
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Control Flow

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Elsevier

Specifying the Semantics of Programs
 Operational Semantics:

 Give how a program would cause a machine to behave (e.g., the

execution of an annotated grammar in imperative parsing with actions)

 The machine can be abstract, but it is still operational (for example, a machine has

unlimited number of registers)

 Control flow (the order of execution is very important)

 Denotational Semantics:

 Each phrase in the language is interpreted as a denotation: a conceptual

meaning as a mathematical object in a mathematical space

 For example, denotational semantics of functional languages often translate the

language into domain theory, or as functions from states to states

 Axiomatic Semantics: map the language statements to some

logic = their meaning is exactly what can be proven about them

in the logic2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control Flow
 Control flow is the ordering in program execution

 Ordering mechanisms:

Sequencing: statements are executed in the order in

which they appear in the program (e.g., inside a

method in imperative programming)

Selection/alternation: a choice is made based on a

condition (e.g., if and case switch statements)

Iteration: a fragment of code is to be executed

repeatedly either a certain number of times or until a

certain run time condition is true (e.g., for, do while

and repeat loops)
3

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Procedural Abstraction: a subroutine is encapsulated in a way

that allows it to be treated as a single unit (usually subject to

parameterization)

 Recursion: an expression is defined in terms of simpler versions

of itself either directly or indirectly (the computational model

requires a stack on which to save information about partially

evaluated instances of the expression – implemented with

subroutines)

 Concurrency: two or more program fragments are to be

executed at the same time either in parallel on separate

processors or interleaved on a single processor in a way that

achieves the same effect

4

Control Flow

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Exception Handling and Speculation: if the execution

encounters a special exception, then it branches to a handler

that executes in place of the remainder of the protected

fragment or in place of the entire protected fragment in the

case of speculation (for speculation, the language

implementation must be able to roll back any visible effects of

the protected code)

 Nondeterminacy: the choice among statements is deliberately

left unspecified implying that any alternative will lead to

correct results (e.g., rule selection in logic programming)

5

Control Flow

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Sequencing is central to imperative (von Neumann and

object-oriented) languages

 Logic programming and functional languages make

heavy use of recursion

 Logic Programming in Prolog also uses backtracking as a

control flow mechanism: incrementally builds

candidates to the solutions, and abandons a candidate

("backtracks") as soon as it determines that the

candidate cannot possibly be completed to a valid

solution

6

Control Flow

(c) Paul Fodor (CS Stony Brook) and Elsevier

Expression Evaluation
 An expression is a statement which always produces a value

 An expression can consist of:

 simple things: literal or variable

 functions or expressions applied to expressions

Function calls take variable numbers of arguments

Operators are built-in functions that use a special,

simple syntax

 operands are the arguments of an operator

7

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Notation: whether the function name appears before,

among, or after its several arguments

 Infix operators, e.g., 1 + 2

Prefix operators, e.g., (-1), Polish notation

Postfix operators (reverse Polish), e.g., 1 2 3 * +

 Most imperative languages use infix notation for binary

operators and prefix notation for unary operators

 Lisp uses prefix notation for all functions (Cambridge

Polish notation): (* (+ 1 3) 2), (append a b)

 Prolog uses the infix notation in the UI: X is 1+2 and

the prefix notation internally (e.g., is(X,+(1,2)))
8

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Consider the precedence and associativity chart:
 * (star) is highest precedence and right-associative

 o (circle) is lowest precedence and left-associative

1 * 2 o 3 * 4 * 5 o 6 o 7 * 8 * 9

 First, find correct grouping
({ (1 * 2) o [3 * (4 * 5)] } o 6) o [7 * (8 * 9)]

 Draw the syntax tree for the expression

 Prefix form: o o * 1 2 * 3 * 4 5 6 * 7 * 8 9

 Postfix form: 1 2 * 3 4 5 * * o 6 o 7 8 9 * * o
9

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Consider the standard arithmetical precedence and associativity chart:
 parenthesis has the highest priority

 the power ^ operator is right associative and has higher priority than * and /
 * and / are equal priority, are left-associative, and are higher priority than + and -

 + and - are equal priority and are left-associative

a * b ^ c ^ d + e - f / g / h

 First, find correct grouping

({a * [b ^ (c ^ d)]} + e) – [(f / g) / h]

 Draw the syntax tree for the expression:

 Prefix form:

- + * a ^ b ^ c d e / / f g h

 Postfix form:

a b c d ^ ^ * e + f g / h / -

10

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Precedence and Associativity: when written in infix notation,

without parentheses, the operators lead to ambiguity as to what

is an operand of what.

 E.g., a + b * c**d**e/f

 Answer: a + ((b * (c**(d**e)))/f)

 Neither ((((a + b) * c)**d)**e)/f nor a + (((b * c)**d)**(e/f))

 Precedence rules specify that certain operators, in the absence

of parentheses, group “more tightly” than other operators.

 E.g., multiplication and division group more tightly than

addition and subtraction: 2+3*4 = 2 + 12 = 14 and not 20.

 Bad precedence: the and operator in Pascal is higher than <

 1<2 and 3<4 is a static compiler error
11

Expression Evaluation

** is right-associative

(c) Paul Fodor (CS Stony Brook) and Elsevier

Operator precedence levels in C and Pascal: the operators at the
top of the figure group most tightly. 12

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Precedence:

 In the United States, the acronym PEMDAS is common:

 Parentheses, Exponents, (Multiplication, Division), (Addition,

Subtraction)

 PEMDAS is often expanded to the mnemonic "Please Excuse My

Dear Aunt Sally"

 Canada and New Zealand use BEDMAS, standing for

Brackets, Exponents, Division, Multiplication, Addition,

Subtraction.

 In the UK, India and Australia are BODMAS:

Brackets, Of Order, Division, Multiplication, Addition

and Subtraction.13

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Associativity rules specify whether sequences of operators of equal

precedence group to the right or to the left:

 Summation associate left-to-right, so 9 - 3 - 2 is (9–3)–2=4 and not 8.

 The exponentiation operator (**) follows standard mathematical

convention, and associates right-to-left, so 4**3**2 is

4**(3**2)=262,144 and not (4**3)**2 = 4,096

 Most operators are left associative

 The assignment operation is right associative

 x = y = z will assign the value of z to y and then also to x:

x = (y = z)

 x += y -= z = t+1 means x += (y -= (z = t+1)))

 power/exponent (** or ^) is also right associative in some languages

 Rule 0: inviolability of parentheses!!! That is, developers put

expressions into parenthesis to make sure what is the semantics.14

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Execution ordering is not necessarily defined:

 In (1<2 and 3>4), which is evaluated first?

 Some languages define order left to right, some allow re-order:
 E.g., query optimization in databases is re-ordering

 Re-order can increase speed, exploit math identities

 Re-order can reduce precision, have side-effects

 Optimization by Applying Mathematical Identities:
 By using the common subexpression in the equations

a = b + c a = b/c/d (/ is left-associative)

d = c + e + b e = f/d/c

Is optimized to: Is optimized to:

a = b + c t = c * d

d = a + e a = b/t , e = f/t

Execution Ordering

15

(c) Paul Fodor (CS Stony Brook) and Elsevier

Expression Evaluation
 Short-circuiting:

Consider (a < b) && (b < c):

 If a >= b there is no point evaluating whether b < c

because (a < b) && (b < c) is automatically false.

Most boolean operators are short-circuiting

 However, some languages have 2 operators, e.g., Java has the

&& and & (an operator which evaluates both expressions):

 (false) & (i++<0) will have the side-effect of

incrementing i

 Short-circuiting is also useful in guards:
if (b != 0 && a/b == c) ...

if (*p && p->foo) ...
16

(c) Paul Fodor (CS Stony Brook) and Elsevier

Assignments: in imperative languages,

computation typically consists of an ordered

series of changes to the values of variables in

memory

An assignment is a statement that takes

pair of arguments: a value (called r-value)

and a reference to a variable into which

the value should be placed(called l-value)
17

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 References and Values:

d = a; // the right-hand side of the assignment refers to

// the value of a, which we wish to place into d

a = b + c; // the left-hand side refers to the location of a,

// where we want to put the sum of b and c

 Because of their use on the left-hand side of assignment

statements, expressions that denote locations are referred to as

l-values

 Expressions that denote values (possibly the value stored in a

location) are referred to as r-values

18

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Example:

Variable a contains 100

Variable b contains 200

a = b;

a and b are expressions:

b - evaluated for r-value

a - evaluated for l-value - location

The value is placed into the location

More difficult for arrays like a[i] = b[j]

or a[i][j] = 1 + b[i][j] …
b[i][j] means (b[i])[j] (left assoc.)

19

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Value model for variables: variables are names/aliases of locations in

memory that contain directly a value

 Reference model: variables are aliases to locations in memory that

contain an address where the value is on the heap

 The value semantics versus reference semantics:

 the variables refer to values

 the variables refer to objects

 Java has both:

 built-in types are values in variables,

 user-defined types are objects and variables are references.

 When a variable appears in a context that expects an r-value, it

must be dereferenced to obtain the value to which it refers

o In most languages, the dereference is implicit and automatic
20

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Early versions of Java (2) required the programmer to “wrap”

objects of built-in types:

 The wrapper class was needed here because Hashtable

expects a parameter of a class derived from Object, and an int

is not an Object

 Recent versions of Java (5) perform automatic boxing and

unboxing operations: the compiler creates hidden Integer

objects to hold the values and it returns an int when needed:

21

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Expression-oriented vs. statement-oriented languages:

 expression-oriented (all statements are evaluated to a value):
 functional languages (Lisp, Scheme, ML)

 logic programming (everything is evaluated to a boolean value:

true, false or undefined/unknown in XSB Prolog).

 statement-oriented: some statements do not return anything
 most imperative languages (e.g., print method returns void)

 C is halfway in-between (some statements return values)
 allows expressions to appear instead of statements and vice-versa:

 C lacks a separate Boolean type: accepts an integer

o if 0 then false, any other value is true22

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Combination Assignment Operators:

 a = a + 1 has the effect to increment the value of a

 However, A[index_fn(i)] = A[index_fn(i)] + 1 is not safe because the

function may have a side effect and different values can be returned by

index_fn(i)

 It is safer to write :

j = index_fn(i); OR A[index_fn(i)]++;

A[j] = A[j] + 1;

 More assignment operators: +=, -=
 Handy, avoid redundant work (or need for optimization) and perform

side effects exactly once.

 --, ++ in Java or C:
 Prefix or postfix form (different value returned by the sub-expression)

 The assignment also returns values!

23

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Side Effects:

often discussed in the context of functions

a side effect is some permanent state change

caused by execution of function

some noticeable effect of call other than return

value

 in a more general sense, assignment statements

provide the ultimate example of side effects

 they change the value of a variable

24

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 SIDE EFFECTS ARE FUNDAMENTAL TO THE WHOLE

VON NEUMANN MODEL OF COMPUTING!

 In (pure) functional, logic, and dataflow languages, there are

no such changes

 These languages are called SINGLE-ASSIGNMENT

languages

 Several languages outlaw side effects for functions

 easier to prove things about programs

 closer to Mathematical intuition

 easier to optimize

 (often) easier to understand

25

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Multiway Assignments: in ML, Perl, Python, and Ruby:

a, b = c, d;

 Tuples consisting of multiple l-values and r-values

 The effect is: a = c; b = d;

 The comma operator on the left-hand side produces a tuple

of l-values, while to comma operator on the right hand side

produces a tuple of r-values.

 The multiway (tuple) assignment allows us to write things

like: a, b = b, a; # that swap a and b

which would otherwise require auxiliary variables.

 Multiway assignment also allows functions to return tuples:

a, b, c = foo(d); # foo returns a tuple of 3 elements

26

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Definite Assignment: the fact that variables used as r-values

are initialized can be statically checked by the compiler.

 Every possible control path to an expression must assign a

value to every variable in that expression!

 more difficult to check with static semantic rules, but most

languages do it statically

27

Expression Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Structured and Unstructured Flow
 Structured programming is a programming paradigm

aimed at improving the clarity, quality, and

development time of a computer program by making

extensive use of subroutines, block structures, for and

while loops—in contrast to using simple tests and

jumps such as the GOTO statement, which could lead

to "spaghetti code" that is difficult to follow and

maintain

 Unstructured Programming/Flow: GOTO

statements

28

(c) Paul Fodor (CS Stony Brook) and Elsevier

Structured and Unstructured Flow
 Control flow in assembly languages is achieved by

means of conditional and unconditional jumps

Unconditional jump: GOTO statements

10 PRINT "HELLO"

20 GOTO 10

Edsger Dijkstra (ACM Turing Award in 1972):

"GOTO considered harmful“.
 Problem: GOTO are not limited to nested scopes, so it is

very hard to limit behavior

 It is also very hard/impossible to analyze the behavior of

programs with GOTOs

 Modern languages hardly allow it
29

(c) Paul Fodor (CS Stony Brook) and Elsevier

Structured and Unstructured Flow
 Lower level Assembly Languages allow unstructured jumps

(conditional or not)

 E.g.: Conditional Unstructured Flow: conditional jumps sample

statements

30

JZ op1 jump if zero

JNZ op1 jump if not zero

JE op1 = op2 jump if equal

JNE op1 != op2 jump if not equal

JG op1 > op2 jump if greater than

JNG !(op1 > op2) jump if not greater than

JGE op1 >= op2 jump if greater than or equal

JNGE !(op1 >= op2) jump if not greater than or equal

JL op1 < op2 jump if less than

JNL !(op1 < op2) jump if not less than

JLE op1 <= op2 jump if less than or equal

JNLE !(op1 <= op2) jump if not less than or equal

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Structured programming: top-down design

(progressive refinement), modularization of code,

structured types, imperative algorithm elegantly

expressed with only sequencing, selection, iteration or

recursion.

 It still includes some alternatives to GOTO:

Multi-level return/continue/break

Exceptions

Continuations (used in Ruby and Scheme) wrap

current scope in an object (requires scopes to be on

heap). Calling objects restores scope and location.
31

Structured and Unstructured Flow

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Continuation in Scheme:
(define the-continuation #f)

(define (test)

(let ((i 0))

; call/cc calls its first function argument, passing a continuation variable the-continuation

(call/cc (lambda (k) (set! the-continuation k)))

; The next time the-continuation is called, we start here.

(set! i (+ i 1))

i))
> (test)

1

> (the-continuation)

2

> (the-continuation)

3

; stores the current continuation (which will print 4 next) away

> (define another-continuation the-continuation)

> (test) ; resets the-continuation

1

> (the-continuation)

2

> (another-continuation) ; uses the previously stored continuation

4

32

Structured and Unstructured Flow

(c) Paul Fodor (CS Stony Brook) and Elsevier

Sequencing
 In a block, statements execute in order (top to

bottom)

Some languages might waive this for

optimization:
a = foo()

b = bar()

return a + b

The first two instructions can be executed

sequentially, OR in reverse order OR even

concurrently if foo and bar do not have side-

effects.33

(c) Paul Fodor (CS Stony Brook) and Elsevier

Selection
 Selection statement types (in increasing convenience):

If

If/Else - no repeat negating condition.

If/Elif/Else - don't require nesting (keep terminators

from piling up at the end of nested if statements)

 Switch-Case statement.
 Can use array/hash table to look up where to go to,

 Can be more efficient than having to execute lots of conditions.

 Short-circuit evaluation of statements:
if foo() or bar(): …

 we can short-circuit evaluation: if foo() is true, bar() is

not called

34

(c) Paul Fodor (CS Stony Brook) and Elsevier

Target Machine Architecture
A compiler is simply a translator

 It translates programs written in one language into programs

written in another lower-level language

 This second language can be almost anything—some other

high-level language, phototypesetting commands, VLSI (chip)

layouts—but most of the time it’s the machine language for

some available computer

 Just as there are many different programming languages,

there are many different machine languages, though the

latter tend to display considerably less diversity than the

former

 Each machine language corresponds to a different processor architecture
35

(c) Paul Fodor (CS Stony Brook) and Elsevier

if (A > B and C > D or E <> F): then_clause

else else_clause

36

Short-circuit
r1 := A

r2 := B

r1 := r1 > r2

r2 := C

r3 := D

r2 := r2 > r3

r1 := r1 & r2

r2 := E

r3 := F

r2 := r2 != r3

r1 := r1 | r2

if r1 = 0 goto L2 (JZ r1, L2)

L1: then_clause (label not actually used)

goto L3

L2: else_clause

L3:

r1 := A

r2 := B

if r1 <= r2 goto L4 (JLE r1,r2,L4)

r1 := C

r2 := D

if r1 > r2 goto L1 (JG r1,r2,L1)

L4: r1 := E

r2 := F

if r1 = r2 goto L2 (JE r1,r2,L2)

L1: then_clause

goto L3

L2: else_clause

L3:

No short-circuit

Selection Code Generation

(c) Paul Fodor (CS Stony Brook) and Elsevier
37

Java: The unconditional & and | Operators

 Java has short-circuit operators && and ||, but

also unconditional operators & and |:
 If x is 1, what is x after this expression?

(1 > x) && (1 > x++) 1

 If x is 1, what is x after this expression?

(1 > x) & (1 > x++) 2

 How about?

(1 == x) || (1 > x++)? 1

(1 == x) | (1 > x++)? 2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Java Boolean operators

38

if ((A <= B | C > D) & (E > F | G < H): I

r1 := A

r2 := B

r1 := r1 <= r2

r2 := C

r3 := D

r2 := r2>r3

r1 := r1 | r2

r2 := E

r3 := F

r2 := r2 > r3

r3 := G

r4 := H

r3 := r3 < r4

r2 := r2 | r3

r1 := r1 & r2

JZ r1, L1 (if !r1 goto L1)

(I)

L1:

(c) Paul Fodor (CS Stony Brook) and Elsevier

Java Boolean operators

39

if ((A <= B || C > D) && (E > F || G < H): I

(c) Paul Fodor (CS Stony Brook) and Elsevier

Java Boolean operators

40

if ((A <= B || C > D) && (E > F | G < H): I

(c) Paul Fodor (CS Stony Brook) and Elsevier

CASE ... (* potentially complicated expression *) OF

1: clause A

| 2, 7: clause B

| 3..5: clause C

| 10: clause D

ELSE clause E

END

- Less verbose,

- More efficient than:

IF (* potentially complicated expression *) == 1 THEN
clause A

ELSIF (* potentially complicated expression *) IN 2,7 THEN
clause B

ELSIF …

Selection

41

(c) Paul Fodor (CS Stony Brook) and Elsevier

Iteration
 Simplest: variants of while, controlled by a condition

i = 0;

while (i <= 100) {

...

i += 10;

}

 Do…while have condition executed after the block

 For-variations: move number through a range:

FOR i := 0 to 100 by 10 DO...END // Pascal

OR

do i = 1, 10, 2 // Fortran

...

enddo
42

(c) Paul Fodor (CS Stony Brook) and Elsevier

The modern for-loop is a variant of while:
for(i=first; i <=last; i+=step)...

C defines this to be precisely equivalent to
i = first;

while (i <= last) {

...

i += step;

}

Recommendation/Requirement for some

languages:

no changes to bounds within loop
43

Iteration

(c) Paul Fodor (CS Stony Brook) and Elsevier

Code Generation for for-Loops

for(i=first; i <=last; i+=step)... into:

r1 := first

r2 := step

r3 := last

L1: if r1 > r3 goto L2

. . . – – loop body; use r1 for i

r1 := r1 + r2

goto L1

L2:

Is this efficient?
44

Iteration

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Code Generation for for-Loops:

for(i=first; i <=last; i+=step)... into:
r1 := first

r2 := step

r3 := last

goto L2

L1: . . . – – loop body; use r1 for i

r1 := r1 + r2

L2: if r1 ≤ r3 goto L1

Faster implementation because each of the

iteration’s contains a single conditional branch,

rather than a conditional branch at the top and an

unconditional jump at the bottom
45

Iteration

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Iterator: pull values from the iterator object
for i in range(0, 101, 10): # Python

...

User can usefully define his own iterator object which

makes it possible to iterate over other things:
for (Iterator<Integer> it =

myTree.iterator(); it.hasNext();) {

Integer i = it.next();

System.out.println(i);

}

changes to loop variable within loop

are not recommended/allowed
46

Iteration

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Post-test Loops:
repeat

readln(line);

until line[1] = ’$’;

instead of
readln(line);

while line[1] <> ’$’ do

readln(line);

 Post-test loop whose condition works “the other direction”:

do {

readln(line);

} while (line[0] != ’$’);

47

Iteration

(c) Paul Fodor (CS Stony Brook) and Elsevier

Midtest Loops:

Iteration often allows us to escape the block:
continue

break

for (;;) {

readln(line);

if (all_blanks(line)) break;

consume_line(line);

}

48

Iteration

(c) Paul Fodor (CS Stony Brook) and Elsevier

Recursion
Recursion:
equally powerful to iteration

mechanical transformations back and forth

often more intuitive (sometimes less)

naive implementation is less efficient than iteration:

 Stack frame allocations at every step: copying

values is slower than updates in iterations

advantages of recursion:

 fundamental to functional languages like Scheme

 no special syntax required

49

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Example:
int gcd(int a, int b) { // assume a,b > 0

if (a == b)

return a;

if (a > b)

return gcd(a-b, b);

else

return gcd(a, b - a);

}

 Instead of iteration:
int gcd(int a, int b) {

while (a != b) {

if (a > b) a = a-b;

else b = b-a;

}

return a;

}
50

Recursion

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Tail recursion:
 No computation follows recursive call:

def gcd(a, b):

if a == b:

return a

if a > b:

return gcd(a-b, b)

else:

return gcd(a, b - a)

 When the result is a call to same function, reuse space
def gcd(a, b):

start:

if a == b:

return a

if a > b:

a = a - b

goto start

else:

b = b - a

goto start
51

Recursion

(c) Paul Fodor (CS Stony Brook) and Elsevier

Tail-recursion:

Dynamically allocated stack space is

unnecessary: the compiler can reuse the

space belonging to the current iteration

when it makes the recursive call (many

compilers do it)

52

Recursion

(c) Paul Fodor (CS Stony Brook) and Elsevier

 We have assumed implicitly that arguments are

evaluated before passing them to a subroutine
This need not be the case

 It is possible to pass a representation of the unevaluated

arguments to the subroutine instead, and to evaluate them

only when/(if) the value is actually needed.

 The former option (evaluating before the call) is known

as applicative-order evaluation

 The latter (evaluating only when the value is actually

needed) is known as normal-order evaluation

53

Applicative- and Normal-Order Evaluation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lazy evaluation: in the absence of side effects,

expression evaluation is delayed until the value is

needed
A delayed expression is sometimes called a promise

Memoization: the implementation keeps track of

which expressions have already been evaluated, so

it can reuse their values if they are needed more

than once in a given referencing environment.

54

Normal-Order Evaluation

