reach (a,V).

Answers

$$
\begin{aligned}
& \mathbf{V}=\mathbf{a} \\
& \mathbf{V}=\mathbf{b} \\
& \mathbf{V}=\mathbf{c}
\end{aligned}
$$

Answer completion!

[^0]: \%ORIGINAL formulation
 \% of reachability: Note
 \% use of RIGHT recursion
 $\mathrm{r}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
 $r(X, Y)$:-
 $q(X, Z), r(Z, Y)$.

[^1]: \%ORIGINAL formulation
 \% of reachability: Note
 \% use of RIGHT recursion
 $\mathrm{r}(\mathrm{X}, \mathrm{Y})$:- $\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
 $r(X, Y)$:-
 $q(X, Z), r(Z, Y)$.

[^2]: \%ORIGINAL formulation \% of reachability: Note
 \% use of RIGHT recursion
 $r(X, Y):-q(X, Y)$.
 $r(X, Y):-$
 $\mathrm{q}(\mathrm{X}, \mathrm{Z}), \mathrm{r}(\mathrm{Z}, \mathrm{Y})$.

[^3]: \%ORIGINAL formulation \% of reachability: Note
 \% use of RIGHT recursion
 $\mathrm{r}(\mathrm{X}, \mathrm{Y}):-\mathrm{q}(\mathrm{X}, \mathrm{Y})$.
 $r(X, Y)$:-
 $q(X, Z), r(Z, Y)$.

