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(c) Paul Fodor (CS Stony Brook) 

Today 

 Text search: 2 parts: 

 theoretical: costs of searching substrings, data structures for 

string search, 

 practical: implementation of text search. 

 

 Text search refers to techniques for searching strings in single 

computer-stored documents or a collection of documents in 

a text database.  
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Tokenization 
 Automatically recognize words and sentences 

 identify what constitutes an individual or distinct word, 

referred to as a token 

 Tokenizer or lexer 

 sequences of characters which represent words and other 

elements, such as punctuation, which are represented by 

numeric codes,  

 email addresses, phone numbers, and URLs. 
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Sub-array algorithm example 

 Given an array {t,h,i,s,i,s,a,t,e,s,t} and a pattern {t,e,s,t}, write a 

program that checks whether the pattern is present in the array: 

public static boolean substring(char[] s, char[] sub){ 

 for(int i=0; i < s.length - sub.length; i++) 

  if(startsWith(s,sub,i)) return true; 

 return false; 

} 

public static boolean startsWith(char[] s, char[] sub, 

int m){ 

 for(int i=0; i<sub.length; i++) 

  if(sub[i] != s[m+i]) return false; 

 return true; 

}       Cost: m x n   
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Suffix arrays and trees 

 Idea: preprocess the text, so the search of the substring is fast 

 Specialized data structures (e.g., tries) 

 Assumption: no suffix is a prefix of another suffix (can be a 
substring, but not a prefix) 
 Assure this by adding a character $ to end of S 

 Costs: 
 Build data structure for text (e.g., suffix tree) 

 This is preprocessing O(m) 

 Search time:  

 For example: Suffix trees: O(n+k) where k is the number of 
occurrences of P in T 
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Suffix arrays 
 An array of integers giving the starting positions of suffixes of 

a string in lexicographical order 

 
 

 8 suffixes: “TESTING$”, “ESTING$”, “STING$”, “TING$”, “ING$”, “NG$”, “G$”, “$”. 

     One-based indexing: {8,2,5,7,6,3,1,4} 

     Longest common prefix: how many characters 

     one suffix has in common with the one above it  

 

 

1 2 3  4 5 6 7 8 

T E S T I N G $ 

index Sorted suffix lcp 

8 $ 0 

2 ESTING$ 0 

5 ING$ 0 

7 G$ 0 

6 NG$ 0 

3 STING$ 0 

1 TESTING$ 0 

4 TING$ 1 
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Suffix arrays 
 Construction: comparison sort  or suffix trees 

 Application: fast search of every occurrence of a substring within a string 

 find every suffix that begins with the substring 

 Cost: O(m log n) time 

if W <= suffixAt(pos[1]) then 

  ans = 1 

else if W > suffixAt(pos[n]) then 

  ans = n 

else{ 

  L = 1, R = n 

  while R-L > 1 do{ 

    M = (L + R)/2 

    if W <= suffixAt(pos[M]) then 

      R = M 

    else 

      L = M 

  } 

  ans = R 

} 
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Suffix tries 
 Tries = ordered tree data structure that is used to store 

associative arrays where the keys are usually strings 

The time to insert, or to delete or to 

find is identical 
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Suffix trees 
 A data structure that presents the suffixes of a given string in 

a way that allows for fast implementation of string operations 
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Building trees: O(m2) algorithm 

 Initialize 

 One edge for the entire string S[1..m]$ 

 For i = 2 to m 

 Add suffix S[i..m] to suffix tree 

 Find match point for string S[i..m] in current tree 

 If in “middle” of edge, create new node w 

 Add remainder of S[i..m] as edge label to suffix i leaf 

 Running Time 

 O(m-i) time to add suffix S[i..m] 
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Assignment 

 The Suffix Array Representing "BANANAS" 

 The Suffix Trie Representing "BANANAS“ 

 The Suffix Tree Representing "BANANAS" 
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Other indexes 
 Theoretical: Gödel numbering (assigns to each symbol 

and well-formed formula of some formal language a 

unique natural number) – not practical 

 Hashing: fast, but not unique – collisions, clustering 

 B-trees: balanced search trees where every node has between  

m/2  and m children, where m>1 is a fixed integer  
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Inverted index 
 A mapping from content, such as words or numbers, to its 

locations in a database file, or in a document or a set of 

documents 

 T0 = "it is what it is” 

 T1 = "what is it“  

 T2 = "it is a banana" 

"a": {2}  

"banana": {2}  

"is": {0, 1, 2}  

"it": {0, 1, 2}  

"what": {0, 1}  

search for the terms "what", "is" and "it" would give  
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 hash table: an array of some fixed size, that positions 

elements according to an algorithm called a hash 

function 

elements (e.g., strings) 

0 

… 

length –1  

hash func. 

h(element) 

hash table 

Hash tables 
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Hashing, hash functions 

 Map every element into some index in the array 

 Lookup becomes constant-time: simply look at that one slot again 

later to see if the element is there 

 add, remove, contains all become O(1) ! 

 Example: h(i) = i % array.length 
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B-trees 
 The data items are stored at leaves 

 The nonleaf nodes store up to M-1 keys to guide the 
searching; key I represents the smallest key in subtree I 
+1. 

 The root is either a leaf or has between two and M 
children. 

 All nonleaf nodes (except the root) have between [M/2] 
and M children 

 All leaves are at the same depth and have between [L/2] 
and L children, for some L (the determination of L is 
described shortly). 
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Apache Lucene 
 http://lucene.apache.org/ 

 Tutorial:  

 http://www.lucenetutorial.com/lucene-in-5-minutes.html 
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Parallelism: MapReduce 

 Input: a set of key/value pairs 

 User supplies two functions: 

 map(k,v)  list(k1,v1) 

 reduce(k1, list(v1))  v2 

 (k1,v1) is an intermediate key/value pair 

 Output is the set of (k1,v2) pairs 
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Hadoop 
 An open-source implementation of Map Reduce in Java 

 Uses HDFS for stable storage 

 Download from: 

http://lucene.apache.org/hadoop/ 

http://developer.yahoo.com/hadoop/tutorial/module3.html 
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