
Computers Playing Jeopardy! Course

Stony Brook University

Text search

(c) Paul Fodor (CS Stony Brook)

Today

 Text search: 2 parts:

 theoretical: costs of searching substrings, data structures for

string search,

 practical: implementation of text search.

 Text search refers to techniques for searching strings in single

computer-stored documents or a collection of documents in

a text database.

2

(c) Paul Fodor (CS Stony Brook)

Tokenization
 Automatically recognize words and sentences

 identify what constitutes an individual or distinct word,

referred to as a token

 Tokenizer or lexer

 sequences of characters which represent words and other

elements, such as punctuation, which are represented by

numeric codes,

 email addresses, phone numbers, and URLs.

3

(c) Paul Fodor (CS Stony Brook)

Sub-array algorithm example

 Given an array {t,h,i,s,i,s,a,t,e,s,t} and a pattern {t,e,s,t}, write a

program that checks whether the pattern is present in the array:

public static boolean substring(char[] s, char[] sub){

 for(int i=0; i < s.length - sub.length; i++)

 if(startsWith(s,sub,i)) return true;

 return false;

}

public static boolean startsWith(char[] s, char[] sub,

int m){

 for(int i=0; i<sub.length; i++)

 if(sub[i] != s[m+i]) return false;

 return true;

} Cost: m x n

4

(c) Paul Fodor (CS Stony Brook)

Suffix arrays and trees

 Idea: preprocess the text, so the search of the substring is fast

 Specialized data structures (e.g., tries)

 Assumption: no suffix is a prefix of another suffix (can be a
substring, but not a prefix)
 Assure this by adding a character $ to end of S

 Costs:
 Build data structure for text (e.g., suffix tree)

 This is preprocessing O(m)

 Search time:

 For example: Suffix trees: O(n+k) where k is the number of
occurrences of P in T

5

(c) Paul Fodor (CS Stony Brook)

Suffix arrays
 An array of integers giving the starting positions of suffixes of

a string in lexicographical order

 8 suffixes: “TESTING$”, “ESTING$”, “STING$”, “TING$”, “ING$”, “NG$”, “G$”, “$”.

 One-based indexing: {8,2,5,7,6,3,1,4}

 Longest common prefix: how many characters

 one suffix has in common with the one above it

1 2 3 4 5 6 7 8

T E S T I N G $

index Sorted suffix lcp

8 $ 0

2 ESTING$ 0

5 ING$ 0

7 G$ 0

6 NG$ 0

3 STING$ 0

1 TESTING$ 0

4 TING$ 1

6

(c) Paul Fodor (CS Stony Brook)

Suffix arrays
 Construction: comparison sort or suffix trees

 Application: fast search of every occurrence of a substring within a string

 find every suffix that begins with the substring

 Cost: O(m log n) time

if W <= suffixAt(pos[1]) then

 ans = 1

else if W > suffixAt(pos[n]) then

 ans = n

else{

 L = 1, R = n

 while R-L > 1 do{

 M = (L + R)/2

 if W <= suffixAt(pos[M]) then

 R = M

 else

 L = M

 }

 ans = R

}

7

(c) Paul Fodor (CS Stony Brook)

Suffix tries
 Tries = ordered tree data structure that is used to store

associative arrays where the keys are usually strings

The time to insert, or to delete or to

find is identical

8

(c) Paul Fodor (CS Stony Brook)

Suffix trees
 A data structure that presents the suffixes of a given string in

a way that allows for fast implementation of string operations

9

(c) Paul Fodor (CS Stony Brook)

Building trees: O(m2) algorithm

 Initialize

 One edge for the entire string S[1..m]$

 For i = 2 to m

 Add suffix S[i..m] to suffix tree

 Find match point for string S[i..m] in current tree

 If in “middle” of edge, create new node w

 Add remainder of S[i..m] as edge label to suffix i leaf

 Running Time

 O(m-i) time to add suffix S[i..m]

10

(c) Paul Fodor (CS Stony Brook)

Assignment

 The Suffix Array Representing "BANANAS"

 The Suffix Trie Representing "BANANAS“

 The Suffix Tree Representing "BANANAS"

11

(c) Paul Fodor (CS Stony Brook)

Other indexes
 Theoretical: Gödel numbering (assigns to each symbol

and well-formed formula of some formal language a

unique natural number) – not practical

 Hashing: fast, but not unique – collisions, clustering

 B-trees: balanced search trees where every node has between

m/2 and m children, where m>1 is a fixed integer

12

(c) Paul Fodor (CS Stony Brook)

Inverted index
 A mapping from content, such as words or numbers, to its

locations in a database file, or in a document or a set of

documents

 T0 = "it is what it is”

 T1 = "what is it“

 T2 = "it is a banana"

"a": {2}

"banana": {2}

"is": {0, 1, 2}

"it": {0, 1, 2}

"what": {0, 1}

search for the terms "what", "is" and "it" would give

13

(c) Paul Fodor (CS Stony Brook)

 hash table: an array of some fixed size, that positions

elements according to an algorithm called a hash

function

elements (e.g., strings)

0

…

length –1

hash func.

h(element)

hash table

Hash tables

14

(c) Paul Fodor (CS Stony Brook)

Hashing, hash functions

 Map every element into some index in the array

 Lookup becomes constant-time: simply look at that one slot again

later to see if the element is there

 add, remove, contains all become O(1) !

 Example: h(i) = i % array.length

15

(c) Paul Fodor (CS Stony Brook)

B-trees
 The data items are stored at leaves

 The nonleaf nodes store up to M-1 keys to guide the
searching; key I represents the smallest key in subtree I
+1.

 The root is either a leaf or has between two and M
children.

 All nonleaf nodes (except the root) have between [M/2]
and M children

 All leaves are at the same depth and have between [L/2]
and L children, for some L (the determination of L is
described shortly).

16

(c) Paul Fodor (CS Stony Brook)

Apache Lucene
 http://lucene.apache.org/

 Tutorial:

 http://www.lucenetutorial.com/lucene-in-5-minutes.html

17

http://lucene.apache.org/
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html

(c) Paul Fodor (CS Stony Brook)

Parallelism: MapReduce

 Input: a set of key/value pairs

 User supplies two functions:

 map(k,v) list(k1,v1)

 reduce(k1, list(v1)) v2

 (k1,v1) is an intermediate key/value pair

 Output is the set of (k1,v2) pairs

18

(c) Paul Fodor (CS Stony Brook)

Hadoop
 An open-source implementation of Map Reduce in Java

 Uses HDFS for stable storage

 Download from:

http://lucene.apache.org/hadoop/

http://developer.yahoo.com/hadoop/tutorial/module3.html

19

http://lucene.apache.org/hadoop/
http://developer.yahoo.com/hadoop/tutorial/module3.html

