
Object-Oriented KRR, OO 

logical languages and Flora-2

1

CSE 595 – Semantic Web

Instructor: Dr. Paul Fodor

Stony Brook University

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html


(c) Paul Fodor (CS Stony Brook)

What is Object-Oriented? Ontological Thinking

 Predicative logic: “has(car, wheels).”

Flat representation “has(car,engine).”

Each sentence is self-contained “is(prius, car).”

 Information about an entity is scattered in multiple 

sentences

VS.

 Object-oriented: “prius isA car (a car

 Sentences are grouped has an engine and 

 Structured and organized wheels)”
Usually a correspondence with the user interface 

Translatable to logic

2



(c) Paul Fodor (CS Stony Brook)

Frames 
 When one encounters a new situation, one selects from 

memory a structure called a Frame. This is a remembered 

framework to be adapted to fit reality by changing details 

as necessary – Marvin Minsky, 1974 

 Example: a Birthday Party
DRESS ––––– SUNDAY BEST. 

PRESENT ––– MUST PLEASE HOST. MUST BE BOUGHT AND GIFT-WRAPPED. 

GAMES ––––– HIDE AND SEEK. PIN TAIL ON DONKEY. 

DECOR ––––– BALLOONS. FAVORS. CREPE-PAPER. 

PARTY-MEAL–CAKE. ICE-CREAM. SODA. HOT DOGS. 

CAKE ––––– CANDLES. BLOW-OUT. WISH. SING BIRTHDAY SONG. 

ICE-CREAM –– STANDARD THREE-FLAVOR.

3



(c) Paul Fodor (CS Stony Brook)

Reasoning Operations on Frames
 Expectation: How to select an initial frame to meet some 

conditions 

Child’s birthday party 

 Elaboration: How to select and assign sub-frames to 

represent additional details 

North American birthday party vs an Asian Party 

 Alteration: How to find a frame to replace one that does 

not fit well 

No gifts allowed 

 Novelty: What to do if no acceptable frame can be found? 

 Learning: What frames should be stored or modified as a 

result of experience?
4



(c) Paul Fodor (CS Stony Brook)

Object-Oriented Languages
Many modern programming languages 

support features such as data abstraction and 

inheritance: Java
Object databases represent information as objects 

and support object-oriented programming

Graphical representations have several features in 

common
A hierarchy of classes

Classes have properties that can inherit

Facets provide further descriptors of values
5



(c) Paul Fodor (CS Stony Brook)

Object-Oriented KR Languages
 An ontology defines a set of representational primitives with 

which to model a domain of knowledge or discourse 
 The representational primitives are classes and relationships

 Their definitions include information about their meaning and constraints 

on their logically consistent application

6
Nicola Guarino



(c) Paul Fodor (CS Stony Brook)

Object-Oriented KR Languages
 The Knowledge Machine http://www.cs.utexas.edu/users/mfkb/km.html provides 

classes, individuals, instance-of, subclass-of, Template Slots, Domains, Ranges, Inheritance, 

Logical Interface, …

 Description Logic:

 A commonly used language that uses description logic is OWL 

http://www.w3.org/TR/owl2-overview/

 An API for accessing OWL knowledge: http://owlapi.sourceforge.net

7

Ian Horrocks

http://www.cs.utexas.edu/users/mfkb/km.html
http://www.w3.org/TR/owl2-overview/
http://owlapi.sourceforge.net/


(c) Paul Fodor (CS Stony Brook)

Flora-2
Combines Logic Programs with Object-Oriented 

Representation: 
Flora-2 is an advanced object-oriented knowledge base 

management system, including meta-programming and 

defeasible reasoning as an extension of Prolog 

The Flora-2 project sourceforgeWeb site: 

http://flora.sourceforge.net
– In particular, from that main page view.

FLORA-2 Documentation (user’s manual, documentation of packages and 
technical tutorial),

FLORA-2 Mailing lists (for general users and development).

8

http://flora.sourceforge.net/
http://flora.sourceforge.net/documentation.html
http://sourceforge.net/p/flora/mailman


(c) Paul Fodor (CS Stony Brook)

The Syntax of Flora-2

9

• The alphabet of Flora-2 consists of:
– . ends every statement in Flora-2, including queries.
– Constant symbols:  123, a, John, "12345"^^xsd:integer (constant in a lexical space)
– Variable symbols as alphanumeric symbols prefixed by the character “?”: ?x, ?Var1,  

?ABC, ?_ABC, ? (the last two are anonymous variables)
– Terms:  f(1,a,?Var) , ?p(b(?x),?q(c,d)) (Hilog and first-order terms); [a,b,c], [1,2,3 | 

[4,5]] (list terms)
– Negation symbols:  \naf (negation-as-failure, a.k.a. default negation) and \neg

(strong negation).
– Unification and equality symbols:  = (unifies), :=: (logically equal), := (user-defined 

function operator).
– Frame construction symbols: -> (has value), => (has type), : (class membership),  :: 

(subclass-of).
– Connectives:   :- (directional implication, i.e., “if” between head and body); “,” 

(comma) and \and for conjunction; “;” (semi-colon) and \or for disjunction.
– Comments:  // (rest of line), /*… */ (enclosed, possibly multi-line).
– Aggregation operators:  \collectset, min, max, count, sum, avg.
– Comprehension operators:  \setof , \bagof.
– Other/auxiliary symbols:  (, ) , [, ] , , (comma), < , > , | , { , } , $ (used for reification), 

@ (used for meta-info annotation) , ’ (single quote, used for symbols).
– Delay pragmas (goal reordering):  must, wish.       



(c) Paul Fodor (CS Stony Brook)

Facts, Rules and Queries
 Flora-2 is a logic programming reasoning engine – it 

combines facts and rules to infer new facts

A fact:

Socrates is a man. man(Socrates).

A rule:

?X is mortal if ?X is a man. mortal(?X) :- man(?X).

A query:

Is Socrates mortal? ?- mortal(Socrates).

The answer:

Yes TRUE



(c) Paul Fodor (CS Stony Brook)

// socrates.flr

man(Socrates).

mortal(?X) :- man(?X).

age(Socrates,56) and  home(Socrates,Athens).

student(Socrates,Plato) and 

student(Socrates,Xenophon).

man(Plato) and man(Xenophon).

age(Plato,27). age(Xenophon,27).

philosopher(Xenophon).

talksAbout(Xenophon,Xenophon).

home(father(Socrates),Athens).

home(father(father(Socrates)),Athens).

avgAge(?AvgAge) :-

?AvgAge = avg{ ?Y | man(?E), age(?E,?Y) }.

?- mortal(?X). /* ?X = Plato; ?X = Socrates;

?X = Xenophon */

?- age(?X,?Y). /* ?X = Plato, ?Y = 27; 

?X = Socrates, ?Y = 56;

?X = Xenophon, ?Y = 27 */

?- home(?X,?Y). /* ?X = Socrates, ?Y = Athens;

?X = father(Socrates), ?Y = Athens

?X = father(father(Socrates)),?Y = Athens*/

?- avgAge(?AvgAge). // ?AvgAge = 36.6667

Facts, Rules and Queries



(c) Paul Fodor (CS Stony Brook)

Hilog
 HiLog (higher-order) - a predicate can be any kind of term

(in particular, a variable)

Which facts are about Socrates?

?- ?X(Socrates).  // predicate is a variable

 HiLog will be especially useful for Frame syntax (next slide).



(c) Paul Fodor (CS Stony Brook)

Frame Syntax
 Flora-2 offers an alternative, object-oriented syntax for many expressions:  Frame syntax (F-logic).  

 The regular syntax is called, by contrast, Predicate syntax.  

 Frame syntax is more concise than Predicate syntax.  

 Especially for users familiar with object-oriented programming or RDF, frame syntax is sometimes more intuitive or familiar 

than predicate syntax.

In Predicate  syntax: In Frame syntax:

Frame syntax rearranges the components

of Flora-2 facts having 2 arguments:

Socrates is 56 years old. age(Socrates,56).  Socrates[age -> 56].

More generally, it rearranges the subject, predicate 

(a.k.a. property), and object (a.k.a. value) of the fact: predicate(subject , object). subject[predicate -> object].

There is a special syntax for expressing several values

for the same property:

Socrates has Plato and Xenophon as students. student(Socrates,Plato)  and Socrates[student -> {Plato, Xenophon}].

student(Socrates,Xenophon). 

If desired, we can write a frame containing 

several properties of the same subject:

Socrates is 56 years old and lives in Athens. age(Socrates,56)  and Socrates[age -> 56, home -> Athens].

home(Socrates,Athens).  



(c) Paul Fodor (CS Stony Brook)

In Predicate Syntax In Frame Syntax:

We can also make statements 

asserting what class, or kind 

of thing, an object is:

Socrates is a man. man(Socrates). Socrates : man. 

We can also express subclass relationships

between classes:

All Athenians are people. subclass( Athenian, Person). Athenian :: Person.

We can also write rules in the frame syntax:

All immortal men are gods. god(?X):- man(X) and ?X : God :- ?X: Man 

immortal(?X). and ?X: Immortal.

Frame Syntax



(c) Paul Fodor (CS Stony Brook)

// socrates_frames.flr

Socrates : man.

?X:mortal :- ?X:man.

Socrates[age->56] and Socrates[home->Athens].

Socrates[student->{Plato,Xenophon}].

Plato:man and Xenophon:man.

Plato[age->27]. Xenophon[age->27].

Xenophon:philosopher.

Xenophon[talksAbout->Xenophon].

father(Socrates)[home->Athens].

father(father(Socrates))[home->Athens].

avgAge(?AvgAge) :-

?AvgAge = avg{ ?Y | ?E:man, ?E[age->?Y] }.

?X:Athenian :- ?X[home->Athens].

Athenian :: Person.

?X : God :- ?X: Man , ?X: Immortal.

?- ?X : mortal. /* ?X = Plato; ?X = Socrates;

?X = Xenophon */

?- ?X[age->?Y]. /* ?X = Plato, ?Y = 27; 

?X = Socrates, ?Y = 56;

?X = Xenophon, ?Y = 27 */

?- ?X[home->?Y]./*?X = Socrates, ?Y = Athens;

?X = father(Socrates), ?Y = Athens

?X = father(father(Socrates)),?Y = Athens*/

?- avgAge(?AvgAge). // ?AvgAge = 36.6667

?- ?X : Person. // ?X = Socrates;

?X = father(Socrates);

?X = father(father(Socrates))*/

Frame Syntax



(c) Paul Fodor (CS Stony Brook)

Rule Annotations
 Flora-2 uses annotations to record key meta-

information about a rule 

 Annotations are always at the beginning of the rule, 
in a frame that looks like this:   @!{ ruleId } and/or 

@{tag} and/or @@{strict} and/or @@{defeasible}

An annotation assigning a unique identifier, ‘rule24’, to a rule 
and making it defeasible:

@!{rule24}  @@{defeasible} p(?X) :- q(?X).

An annotation assigning a ‘tag’  newRules to a rule (for the 
purpose of prioritizing it with respect to defeasibility):  

@{newRules}  p(?X) :- q(?X).



(c) Paul Fodor (CS Stony Brook)

Rule Conflict and Overriding
 What if two rules make contradictory conclusions?

For example, in the following rule set, two different @{foo}  p(a) :- q(a).

rules conclude p(a) and neg p(a) : @{bar}  neg p(a) :- q(a).

q(a).

In this situation, neither p(a) nor neg p(a) is ?- p(a).

inferred – both inferences are “defeated” – as No

we see in these two queries: ?- neg p(a).

No

We can change that by stating that one rule tag 

“overrides” the other: \overrides(foo, bar).

The addition of the override info causes us to infer ?- p(a).

p(a)  but still defeat neg p(a) Yes



(c) Paul Fodor (CS Stony Brook)

Other Key Features

 Reification – use Flora-2 sentences, or other 

 Flora-2 complex expressions, as terms

 allows us to use rules as data

Socrates believes that students are pleasant if stimulated.

believes(Socrates, ${pleasant(?x):- student(?x) and stimulated(?x)}.

 Aggregation – summarizing many facts

What is the average age of employees?

?- ?AvgAge = \avg{ ?Y | man(?E), age(?E,?Y)].



(c) Paul Fodor (CS Stony Brook)

Frames and Rules Reasoning Example
@!{fam1}

Family1 : Family[husband->Mike,

wife->Nancy,

son->{Jason, Noah}].

@!{fam2}

Family2 : Family[husband->Tim,

wife->Karen,

daughter->{Katherine,Caroline}].

...

@!{son1} @{s1}  ?f[child->?c] :- ?f[son->?c].

@!{daughter1} @{d1}  ?f[child->?c] :- ?f[daughter->?c].

@!{husband_child1}  @{hc1}

?f[parent->?p] :- ?f[husband->?p,child->?c].

@!{wife_child1} @{wc1}

?f[parent->?p] :- ?f[wife->?p,child->?c].

@!{father1} @{f1}

?child[father->?father] :- ?family[husband->?father,child->?child].

@!{grandfather1} @{gf1}

?c[grandfather->?gf] :- ?f1[parent->?p,child->?c], ?f2[husband->?gf,child->?p].

1. Load the file.

2. Ask the query: 

“?- ?Child{father->?Father}.” 



(c) Paul Fodor (CS Stony Brook)

@{rep} neg pacifist(?X) :- republican(?X).

@{qua} pacifist(?X) :- quaker(?X).

@{pri1} \overrides(rep, qua).

@{fac1} republican(nixon).

@{fac2} quaker(nixon).

1. Ask the query:  
?- neg pacifist(nixon).

TRUE
2. Another interesting 
query is:

?- pacifist(nixon).

FALSE

Defeasible Rules Reasoning Example



(c) Paul Fodor (CS Stony Brook)

Aggregates Example
John : Employee[salary(2000)->10,

salary(2001)->11,

salary(2002)->12].

Ed : Employee[salary(2000)->20,

salary(2001)->22,

salary(2002)->24].

// count employees

?- ?employeeCount = \count{?who | ?who : Employee}.

// average salary of all employees

?- ?avgSalary = \avg{?salary | ?who : Employee[salary(?year)->?salary}].

// each employee's average salary along with the value of the grouping variable ?who

?- ?avgSalary = \avg{?salary{?who} |

?who : Employee[salary(?year)->?salary}}.

// total salary by year

?- ?yearlyPayroll = \sum{?salary{?year} | ?who : Employee[salary(?year)-
>?salary}}.

// minimum salary

?- ?min = \min{?salary | ?who{salary(?year)->?salary}}.

// years for which salary information is available

?- ?years = \collectbag{?year | ?who{salary(?year)->?salary}}.

// unique years for which salary information is available

?- ?years = \collectset{?year | ?who{salary(?year)->?salary}}.

1. Load salary.flr

2. Ask queries in the Flora-2 

Console to count employees, 

compute average salary, etc.



(c) Paul Fodor (CS Stony Brook)

2007 : times. 2008 : times. 2009 : times.

print : privileges. webPage : privileges.

Bob : admins. John : admins. Cara : admins.

Al : users.

Bob[controls -> print]. //Bob controls printing.

neg John[controls -> print]. // John explicitly does not administer printing

Cara[controls -> ?priv} :- ?priv : privileges. // Cara is the most senior admin. 

//privileges are enforced based upon the statements admins make

@{grantOrDeny(?admin,?t,?X)} ?priv(?user) :- ?priv : privileges, ?admin : admins, 
?admin{states(?t) -> ?X}, ?X = $[?priv(?user)].

@{grantOrDeny(?admin,?t,?X)} neg ?priv(?user) :- ?priv : privileges and ?admin : admins and
?admin[states(?t) -> ?X] and ?X = ${neg ?priv(?user)].

//metastatements about privilege statements

?X[atom->${?priv(?user)}] :- ?X = ${?priv(?user)].

?X[negated->false] :- ?X = ${?priv(?user)].

?X[atom->${?priv(?user)}] :- ?X = ${neg ?priv(?user)].

?X[negated->true] :- ?X = ${neg ?priv(?user)].

// More recent statements have higher priority, in case of conflict.

@{recency} \overrides(grantOrDeny(?admin1,?t1,?X), grantOrDeny(?admin2,?t2,?Y)) :-

?admin1 : admins and ?admin2 : admins and ?t1 : times and ?t2 : times and

?admin1{states(?t1) -> ?X} and ?admin2{states(?t2) -> ?Y} and ?X.atom = ?Y.atom and

naf ?X.negated :=: ?Y.negated and ?t2 < ?t1.

Continued on next slide.

Trust Policy example
Use higher order logic to 

implement trust policies



(c) Paul Fodor (CS Stony Brook)

// Statements made by admins that control a particular privilege have priority over 
statements made by admins that do not control that priviledge.

@{control} \overrides(grantOrDeny(?admin1,?t1,?X), grantOrDeny(?admin2,?t2,?Y)) :-

?admin1 : admins and ?admin2 : admins and ?t1 : times and ?t2 : times and

?admin1{states(?t1) -> ?X} and ?admin2{states(?t2) -> ?Y} and ?X.atom = ?Y.atom and

naf ?X.negated :=: ?Y.negated and ?X.atom = ${?priv(?user)} and 

?admin1{controls -> ?priv} and naf ?admin2{controls -> ?priv}.

//Two overrides statements cannot override each other and both be true.

!- \overrides(grantOrDeny(?admin2,?t2,?X), grantOrDeny(?admin1,?t1,?Y)) and

\overrides(grantOrDeny(?admin1,?t1,?Y), grantOrDeny(?admin2,?t2,?X)).

//Statements concerning control trump those concerning recency.

\overrides(control,recency).

// Admins Bob and Cara make conflicting statements over time about Al's printing. Both 
administer printing.  Bob's statement is more recent, so prevails.

// Admins Bob and John make conflicting statements over time about Al's printing. John's is 
more recent, but John does not administer printing, so Bob's statement prevails.

// Admins Cara and John make conflicting statements over time about Al's webPage. John's is 
more recent, but John does not administer webPages, so Cara's statement prevails.

Cara[states(2007) -> ${print(Al)}].

Cara[states(2007) -> ${webPage(Al)}].

Bob[states(2008) -> ${neg print(Al)}].

John[states(2009) -> ${neg webPage(Al)}].

John[states(2009) -> ${print(Al)}].

1. Load the file in Flora-2.

2. Queries:

?- neg print(Al)  

?- webPage(Al

Al is permitted to have a webPage

but not to print.

Trust Policy example



(c) Paul Fodor (CS Stony Brook)

Extra lecture notes

The following lecture notes describe:

How to install Flora-2, and 

How to use Flora-2.

24



(c) Paul Fodor (CS Stony Brook)

Installing Flora-2
 Prerequisite: 

 FLORA-2 relies on the XSB inference engine to run  

(http://xsb.sourceforge.net).

 Instructions for compiling XSB can be found in the XSB manual: 

 http://xsb.sourceforge.net/manual1/manual1.pdf

 XSB binaries are available for Windows here: http://xsb.sourceforge.net/downloads

 Development Tools to compile XSB: To compile XSB, you'll need a C 

compiler: 

 For the Mac, you'll likely want the XTools package 

 http://developer.apple.com/technologies/tools/xcode.html

 For Windows, Microsoft Visual C++ Express Edition will work 

 http://www.microsoft.com/visualstudio

 For Windows, you also need Microsoft's nmake (downloaded as part of 

Visual C++ Express above).

25

http://xsb.sourceforge.net/
http://xsb.sourceforge.net/manual1/manual1.pdf
http://xsb.sourceforge.net/downloads
http://developer.apple.com/technologies/tools/xcode.html
http://www.microsoft.com/visualstudio


(c) Paul Fodor (CS Stony Brook)

Installing Flora-2
• Configuring FLORA-2 under Windows (8, 7 or XP, 64bit or 

32bit) with Microsoft Visual C++:

– Execute the following commands (we assume Flora-2 is 
downloaded in C:\flora2):

cd C:\flora2

makeflora.bat

• The last command will work only if an XSB executable is on the system 
search path specified by the environment variable PATH. If it is not, then 
additional parameters need to be supplied. If we assume that XSB is 
installed in the directory C:\XSB, then we run:

makeflora.bat C:\XSB\bin\xsb.bat

• If you configured a 64-bit version of XSB, then configure FLORA-2 using

makeflora C:\XSB\bin\xsb64.bat

• You will be able to run FLORA-2 by typing 

C:\flora2\runflora.bat

26



(c) Paul Fodor (CS Stony Brook)

Using Flora-2 – The Basics
• to start the Flora-2 engine:

– It is recommended that you add the flora2 directory to the PATH environment variable
• In Windows, click right on “Computer” in Start, select “Properties”, select “Advanced” and change 

Environment Variable PATH to include the flora2 path – for example, add “.C:\flora2” if your Flora-2 
directory is C:\flora2 

– Execute the command:

runflora

• file editing:

– Flora-2 files have the extension.flr and can be edited in your preferred editor (Notepad++, 
Emacs, etc.)

• to load a file into the engine:
– Execute the following command in Flora-2 console (assume that your file is file.flr):

\load(‘file’). 

(the suffix .flr can be added, but is not necessary)

– Note this is cumulative. previously loaded rules remain in the engine’s rule 
base until that is cleared out.

• to ask a query:

– type the query into the Flora-2 console and hit enter,

– results are immediately displayed below.27



(c) Paul Fodor (CS Stony Brook)

Starting Flora-2 the First Time
 If you have just installed Flora-2, start runflora into the current directory:

 The Flora-2 console waits for Flora-2 queries.
28


