
Python
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Pearson

Python’s History
Created by Guido van Rossum in

Netherlands in 1990

Open source: http://www.python.org

2

http://www.python.org/

(c) Paul Fodor (CS Stony Brook) and Pearson

Python 2.7x vs. Python 3.x
Python 3.x is a newer version, but it is

not backward compatible with Python

2.7x

That means if you write a program

using Python 2, it may not work on

Python 3.x

We use Python 3.x for homeworks
3

(c) Paul Fodor (CS Stony Brook) and Pearson

Launch Python

4

(c) Paul Fodor (CS Stony Brook) and Pearson

Launch Python IDLE

5

Editor, Command line interface, Debugger

Many other IDEs.

(c) Paul Fodor (CS Stony Brook) and Pearson

A Simple Python Program

Welcome.py

Display two messages

print("Welcome to Python")

print("Python is fun")

Comment in Python

6

(c) Paul Fodor (CS Stony Brook) and Pearson

Run Python Script

7

(c) Paul Fodor (CS Stony Brook) and Pearson

Python Example
Assign a radius

radius = 20 # radius is now 20

Compute area

area = radius * radius * 3.14159

Display results

print("The area for the circle of radius " +

str(radius) + " is " + str(area))

8

(c) Paul Fodor (CS Stony Brook) and Pearson

Reading Input from the Console

1. Use the input function

variable = input("Enter a string: ");

2. Use the eval function

variable = eval("51 + (54 * (3 + 2))");

print(variable);

321

9

(c) Paul Fodor (CS Stony Brook) and Pearson

Variables
Compute the first area

radius = 1.0

area = radius * radius * 3.14159

print("The area is ", area, " for radius ", radius)

Compute the second area

radius = 2.0

area = radius * radius * 3.14159

print("The area is ", area, " for radius ", radius)

10

(c) Paul Fodor (CS Stony Brook) and Pearson

Expression
x = 1 # Assign 1 to variable x

radius = 1.0 # Assign 1.0 to variable radius

Assign the value of the expression to x

x = 5 * (3 / 2) + 3 * 2

print(x)

13.5

x = 5 * (3 // 2) + 3 * 2

print(x)

11

11

(c) Paul Fodor (CS Stony Brook) and Pearson

Overflow
When a variable is assigned a value that

is too large (in size) to be stored, it

causes overflow. For example,

executing the following statement

causes overflow:

12

>>>245.0 ** 1000000

OverflowError: 'Result too large'

(c) Paul Fodor (CS Stony Brook) and Pearson

Type Conversion and Rounding
 datatype(value) :

int(4.5) => 4

float(4) => 4.0

str(4) => '4'

round(4.6) => 5

round(4.5) => 4

round(4.5)=> 4 # in Python 3

round(4.5)=> 5 # in Python 2
https://docs.python.org/2/library/functions.html#round

https://docs.python.org/3/library/functions.html#round

Note: 2 vs 3
13

https://docs.python.org/2/library/functions.html#round
https://docs.python.org/3/library/functions.html#round

(c) Paul Fodor (CS Stony Brook) and Pearson

Built-in Functions and math Module

>>> max(2, 3, 4) # Returns a maximum number

4

>>> min(2, 3, 4) # Returns a minimum number

2

>>> round(3.51) # Rounds to its nearest integer

4

>>> round(3.4) # Rounds to its nearest integer

3

>>> abs(-3) # Returns the absolute value

3

>>> pow(2, 3) # Same as 2 ** 3

8

14

(c) Paul Fodor (CS Stony Brook) and Pearson

Function Description Example

fabs(x) Returns the absolute value of the argument. fabs(-2) is 2

ceil(x) Rounds x up to its nearest integer and ceil(2.1) is 3

 returns this integer. ceil(-2.1) is -2

floor(x) Rounds x down to its nearest integer and floor(2.1) is 2

 returns this integer. floor(-2.1) is -3

exp(x) Returns the exponential function of x (e^x). exp(1) is 2.71828

log(x) Returns the natural logarithm of x. log(2.71828) is 1.0

log(x, base) Returns the logarithm of x for the specified log10(10, 10) is 1

 base.

sqrt(x) Returns the square root of x. sqrt(4.0) is 2.0

sin(x) Returns the sine of x. x represents an angle sin(3.14159 / 2) is 1

 in radians. sin(3.14159) is 0

asin(x) Returns the angle in radians for the inverse asin(1.0) is 1.57

 of sine. asin(0.5) is 0.523599

cos(x) Returns the cosine of x. x represents an cos(3.14159 / 2) is 0

 angle in radians. cos(3.14159) is -1

acos(x) Returns the angle in radians for the inverse acos(1.0) is 0

 of cosine. acos(0.5) is 1.0472

tan(x) Returns the tangent of x. x represents an tan(3.14159 / 4) is 1

 angle in radians. tan(0.0) is 0

fmod(x, y) Returns the remainder of x/y as double. fmod(2.4, 1.3) is 1.1

degrees(x) Converts angle x from radians to degrees degrees(1.57) is 90

radians(x) Converts angle x from degrees to radians radians(90) is 1.57

15

from math import fabs

import math
or

(c) Paul Fodor (CS Stony Brook) and Pearson
16

Strings and Characters

letter = 'A' # Same as letter = "A"

numChar = '4' # Same as numChar = "4"

message = "Good morning"

Same as message = 'Good morning'

A string is a sequence of characters. String literals

can be enclosed in matching single quotes (') or

double quotes ("). Python does not have a data type

for characters. A single-character string represents a

character.

(c) Paul Fodor (CS Stony Brook) and Pearson

Functions ord and chr
>>> ch = 'a'

>>> ord(ch)

97

>>> chr(98)

'b'

17

(c) Paul Fodor (CS Stony Brook) and Pearson
18

The str Function
The str function can be used to convert a

number into a string. For example,

>>> s = str(3.4) # Convert a float to string

>>> s

'3.4'

>>> s = str(3) # Convert an integer to string

>>> s

'3'

(c) Paul Fodor (CS Stony Brook) and Pearson
19

The String Concatenation Operator
You can use the + operator add two numbers. The +

operator can also be used to concatenate (combine)

two strings. Here are some examples:
>>> message = "Welcome " + "to " + "Python"

>>> message

'Welcome to Python'

>>> chapterNo = 1

>>> s = "Chapter " + str(chapterNo)

>>> s

'Chapter 1'

>>> s = "Chapter " + chapterNo

TypeError: Can't convert 'int' object to str implicitly

(c) Paul Fodor (CS Stony Brook) and Pearson
20

Introduction to Objects and Methods

In Python, all data—including numbers

and strings—are actually objects.

An object is an entity. Each object has an

id and a type. Objects of the same kind

have the same type. You can use the id

function and type function to get these

information for an object.

(c) Paul Fodor (CS Stony Brook) and Pearson
21

Object Types and Ids
The id and type functions are rarely used in

programming, but they are good pedagogical tools

for understanding objects.
>>> n = 3 # n is an integer

>>> id(n)

505408904

>>> type(n)

<class ’int’>

>>> f = 3.0 # f is a float

>>> id(f)

26647120

>>> type(f)

<class ’float’>

>>> s = "Welcome"

>>> id(s)

36201472

>>> type(s)

<class ’str’>

(c) Paul Fodor (CS Stony Brook) and Pearson

str Object Methods
>>> s = "Welcome"

>>> s1 = s.lower() # Invoke the lower method

>>> s1

'welcome'

>>> s2 = s.upper() # Invoke the upper method

>>> s2

'WELCOME'

22

(c) Paul Fodor (CS Stony Brook) and Pearson
23

Formatting Floating-Point Numbers

 10 . 2 f

print(format(57.467657, '10.2f'))

print(format(12345678.923, '10.2f'))

print(format(57.4, '10.2f'))

print(format(57, '10.2f'))

field width

precision

conversion code

format specifier

?????57.47

12345678.9

?????57.40

?????57.00

10

(c) Paul Fodor (CS Stony Brook) and Pearson

Blocks
Python 3 uses indentation of 4 spaces for

blocks

Tabs should be used solely to remain

consistent with code that is already indented

with tabs
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces

"Python 3 disallows mixing the use of tabs and

spaces for indentation."

24

https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces

(c) Paul Fodor (CS Stony Brook) and Pearson

if...else Example
from math import pi

if radius >= 0:

area = radius * radius * pi

print("The area for the ",

"circle of radius ",

radius, " is ", area)

else:

print("Negative input")

25

(c) Paul Fodor (CS Stony Brook) and Pearson
26

Multiple Alternative if Statements

 if score >= 90.0:
 grade = 'A'

else:

 if score >= 80.0:

 grade = 'B'

 else:

 if score >= 70.0:

 grade = 'C'

 else:

 if score >= 60.0:

 grade = 'D'

 else:

 grade = 'F'

(a)

Equivalent

if score >= 90.0:

 grade = 'A'

elif score >= 80.0:

 grade = 'B'

elif score >= 70.0:

 grade = 'C'

elif score >= 60.0:

 grade = 'D'

else:

 grade = 'F'

(b)

This is better

(c) Paul Fodor (CS Stony Brook) and Pearson
27

Loops
Initialize loop-control variable

i = initialValue

while i < endValue:

Loop body

...

i++ # Adjust loop-control variable

for i in range(initialValue, endValue):

Loop body

(c) Paul Fodor (CS Stony Brook) and Pearson
28

range(a, b)
for i in range(4, 8):

print(i)

4

5

6

7

(c) Paul Fodor (CS Stony Brook) and Pearson
29

range(b)
for i in range(4):

print(i)

0

1

2

3

(c) Paul Fodor (CS Stony Brook) and Pearson
30

range(a, b, step)
for v in range(3, 9, 2):

print(v)

3

5

7

(c) Paul Fodor (CS Stony Brook) and Pearson
31

Functions
def sum(i1, i2):

''' This is the doc '''

result = 0

for i in range(i1, i2):

result += i

return result

def main():

print("Sum from 1 to 10 is", sum(1, 10))

print("Sum from 20 to 37 is", sum(20, 37))

print("Sum from 35 to 49 is", sum(35, 49))

main() # Call the main function

(c) Paul Fodor (CS Stony Brook) and Pearson
32

Classes
import math

class Circle:

Construct a circle object

def __init__(self, radius = 1):

self.radius = radius

def getPerimeter(self):

return 2 * self.radius * math.pi

def getArea(self):

return self.radius * self.radius * math.pi

def setRadius(self, radius):

self.radius = radius

def __str__(self):

return "Circle: radius=" + str(radius)

(c) Paul Fodor (CS Stony Brook) and Pearson
33

from Circle import Circle

def main():

Create a circle with radius 1

circle1 = Circle()

print("The area of the circle of radius", circle1.radius,

"is", circle1.getArea())

Create a circle with radius 25

circle2 = Circle(25)

print("The area of the circle of radius", circle2.radius,

"is", circle2.getArea())

Create a circle with radius 125

circle3 = Circle(125)

print("The area of the circle of radius", circle3.radius,

"is", circle3.getArea())

Modify circle radius

circle2.radius = 100

print("The area of the circle of radius", circle2.radius,

"is", circle2.getArea())

main() # Call the main function

(c) Paul Fodor (CS Stony Brook) and Pearson
34

Inheritance
from GeometricObject import GeometricObject

import math

class Circle(GeometricObject):

def __init__(self, radius):

super().__init__()

self.__radius = radius

def getRadius(self):

return self.__radius

def setRadius(self, radius):

self.__radius = radius

def getArea(self):

return self.__radius * self.__radius * math.pi

def getDiameter(self):

return 2 * self.__radius

def getPerimeter(self):

return 2 * self.__radius * math.pi

def printCircle(self):

print(self.__str__() + " radius: " +

str(self.__radius))

(c) Paul Fodor (CS Stony Brook) and Pearson
35

Adding fields to Objects dynamically

class Employee:

pass

Create an empty employee record

john = Employee()

Add the fields of the record

john.name = 'John Doe'

john.dept = 'computer lab'

john.salary = 1000

(c) Paul Fodor (CS Stony Brook) and Pearson
36

Exceptions
from GeometricObject import GeometricObject

import math

class Circle(GeometricObject):

def __init__(self, radius):

super().__init__()

self.setRadius(radius)

def setRadius(self, radius):

if radius < 0:

raise RuntimeError("Negative radius")

else:

self.__radius = radius

(c) Paul Fodor (CS Stony Brook) and Pearson
37

The str Class

Creating Strings

s1 = str() # Create an empty string

s2 = str("Welcome") # Create a string Welcome

Python provides a simple syntax for creating string using a

string literal. For example,

s1 = "" # Same as s1 = str()

s2 = "Welcome" # Same as s2 = str("Welcome")

(c) Paul Fodor (CS Stony Brook) and Pearson
38

Strings are Immutable
A string object is immutable. Once it is created, its contents

cannot be changed. To optimize performance, Python uses

one object for strings with the same contents.

 both s1 and s2 refer to the same string object.

>>> s1 = "Welcome"

>>> s2 = "Welcome"

>>> id(s1)

505408902

>>> id(s2)

505408902

: str

str object for "Welcome"

s1

s2

(c) Paul Fodor (CS Stony Brook) and Pearson
39

Functions for str
>>> s = "Welcome"

>>> len(s)

7

>>> max(s)

o

>>> min(s)

W

(c) Paul Fodor (CS Stony Brook) and Pearson
40

The +, *, [:], and in Operators
>>> s1 = "Welcome"

>>> s2 = "Python"

>>> s3 = s1 + " to " + s2

>>> s3

'Welcome to Python'

>>> s4 = 2 * s1

>>> s4

'WelcomeWelcome'

>>> s1[3 : 6]

'com'

>>> 'W' in s1

True

>>> 'X' in s1

False

(c) Paul Fodor (CS Stony Brook) and Pearson
41

Negative Index
>>> s1 = "Welcome"

>>> s1[-1]

'e'

>>> s1[-3 : -1]

'om'

(c) Paul Fodor (CS Stony Brook) and Pearson
42

The in and not in Operators
>>> s1 = "Welcome"

>>> "come" in s1

True

>>> "come" not in s1

False

>>>

(c) Paul Fodor (CS Stony Brook) and Pearson
43

Foreach Loops
for ch in string:

print(ch)

for i in range(0, len(s), 2):

print(s[i])

(c) Paul Fodor (CS Stony Brook) and Pearson

>>> s1 = "green"

>>> s2 = "glow"

>>> s1 == s2

False

>>> s1 != s2

True

>>> s1 > s2

True

>>> s1 >= s2

True

>>> s1 < s2

False

>>> s1 <= s2

False44

Comparing Strings

(c) Paul Fodor (CS Stony Brook) and Pearson

str

isalnum(): bool

isalpha(): bool

isdigit(): bool

isidentifier(): bool

islower(): bool

isupper(): bool

isspace(): bool

Return True if all characters in this string are alphanumeric

and there is at least one character.

Return True if all characters in this string are alphabetic and

there is at least one character.

Return True if this string contains only number characters.

Return True if this string is a Python identifier.

Return True if all characters in this string are lowercase letters
and there is at least one character.

Return True if all characters in this string are uppercase letters

and there is at least one character.

Return True if this string contains only whitespace characters.

45

Testing Characters in a String

(c) Paul Fodor (CS Stony Brook) and Pearson
46

Searching for Substrings

str

endswith(s1: str): bool

startswith(s1: str): bool

find(s1): int

rfind(s1): int

count(subtring): int

Returns True if the string ends with the substring s1.

Returns True if the string starts with the substring s1.

Returns the lowest index where s1 starts in this string, or -1 if

s1 is not found in this string.

Returns the highest index where s1 starts in this string, or -1 if

s1 is not found in this string.

Returns the number of non-overlapping occurrences of this

substring.

(c) Paul Fodor (CS Stony Brook) and Pearson
47

Converting Strings

str

capitalize(): str

lower(): str

upper(): str

title(): str

swapcase(): str

replace(old, new): str

Returns a copy of this string with only the first character capitalized.

Returns a copy of this string with all characters converted to lowercase.

Returns a copy of this string with all characters converted to uppercase.

Returns a copy of this string with the first letter capitalized in each word.

Returns a copy of this string in which lowercase letters are converted to

uppercase and uppercase to lowercase.

Returns a new string that replaces all the occurrence of the old string with a

new string.

(c) Paul Fodor (CS Stony Brook) and Pearson
48

Stripping Whitespace Characters

str

lstrip(): str

rstrip(): str

strip(): str

Returns a string with the leading whitespace characters removed.

Returns a string with the trailing whitespace characters removed.

Returns a string with the starting and trailing whitespace characters

removed.

(c) Paul Fodor (CS Stony Brook) and Pearson
49

Formatting Strings

str

center(width): str

ljust(width): str

rjust(width): str

Returns a copy of this string centered in a field of the given width.

Returns a string left justified in a field of the given width.

Returns a string right justified in a field of the given width.

(c) Paul Fodor (CS Stony Brook) and Pearson
50

Python GUIs with tkinter
from tkinter import * # Import tkinter

root = Tk() # Create a root window

Create a label

label = Label(root, text = "Welcome to Python")

Create a button

button = Button(root, text = "Click Me")

label.pack() # Display the label in the window

button.pack() # Display the button in the window

root.mainloop() # Create an event loop

(c) Paul Fodor (CS Stony Brook) and Pearson
51

Creating Lists

list1 = list() # Create an empty list

list2 = list([2, 3, 4]) # Create a list with elements 2, 3, 4

list3 = list(["red", "green", "blue"]) # Create a list with strings

list4 = list(range(3, 6)) # Create a list with elements 3, 4, 5

list5 = list("abcd") # Create a list with characters a, b, c, d

list1 = [] # Same as list()

list2 = [2, 3, 4] # Same as list([2, 3, 4])

list3 = ["red", "green"] # Same as list(["red", "green"])

Creating list using the list class

For convenience, you may create a list using the

following syntax:

(c) Paul Fodor (CS Stony Brook) and Pearson
52

list Methods

list

append(x: object): None

insert(index: int, x: object):

None

remove(x: object): None

index(x: object): int

count(x: object): int

sort(): None

reverse(): None

extend(l: list): None

pop([i]): object

Add an item x to the end of the list.

Insert an item x at a given index. Note that the first element in

the list has index 0.

Remove the first occurrence of the item x from the list.

Return the index of the item x in the list.

Return the number of times item x appears in the list.

Sort the items in the list.

Reverse the items in the list.

Append all the items in L to the list.

Remove the item at the given position and return it. The square
bracket denotes that parameter is optional. If no index is

specified, list.pop() removes and returns the last item in the

list.

(c) Paul Fodor (CS Stony Brook) and Pearson
53

Functions for lists
>>> list1 = [2, 3, 4, 1, 32]

>>> len(list1)

5

>>> max(list1)

32

>>> min(list1)

1

>>> sum(list1)

42

>>> import random

>>> random.shuffle(list1) # Shuffle the items in the

list

>>> list1

[4, 1, 2, 32, 3]

(c) Paul Fodor (CS Stony Brook) and Pearson

>>> list1 = [2, 3]

>>> list2 = [1, 9]

>>> list3 = list1 + list2

>>> list3

[2, 3, 1, 9]

>>> list3 = 2 * list1

>>> list3

[2, 3, 2, 3]

>>> list4 = list3[2 : 4]

>>> list4

[2, 3]

54

The +, *, [:], and in Operators

(c) Paul Fodor (CS Stony Brook) and Pearson
55

>>> list1 = [2, 3, 5, 2, 33, 21]

>>> list1[-1]

21

>>> list1[-3]

2

>>> list1 = [2, 3, 5, 2, 33, 21]

>>> 2 in list1

True

>>> list1 = [2, 3, 5, 2, 33, 21]

>>> 2.5 in list1

False

The +, *, [:], and in Operators

(c) Paul Fodor (CS Stony Brook) and Pearson
56

Comparing Lists
>>>list1 = ["green", "red", "blue"]

>>>list2 = ["red", "blue", "green"]

>>>list2 == list1

False

>>>list2 != list1

True

>>>list2 >= list1

True

>>>list2 > list1

True

>>>list2 < list1

False

>>>list2 <= list1

False

(c) Paul Fodor (CS Stony Brook) and Pearson
57

Splitting a String to a List

items = "Welcome to CSE307".split()

print(items)

['Welcome', 'to', 'CSE307']

items = "34#13#78#45".split("#")

print(items)

['34', '13', '78', '45']

(c) Paul Fodor (CS Stony Brook) and Pearson
58

def main():

x = 1 # x represents an int value

y = [1, 2, 3] # y represents a list

m(x, y) # Invoke f with arguments x and y

print("x is " + str(x))

print("y[0] is " + str(y[0]))

def m(number, numbers):

number = 1001 # Assign a new value to number

numbers[0] = 5555 # Assign a new value to numbers[0]

main()

Pass-by-Value Example

(c) Paul Fodor (CS Stony Brook) and Pearson

Use binary search to find the key in the list

def binarySearch(lst, key):

low = 0

high = len(lst) - 1

while high >= low:

mid = (low + high) // 2

if key < lst[mid]:

high = mid - 1

elif key == lst[mid]:

return mid

else:

low = mid + 1

Now high < low, key not found

return -low - 1

59

Binary Search

(c) Paul Fodor (CS Stony Brook) and Pearson
60

Selection Sort
def selectionSort(lst):

for i in range(0, len(lst) - 1):

Find the minimum in the lst[i..len(lst)-1]

currentMin = lst[i]

currentMinIndex = i

for j in range(i + 1, len(lst)):

if currentMin > lst[j]:

currentMin = lst[j]

currentMinIndex = j

Swap lst[i] with lst[currentMinIndex] if necessary

if currentMinIndex != i:

lst[currentMinIndex] = lst[i]

lst[i] = currentMin

return lst

(c) Paul Fodor (CS Stony Brook) and Pearson

Write to a File
outfile = open("test.txt", "w")

outfile.write("Welcome to Python")

file

read([number: int]): str

readline(): str

readlines(): list

write(s: str): None

close(): None

Returns the specified number of characters from the file. If the

argument is omitted, the entire remaining contents are read.

Returns the next line of file as a string.

Returns a list of the remaining lines in the file.

Writes the string to the file.

Closes the file.

61

(c) Paul Fodor (CS Stony Brook) and Pearson
62

Testing File Existence
import os.path

if os.path.isfile("Presidents.txt"):

print("Presidents.txt exists")

(c) Paul Fodor (CS Stony Brook) and Pearson

Write/Read in/from File
def main():

write

w = open("a.txt", "w")

w.write("de")

w.close()

read

r = open("a.txt", "r")

for line in r:

print(line)

r.close()

main()
63

(c) Paul Fodor (CS Stony Brook) and Pearson
64

Tuples
t1 = () # Create an empty tuple

t2=(1,3,5) # Create a set with three elements

Create a tuple from a list

t3 = tuple([2*x for x in range(1,5)])

Create a tuple from a string

t4 = tuple("abac") # t4 is ['a', 'b', 'a', 'c']

• Tuples vs. lists: you cannot modify a tuple!

(c) Paul Fodor (CS Stony Brook) and Pearson
65

List Comprehensions
List comprehensions are a concise way to create

lists

>> squares = [x**2 for x in range(10)]

>>> squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

same with:

>>> squares = []

>>> for x in range(10):

... squares.append(x**2)

but shorter

(c) Paul Fodor (CS Stony Brook) and Pearson
66

List Comprehensions
>>> vec = [-4, -2, 0, 2, 4]

create a new list with the values doubled

>>> [x*2 for x in vec]

[-8, -4, 0, 4, 8]

filter the list to exclude negative numbers

>>> [x for x in vec if x >= 0]

[0, 2, 4]

apply a function to all the elements

>>> [abs(x) for x in vec]

[4, 2, 0, 2, 4]

(c) Paul Fodor (CS Stony Brook) and Pearson
67

List Comprehensions
 A list comprehension consists of brackets containing an

expression followed by a for clause, then zero or

more for or if clauses

 the result will be a new list resulting from evaluating the

expression in the context of the for and if clauses

which follow it

 example: combines the elements of two lists if they are

not equal

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

(c) Paul Fodor (CS Stony Brook) and Pearson
68

List Comprehensions
>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

is the same with:

>>> combs = []

>>> for x in [1,2,3]:

... for y in [3,1,4]:

... if x != y:

... combs.append((x, y))

(c) Paul Fodor (CS Stony Brook) and Pearson
69

List Comprehensions
create a list of 2-tuples like (number, square)

>>> [(x, x**2) for x in range(6)]

[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]

flatten a list using a listcomp with two 'for'

>>> vec = [[1,2,3], [4,5,6], [7,8,9]]

>>> [num for elem in vec for num in elem]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

(c) Paul Fodor (CS Stony Brook) and Pearson
70

List Comprehensions
Nested List Comprehensions

>>> matrix = [

... [1, 2, 3, 4],

... [5, 6, 7, 8],

... [9, 10, 11, 12],

...]

>>> [[row[i] for row in matrix]

for i in range(len(matrix[0]))]

[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

(c) Paul Fodor (CS Stony Brook) and Pearson
71

all and any
all(iterable) returns True if all elements of the

iterable are true (or if the iterable is empty)

 The internal implementation:

def all(iterable):

for element in iterable:

if not element:

return False

return True

(c) Paul Fodor (CS Stony Brook) and Pearson
72

all and any
any(iterable) returns True if any element of the

iterable is true. If the iterable is empty, return False.

 The internal implementation:

def any(iterable):

for element in iterable:

if element:

return True

return False

(c) Paul Fodor (CS Stony Brook) and Pearson
73

all and any
all and any will short-circuit the execution the

moment they know the result.

 that is, the entire iterable need not be consumed

(c) Paul Fodor (CS Stony Brook) and Pearson
74

all and any Example
def is_prime(element):

if element == 2:

return True

elif element <= 1 or element % 2 == 0:

return False

else:

return all(element%i for i

in range(3,element,2))

myList = [4, 5, 9, 12]

if not any(is_prime(x) for x in myList):

print("The list did not contain a prime")

else:

print("The list contains a prime")

(c) Paul Fodor (CS Stony Brook) and Pearson

Sets
s1 = set() # Create an empty set

s2 = {1, 3, 5} # Create a set with three elements

s3 = set([1, 3, 5]) # Create a set from a list

Create a set from a list

s4 = set([x * 2 for x in range(1, 10)])

Create a set from a string

s5 = set("abac") # s5 is {'a', 'b', 'c'}

75

(c) Paul Fodor (CS Stony Brook) and Pearson
76

Manipulating and Accessing Sets
>>> s1 = {1, 2, 4}

>>> s1.add(6)

>>> s1

{1, 2, 4, 6}

>>> len(s1)

4

>>> max(s1)

6

>>> min(s1)

1

>>> sum(s1)

13

>>> 3 in s1

False

>>> s1.remove(4)

>>> s1

{1, 2, 6}

>>>

(c) Paul Fodor (CS Stony Brook) and Pearson
77

Subset and Superset
>>> s1 = {1, 2, 4}

>>> s2 = {1, 4, 5, 2, 6}

>>> s1.issubset(s2) # s1 is a subset of s2

True

>>>

>>> s2.issuperset(s1) #s2 is a superset of s1

True

>>>

(c) Paul Fodor (CS Stony Brook) and Pearson
78

Equality Test
>>> s1 = {1, 2, 4}

>>> s2 = {1, 4, 2}

>>> s1 == s2

True

>>> s1 != s2

False

>>>

(c) Paul Fodor (CS Stony Brook) and Pearson
79

Comparison Operators

Note that it makes no sense to compare the sets using the

conventional comparison operators (>, >=, <=, <), because

the elements in a set are not ordered. However, these

operators have special meaning when used for sets.

s1 > s2 returns true is s1 is a proper superset of s2.

s1 >= s2 returns true is s1 is a superset of s2.

s1 < s2 returns true is s1 is a proper subset of s2.

s1 <= s2 returns true is s1 is a subset of s2.

(c) Paul Fodor (CS Stony Brook) and Pearson
80

Set Operations (union, |)
>>> s1 = {1, 2, 4}

>>> s2 = {1, 3, 5}

>>> s1.union(s2)

{1, 2, 3, 4, 5}

>>> s1 | s2

{1, 2, 3, 4, 5}

(c) Paul Fodor (CS Stony Brook) and Pearson
81

Set Operations (intersection, &)
>>> s1 = {1, 2, 4}

>>> s2 = {1, 3, 5}

>>> s1.intersection(s2)

{1}

>>> s1 & s2

{1}

(c) Paul Fodor (CS Stony Brook) and Pearson
82

Set Operations (difference, -)
>>> s1 = {1, 2, 4}

>>> s2 = {1, 3, 5}

>>> s1.difference(s2)

{2, 4}

>>> s1 - s2

{2, 4}

(c) Paul Fodor (CS Stony Brook) and Pearson
83

Creating a Dictionary
Create an empty dictionary

dictionary = {}

Create a dictionary

dictionary = {"john":40, "peter":45}

(c) Paul Fodor (CS Stony Brook) and Pearson
84

Looping Entries
for key in dictionary:

print(key + ":" +

str(dictionary[key]))

(c) Paul Fodor (CS Stony Brook) and Pearson
85

Lambda Expressions
 Small anonymous functions

 a function can return a function
>>> def make_incrementor(n):

... return lambda x: x + n

...

>>> f = make_incrementor(42)

>>> f(0)

42

>>> f(1)

43

(c) Paul Fodor (CS Stony Brook) and Pearson
86

Standard Library
Operating System Interface:
>>> import os

Return the current working directory

>>> os.getcwd()

'C:\\Python35'

Run the command mkdir

>>> os.system('mkdir today')

0

(c) Paul Fodor (CS Stony Brook) and Pearson
87

Standard Library
Operating System Interface:
>>> import shutil

>>> shutil.copyfile('data.db', 'archive.db')

'archive.db'

>>> shutil.move('/build/executables', 'installdir')

'installdir'

(c) Paul Fodor (CS Stony Brook) and Pearson
88

Standard Library
 String Pattern Matching Interface:
>>> import re

>>> re.findall(r'\bf[a-z]*',

'which foot or hand fell fastest')

['foot', 'fell', 'fastest']

(c) Paul Fodor (CS Stony Brook) and Pearson
89

Standard Library
Mathematics:
>>> import random

>>> random.choice(['apple', 'pear', 'banana'])

'apple'

sampling without replacement

>>> random.sample(range(100), 10)

[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]

>>> random.random() # random float

0.17970987693706186

(c) Paul Fodor (CS Stony Brook) and Pearson
90

Standard Library
Mathematics:
>>> import statistics

>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]

>>> statistics.mean(data)

1.6071428571428572

>>> statistics.median(data)

1.25

>>> statistics.variance(data)

1.3720238095238095

(c) Paul Fodor (CS Stony Brook) and Pearson
91

Standard Library
 Internet Access:
>>> from urllib.request import urlopen

>>> with urlopen('http://www.cs.stonybrook.edu') as response:

for line in response:

print(line)

(c) Paul Fodor (CS Stony Brook) and Pearson
92

Standard Library
Dates and Times:
>>> from datetime import date

>>> now = date.today()

>>> now

>>> birthday = date(2000, 5, 23)

>>> age = now - birthday

>>> age.days

(c) Paul Fodor (CS Stony Brook) and Pearson
93

Standard Library
Data Compression:
>>> import zlib

>>> s = b'data archiving and compression'

A prefix of 'b' means that the chars are encoded in byte type

may only contain ASCII characters

>>> t = zlib.compress(s)

>>> zlib.decompress(t)

b'data archiving and compression'

>>> zlib.crc32(s)

3701065259

(c) Paul Fodor (CS Stony Brook) and Pearson
94

Standard Library
Testing:

 doctest: scans a module and validate tests embedded in a program’s

docstrings

def average(values):

"""Computes the arithmetic mean of a list of numbers.

>>> print(average([20, 30, 70]))

40.0

"""

return sum(values) / len(values)

import doctest

doctest.testmod() # automatically validate the embedded tests

(c) Paul Fodor (CS Stony Brook) and Pearson
95

Standard Library
Testing:

 unittest: comprehensive set of tests to be maintained in a separate file

import unittest

class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):

self.assertEqual(average([20, 30, 70]), 40.0)

self.assertEqual(round(average([1, 5, 7]), 1), 4.3)

with self.assertRaises(ZeroDivisionError):

average([])

with self.assertRaises(TypeError):

average(20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

(c) Paul Fodor (CS Stony Brook) and Pearson
96

Standard Library
 Logging:

import logging

logging.debug('Debugging information')

logging.info('Informational message')

logging.warning('Warning:config file %s not found', 'server.conf')

logging.error('Error occurred')

logging.critical('Critical error -- shutting down')

logging.getLogger().setLevel('INFO')

 by default, informational and debugging messages are suppressed:

Level Numeric value

CRITICAL 50

ERROR 40

WARNING 30

INFO 20

DEBUG 10

NOTSET 0

(c) Paul Fodor (CS Stony Brook) and Pearson
97

What else?
 Lots:

 The Python Standard Library: built-in functions, collections, and many

modules: https://docs.python.org/3/library/index.html#library-index

 Installing Python Modules: pip, virtual environments

https://docs.python.org/3/installing/index.html#installing-index

 The Python Language Reference: the syntax and “core semantics”

https://docs.python.org/3/reference/index.html#reference-index

https://docs.python.org/3/library/index.html#library-index
https://docs.python.org/3/installing/index.html#installing-index
https://docs.python.org/3/reference/index.html#reference-index

