
Practical Reasoning with Transaction Logic
Programming for Knowledge Base Dynamics

a dissertation presented

by

Paul Fodor

to

The Graduate School

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

computer science

Stony Brook University

May 2011

Stony Brook University

The Graduate School

Paul Fodor

We, the dissertation committee for the above candidate for

the degree of Doctor of Philosophy,

hereby recommend acceptance of this dissertation.

Professor Michael Kifer, Advisor
Department of Computer Science

Professor Yanhong Annie Liu, Chairman of Defense
Department of Computer Science

Professor David S. Warren
Department of Computer Science

Dr. Christopher A. Welty, External
IBM Watson Research Center, Hawthorne, NY, USA

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Practical Reasoning with Transaction Logic Programming

for Knowledge Base Dynamics

by

Paul Fodor

Doctor of Philosophy

in

Computer Science

Stony Brook University

2011

Transaction Logic is an extension of classical predicate calculus for representing

declarative and procedural knowledge in logic programming, databases, and artifi-

cial intelligence. Since it provides a logical foundation for the phenomenon of state

changes, it has been successful in areas as diverse as workflows, planning, reasoning

about actions, Web services, security policies, active databases and more. Although

a number of implementations of Transaction Logic exist, none is logically complete

due to the time and space complexity of such implementations.

In the first part of this thesis, we describe an approach for performing actions in the

logic, which has better complexity and termination properties via a logically complete

tabling evaluation strategy. Then we describe a series of optimizations, which make

this algorithm practical and analyze their performance on a set of benchmarks. Our

performance evaluation study shows that the tabling algorithm can scale well both

in time and space.

In the second part of the thesis, we extend Transaction Logic in the direction of

defeasible reasoning, which has a number of interesting applications, including speci-

fication of defaults in action theories and heuristics for directed search in planning. In

this setting we show that heuristics expressed as defeasible actions can significantly

reduce the search space and thus the execution time and space requirements.

iii

To my family and teachers

Contents

List of Figures vi

List of Tables viii

Acknowledgements ix

1 Introduction 1

2 Preliminaries 4

2.1 Transaction Logic . 4

2.1.1 Serial Transaction Logic Syntax 5

2.1.2 Transaction Logic Semantics 8

2.1.3 A Proof Theory for the serial-Horn Transaction Logic 12

2.2 Tabled Logic Programming . 14

2.3 Defeasible Reasoning . 15

3 Tabling for Transaction Logic 17

3.1 Tabling for Definite Serial Horn-Transaction Logic Programs 19

3.1.1 Tabled-T R derivation trees 23

3.1.1.1 A Step-by-step Tabling Example for Definite Serial

Horn Transaction Logic 25

3.2 Problems and Solutions in Implementing Tabled Transaction Logic . 28

3.2.1 Main Difficulties with Implementing Tabled Transaction Logic 28

3.2.2 The Space of Possible Solutions 30

3.2.2.1 Space issues in tabled T R 30

3.2.2.2 Time issues in tabled T R 33

v

3.3 Implementations of Tabled Transaction Logic 36

3.4 Applications and performance evaluation 37

3.4.1 Hamiltonian cycles . 37

3.4.2 Artificial Intelligence planning in the blocks world 38

3.4.3 Evaluation for tabled T R implementations 40

3.5 Tabling for Concurrent Transaction Logic Programs 44

4 A Well-founded Semantics for Transaction Logic with Defaults and

Argumentation Theories 59

4.1 Defeasibility in Transaction Logic . 60

4.1.1 T RDA Syntax . 60

4.1.2 T RDA Well - founded Semantics 61

4.2 Argumentation theory representatives 68

4.2.1 The GCLP T R courteous argumentation theory 68

4.2.2 An argumentation theory for defeasible logic 71

4.3 T RDA discussion and related work 73

4.4 Applications, implementation and evaluation 76

4.4.1 T RDA Aplications in action priorities, planning and workflows 76

4.4.2 T RDA Evaluation . 82

5 Conclusion and future work 85

A Application of Transaction Logic in CEP 98

B Appendix: Tabled T R Soundness and Completeness 104

C Tabled T R Termination 110

D Unique Least Model for not -free T R Programs 113

E T RDA Fixpoint and Well-founded Model 116

F T RDA Reduction to Transaction Logic 124

vi

List of Figures

1 An initial graph for the consuming paths reachability example 18

2 SLD-style tree for the query reach(a,X) in the consuming paths ex-

ample with an infinite derivation branch 18

3 The tabled resolution tree at step 2 for the query reach(a,X) in the

consuming paths example . 25

4 The tabled resolution tree at step 3 for the query reach(a,X) in the

consuming paths example . 26

5 The tabled resolution tree at step 7 for the query reach(a,X) in the

consuming paths example . 26

6 The tabled resolution tree at step 11 for the query reach(a,X) in the

consuming paths example . 27

7 The tabled resolution tree at step 12 for the query reach(a,X) in the

consuming paths example . 27

8 The tabled resolution tree at step 14 for the query reach(a,X) in the

consuming paths example . 28

9 Rule trie example . 32

10 State trie example . 32

11 Part of the resolution tree for the Concurrent T R Example 3.3 49

12 A successful branch in the resolution tree for the Concurrent T R Ex-

ample 3.3 . 51

13 Tabling of only hot components for the Concurrent T R Example 3.3 51

14 The dependency graph for the Concurrent T R Example 3.3 53

15 The dependency graph for the Concurrent T R Example 3.4 53

16 A transaction workflow example for defeasible reasoning in T R . . . 81

vii

List of Tables

1 A set of states saved during the tabling algorithm 31

2 Times for finding consuming paths in graphs 55

3 Numbers of tabled states and state comparisons for finding consuming

paths in graphs . 55

4 Time and space for building 10 consuming paths in 10 graphs 55

5 Numbers of tabled states and state comparisons for building 10 con-

suming paths in 10 graphs . 56

6 Times for finding Hamiltonian cycles in graphs 56

7 Numbers of tabled states and state comparisons for finding Hamilto-

nian cycles . 56

8 Times for finding 10 Hamiltonian cycles in 10 graphs 57

9 Time and space requirements for building pyramids of N blocks in

blocks worlds . 57

10 Numbers of tabled states and state comparisons for building pyramids

in blocks worlds . 57

11 Time and space requirements for building pyramids of N blocks in 10

parallel blocks worlds . 58

12 CT R formulas and their hot components 58

13 Time, space, tabled states and state comparisons for planning in the

blocks world with and without preferential heuristics 84

viii

Acknowledgements

I would like to thank my thesis adviser, Professor Michael Kifer, for his generous

and continuous support, guidance and lessons throughout my graduate studies. His

enthusiasm, technical approach into research problems and dedication for teaching

were important examples for me on how to do research. He gave me freedom to work

alone and explore different areas which helped me grow in confidence, but also he

kept a close guidance on my work channeling it into rule-based declarative languages.

Without his lessons on research and commitment to intellectual development it would

not have been possible to write this thesis. I would also like to thank the other

members of my committee: Professor David Warren for everything I learned about

Prolog and WAM from him during these years, Professor Annie Yauhong Liu for

invaluable lessons about research in programming languages and to Dr. Christopher

Welty for agreeing to be my external committee member and his patience with my

progression on this thesis.

I would like to sincerely thank all those who gave me support and encouragement

to complete this thesis. My sincere thanks to all my teachers at Stony Brook, includ-

ing Professor C.R. Ramakrishnan for great lessons into computation with logic and

programming languages, Professor Steven Skiena for infusing his in-depth knowledge

and interest in algorithms into me during his great course on Computational Biology,

Professor Radu Grosu for teaching a great and interesting course on compilers, Pro-

fessor Radu Sion for introducing me to computer security, Professor Tziker Chiueh

for getting me ready for a Ph.D. with a marathon in Computer Networks and an

interesting project in the first semester when I arrived at Stony Brook, and to Prof.

I.V. Ramakrishnan for his coordination of the lab and useful tips to me about almost

everything. I would also like to extend a thank you to the systems and administrative

staff at the department including Brian Tria, Cynthia Scalzo, Betty Knitweiss, and

Kathy Germana.

I was fortunate enough to work with some very hardworking and imaginative

fellow graduate students during these last few years: Hui Wan, Senlin Liang, Tuncay

Tekle, Diptikalyan Saha, Chang Zhao and Reza Basseda. This material is based

on work supported in part by Dr. Benjamin Grosof from Vulcan Inc. I would like

to thank him and to Mike Dean for great discussions on logic programming and

great brain storming face to face meetings. Any opinions, findings, conclusions or

recommendations expressed in this publication are those of the author and do not

reflect the views of any company.

It was my pleasure to interact and collaborate with some fine people outside

Stony Brook: Dr. Terrance Swift, Darko Anicic, Dr. Sebastian Rudolph, Dr. Jurgen

Angele, Dave Gunning, Peter Clark, Dr. Michael Gelfond, Roland Stuhmer, Jurgen

Baier, Imad Abdallah, Daniela Inclezan, Dumitru Roman and Martin Rezk. I worked

with lots of excellent researchers during my summers in IBM, including: Dr. David

Ferrucci, Dr. David Lubensky, Dr. Juan Huerta, Dr. Eric Brown, Dr. Jennifer

Chu-Carroll, Adam Lally, Dr. John Prager, Dr. Branimir Boguraev, Dr. Liwei Dai,

Dr. James William Murdock, Dr. Pablo Duboue, and many others.

It was a great pleasure to make wonderful friends during my studies making this

journey enjoyable and eventful: Joy Dutta, Anu Singh, Rahul Agarwal, Beata Sarna-

Starosta, Amit Sasturkar, Song Feng, Corina Weidinger, Cristina Turdean, Steve

Giovino, Marcy Newton, Dave Weidinger, Oana Tudor, Dan Cojocaru, Abhishek Rai,

Gang Wu, Alok Tongaonkar, Andrei Todor, Ionel Ovidiu Patu, Bo Lin, Eli Packer,

Ibtisam Ul Haque, Simona Boboila, Xianjin Zhu, Xin Li, Svetlana Stenchikova, Jae-

hyuk Her, Jalal Mahmud, Yevgen Borodin, Yue Wang, Yury Puzis, Zan Sun, Katia

Hristova, Anand Kashyap, Saikat Mukherjee, Ambrish Tyagi, Steven Rennie, Ravi

Vijaya Satya, Ghinwa Choueiter, Sameer Maskey, and many more.

I would not have gone this far without the continuous love, support and encour-

agement from my great family, especially my parents, my wife Andreea, Andreea‘s

parents, my brother Petru Fodor, my sister in law Alina Lazar and the Young family.

It is futile for me to even begin describing what I owe to each of them.

x

Chapter 1

Introduction

Transaction logic (abbr., T R) [BK93, BK94b, BK98c] is a general logic for represent-

ing knowledge base dynamics. Its model and proof theories cleanly integrate declar-

ative and procedural knowledge and, as a result, the logic has been employed in do-

mains ranging from reasoning about actions ([BK98a, Bon97]), to AI planning ([BK95,

Fod09]), knowledge representation ([BK94a]), event processing ([AFSS09b]), workflow

management and Semantic Web services ([DKRR98, DKR04, RK07, RK08]), secu-

rity policy frameworks [BN07], and general knowledge base programming ([BK98b]).

In logic programming, T R provides a clean, logical alternative to the assert and

retract operators of Prolog, while, in databases, T R is a declarative language for pro-

gramming transactions, for updating database views, and for specifying active rules.

Moreover, in AI, T R can be used for representing procedural knowledge, planning,

hypothetical reasoning, subjunctive queries and counterfactuals.

A couple of implementations of T R exist [Hun96a, Hun96b, Sle00, F.S00, YKZ03,

Kif] but, unfortunately, all are logically incomplete. The major barrier to complete-

ness for these implementations is similar to the reasons for Prolog incompleteness:

the computation is based on an SLD-like resolution procedure with a depth - first

goal selection strategy. This problem has been studied extensively in the logic pro-

gramming literature [TS86, CW96], and this led to the development of tabling (or

memoing)— an efficient algorithm for logically complete implementation of logic pro-

grams based on SLD resolution [War92, SW94]. The best known implementation of

1

2

tabling is XSB,1 but there are others, such as Yap,2 B-Prolog,3 and Mercury.4

The success of this tabled technique in Prolog makes it a natural candidate for

solving the analogous problems in Transaction Logic. The major difference in T R is

that the latter deals with the phenomenon of changing states, which is not an issue

in XSB and similar systems, where state changes are viewed as a non - logical feature

that is best left outside of the scope of the tabling mechanism. In contrast, state

updates have both model - theoretic and procedural semantics in Transaction Logic,

and their correct treatment is essential.

The first part of the thesis will be about extending Transaction Logic with the

tabling algorithm (published in [FK10b]). The issue is that tabling for T R requires

memoing of the underlying database state and not just memoing of the previously

called subgoals. Clearly, this is a major problem both in terms of space and time. Of

course, a powerful formalism such as Transaction Logic does not come without a price,

but our contribution is in showing that there is ample room for optimization. After

describing the extended tabling algorithm, we discuss the major trade - offs in its

implementation and propose several time and space optimizations. We implemented

a dozen of algorithms, which combine our optimizations in various ways. Here we

discuss six of those that illustrate the most salient points. We discuss the rationale

behind each of them, and then present our experimental results. These results show

that a proper integration of our techniques results in a system with the best overall

performance and scalability characteristics.

We are not aware of any work that directly deals with problems similar to ours.

However, we are building on a host of results, which became ingredients in our op-

timization techniques or could be used for further optimization. These include the

already mentioned works on tabling, the various indexing data structures, such as B+

trees and other balanced trees (like AVL, Red-Black, and 23-trees), tries, sets, and

others [Com79, GS78, SRV01, Pon92, DPR96, Liu98].

Defeasible reasoning is another important paradigm, which has been extensively

studied as a knowledge representation paradigm, including in fields such as policies,

1http://xsb.sourceforge.net
2http://www.dcc.fc.up.pt/~vsc/Yap
3http://www.probp.com
4http://www.cs.mu.oz.au/mercury

3

regulations, law, learning, and others [BH95, BE99, BE00, DST03, DS01, EFLP03,

GS98, Gro99, Nut94, Pra93, SI00, WZL00, ZWB01]. In the second part of the thesis,

we will combine T R with defeasible reasoning (published in [FK11]) and show that

the resulting logic language has many important applications. This logic is called

T RDA (Transaction Logic with Defaults and Argumentation Theories) and it extends

T R in the direction of the Logic Programming with Defaults and Argumentation

theories (LPDA) [WGK+09b], a unifying framework for defeasible reasoning that we

proposed recently. Along the way we define the well - founded semantics [VRS91]

for T R, which allows the computation of three valued models for Transaction Logic

programs that use the negation - as - failure operator over actions. The combined logic

enables a number of interesting applications, such as specification of defaults in action

theories and heuristics for pruning search in such search - intensive applications and

planning. We also demonstrate the usefulness of the approach by experimenting with

a prototype of T RDA and showing how heuristics expressed as defeasible actions can

significantly reduce the search space as well as execution time and space requirements.

Apart from the contributions in the main part of the thesis we also worked on

applications of T R in the complex event processing domain. Results for these appli-

cations are presented in the Appendix A.

Chapter 2

Preliminaries

In this chapter we present the basic notions and definitions used in the rest of this

thesis. In Section 2.1 we present the general logic of state change for deductive

databases and logic programs named Transaction Logic, its model theory, its Horn

subset, a specialized proof theory and procedural interpretation. In Section 2.2, we

shortly describe the classical technique of tabling applied in our new implementa-

tion of T R. In Section 2.3, we present defeasible reasoning for logic programming

and our former work on Logic Programming with Defaults and Argumentation the-

ories (LPDA), work that sits at the base of the new extension to Horn - T R, called

Transaction Logic with Defaults and Argumentation theories (T RDA).

2.1 Transaction Logic

Transaction logic (T R) ([BK93, BK94b, BK98c]) is a general logic of state change,

which extends classical first - order logic with new connectives that make it suitable

for representing both procedural and declarative knowledge. The alphabet of the

language LT R of general T R is similar to that of first-order logic: a countably-infinite

set of variables V , a countably-infinite set of function symbols F (where each functor

f has an arity and constants are 0-ary function symbols), a countably-infinite set of

predicate symbols P , logical connectives (disjunction ∨, classical conjunction ∧, serial

conjunction ⊗, classical negation neg , default negation not , concurrent conjunction

|, isolation �), and the quantifiers ∀ and ∃. We will describe the operands and we will

4

5

define formulas in T R later in this thesis for various subsets of the language. One

the most important contribution of T R is that T R comes with a pair of oracles, one

called the data oracle Od which specifies the static semantics of states and one called

transition oracle which specifies the dynamic semantics of states (or updates).

2.1.1 Serial Transaction Logic Syntax

In this thesis we use a subset of Transaction Logic called serial Horn-T R. This subset

is interesting because it is sufficiently expressive for many applications, including

planning, workflow management, and action languages [BK95, BK98a, Bon97, BK94a,

DKRR98, DKR04, RK07, RK08].

The syntax of Horn-T R is derived from that of standard Horn logic programming.

As described above, the alphabet of the language LT R of T R contains an infinite

number of constants, function symbols, predicate symbols, and variables. The atomic

formulas have the form p(t1, ..., tn), where p is a predicate symbol, and ti are terms

(variables, constants, function terms). However, unlike standard logic programming,

predicate symbols are partitioned into fluents and actions. Fluents are predicates

whose execution does not change the state of the database, while actions are predicates

that can change the state of the database. Fluents are further partitioned into base

fluents and derived fluents. Base fluents correspond to the classical base predicates in

relational databases; they represent stored data and are inserted and deleted in the

database. Derived fluents correspond to derived predicates, which represent database

views. An atomic formula p(t1, ..., tn) will be also called a fluent or an action atomic

formula if p is a fluent or an action symbol, respectively. Furthermore, if p is a

derived (respectively, base) fluent symbol then p(t1, ..., tn) is a derived (respectively,

base) fluent atomic formula. An expression is called ground if it does not contain any

variables.

The symbol neg will be used to represent the explicit negation (also called

“strong” negation) and not will be used for default negation, that is, negation as

failure. A fluent literal is either an atomic fluent or has one of the following negated

forms:

• neg atm, not atm, not neg atm,

6

where atm is a fluent atomic formula, An action literal is an action atomic formula

or has the form notα, where α is a action atomic formula. Literals of the form negα

are not allowed.

A database state is a set of ground base fluents. All database states are assumed

to be consistent, meaning that it is not possible for both f and neg f belong to the

same database state, for any base fluent f .

Transaction Logic distinguishes a special sort of actions, called elementary tran-

sitions or elementary updates. Intuitively, an elementary transition is a “builtin”

action that transforms a database from one state into another. All other actions are

defined via rules using the elementary transitions and fluents. In this thesis, elemen-

tary transitions are deletions and insertions of base fluents. Formally, an elementary

state transition is an action atomic formula of the form insert(f) or delete(f), where

f is a ground base fluent or has the form neg g, where g is a ground base fluent. For

any given database D,

• insert(f) causes a transition from D to the state D ∪ {f} \ {neg f}; and

• delete(f) causes a transition from D to D \ {f} ∪ {neg f}.

In addition to the classical connectives ∧, ∨, and quantifiers, T R has new logical

connectives (we will add them per need basis in this thesis). Two of the new con-

nectives are: the sequential conjunction ⊗ and the modal operator of hypothetical

execution 3. The formula φ ⊗ ψ represents an action composed of an execution of

φ followed by an execution of ψ, while the formula 3φ is an action of hypothetically

testing whether φ can be executed at the current state, but no actually state changes

take place. For example, executing delete(on(blk1, table)) ⊗ insert(on(blk1, blk2))

means, in procedural terms, “first delete on(blk1, table) from the database, and then

insert on(blk1, blk2) into the database.” The current database state changes as a re-

sult. In contrast, 3move(blk1) is only a “hypothetical” execution: it checks whether

move(blk1) can be executed in the current state, but whether it can or not the current

state does not change.

The semantics of Transaction Logic is such that when f1 and f2 are fluents, f1⊗f2

is equivalent to f1 ∧ f2 and 3f to f . Therefore, when no actions are present, T R
reduces to classical logic. This will explain later our use of ∧ in Example 3.4.2 where

7

it can be replaced with ⊗ without changing the meaning (but, the uses of ⊗ in the

Examples 4.6 and 3.4.2 cannot be replaced with ∧ without changing the meaning).

Definition 2.1 (Serial goal) Serial goals are defined recursively as follows:

• If P is a fluent or an action literal then P is a serial goal. Note that fluent

literals can contain both not and neg , and action literals can contain not .

• If P is a serial goal, then so are notP and 3P .

• If P1 and P2 are serial goals then so are P1 ⊗ P2 and P1 ∧ P2.

Definite serial goals are defined similarly to serial goals, the only difference being

that they can contain only atomic fluents and atomic actions instead of fluent and

action literals (that is, definite serial goals do not contain the not and neg operators).

2

Definition 2.2 (Serial rules) A serial rule is an expression of the form:

H : − B. (1)

where H is a not -free literal and B is a serial goal. We will be dealing with two

classes of serial rules:

• Fluent rules: In this case, H is a derived fluent or the explicit negation of a

derived fluent and B = f1 ⊗ ...⊗ fn, where each fi is a fluent literal (and thus

⊗ could be replaced with ∧).

• Action rules: In this case, H must be an atomic action formula, while the

body of the rule, B, is a serial goal.

A transaction base is a finite set of serial rules.

A definite serial rule is a serial rule where all the fluents fi in the bodies B =

f1 ⊗ ... ⊗ fn of fluent rules are atomic fluents, while the serial goals in the bodies of

action rules are definite serial goals.

2

8

In the above definition, the literal H is called the head of the rule, while the serial

goal B is called the body of the rule. The rule can be viewed as a procedure declara-

tion, and the rule body can be viewed as a procedure call. This is also the operational

interpretation similar to the logic programming SLD-style resolution (Linear resolu-

tion with Selection function for Definite programs) that we will formalize later in this

section.

Definition 2.3 (Serial transaction formula) A serial transaction formula

in the language T R is a literal, a serial goal or a serial rule. 2

2.1.2 Transaction Logic Semantics

As described in Section 2.1, general T R uses plug - ins for the data oracle Od and the

transaction oracle Ot. These oracles come with a set of database state identifiers (or

states). The key concept underlying the semantics of T R is the concept of execution

paths, which are sequences of database states.

Definition 2.4 (Paths and Splits) A path of length k, or a k-path, is a finite

sequence of states, π = 〈D1 . . . Dk〉, where k ≥ 1.

A split of π is any pair of sub paths, π1 and π2, such that π1 = 〈D1 ... Di〉 and

π2 = 〈Di ... Dk〉 for some i (1 ≤ i ≤ k). If π has a split into π1 and π2 then we write

π = π1 ◦ π2. 2

The T R model theory is defined using path structures, which are mappings from

paths to classical interpretations conforming to the data and the transaction oracles

as plug - ins. A path structure I over L is a quadruple 〈U, IF , Ipath〉, where U is the

domain of I, IF is an interpretation of function symbols in L assigning a function

Un 7−→ U to every n-ary function symbol in F and Ipath is a total mapping that

assigns to every path a first - order semantic structure in Struct(U, IF), compliant

with the data and transaction oracles: Ipath(〈D〉) |=c φ for every formula φ ∈ Od(D),

and Ipath(〈D1,D2〉) |=c u for every atom u ∈ Ot(D1,D2) (where the symbol |=c

denotes satisfaction in these structures).

Here, we depart from the general Transaction Logic framework and the plug -

in type of definitions and models that consider oracles and we give direct semantics

9

for specialized transaction logics variants used in this thesis. We address tabling for

definite Horn-T R programs in Section 2.2, extending it with concurrency in Section

3.5, and with a 3-valued well-founded version in Section 4. Like in classical Horn rules,

we only consider Herbrand interpretations and models. We start with the definite

Horn-T R programs and their semantics.

Definition 2.5 (Herbrand universe and base of T R) The Herbrand uni-

verse of T R, denoted U , is the set of all ground terms built using the constants

and function symbols of the language of T R.

The Herbrand base, denoted B, is the set of all ground not -free literals that can

be constructed using the language of T R. Within this set we distinguish the following

subsets:

• BF , the Herbrand Base of fluents is a subset of B that consists of the

fluent-literals.

• BEU , the Herbrand Base of elementary updates is a subset of ground

insert- and delete-literals that are used for elementary transitions.

• BA, the Herbrand Base of actions is the subset of B that consists of action-

literals. 2

As in classical logic programming, a variable assignment is a mapping ν : V → U ,

which takes a variable and returns a Herbrand term as output. The mapping is

extended to terms as follows: i.e., ν(f(t1, . . . , tn)) = f(ν(t1), . . . , ν(tn)). We can

omit variable assignment for formulas with no free variables (called sentences) and,

from now on, we will deal only with sentences, unless explicitly stated otherwise.

The definite Horn-T R model theory uses the usual two truth values t and f , which

stand for the usual true and false, respectively. In Section 4, we will add a third truth

value, u, that stays for undefined.

Definition 2.6 (2-valued Herbrand interpretation for definite programs)

A 2-valued Herbrand interpretation for definite programs is a mapping H
that assigns f or t to every formula L in B. 2

10

Definition 2.7 (2-valued Herbrand Path Structure for Horn-T R)

A 2-valued Herbrand Path Structure is a mapping I that assigns a 2-valued

Herbrand interpretation to every path subject to the following restrictions:

1. I(〈D〉)(d) = t, if d ∈ D;

I(〈D〉)(d) = f , if d /∈ D;

for every ground base fluent literal d and every database state D.

2. I(〈D1,D2〉)(insert(p)) = t if D2 = D1∪{p} and P is a ground fluent literal;

I(〈D1,D2〉)(insert(p)) = f , otherwise.

3. I(〈D1,D2〉)(delete(p)) = t if D2 = D1 \ {p} and P is a ground fluent literal;

I(〈D1,D2〉)(delete(p)) = f , otherwise.

2

Definition 2.8 (Truth valuation in 2-valued path structures) Let I be a path

structure for Horn-T R, π a path, L a ground not -free literal, and let F , G ground

Horn-serial goals We define truth valuations with respect to the 2-valued path struc-

ture I as follows:

• If φ and ψ are serial goals and π = π1 ◦ π2 then

I(π)(φ⊗ ψ) = f if (I(π1)(p) = f or I(π2)(q)) = f)

I(π)(φ⊗ ψ) = t, otherwise.

• If φ and ψ are serial goals then

I(π)(φ ∧ ψ) = f if (I(π)(p) = forI(π)(q)) = f)

I(π)(φ ∧ ψ) = t, otherwise.

• If φ is a serial goal and π = 〈D〉, where D is a database state, then

I(π)(3φ) = t if I(π′)(φ) | π′ is there is a path that starts at D

I(π)(3φ) = f , otherwise.

• For a definite serial rule F :-G,

I(π)(F :-G) = t iff I(π)(F) = I(π)(G) or (I(π)(F) = t and I(π)(G) = f)

I(π)(F :-G) = f , otherwise.

11

We will say that φ is satisfied on path π in the path structure I and write I, π |= φ

if I(π)(φ)=t.

2

As we said before, in most of this thesis we deal only with sentences and we will

omit the variable assignments ν from these definitions. However, for completeness, if

ν is variable assignment, then we write that under ν, φ is satisfied on path π in the

path structure I, as I, π |=ν φ.

Definition 2.9 A 2-valued path structure, I, is a 2-valued model of a transaction

formula φ if I, π |= φ for every path π. In this case, we write I |= φ and say that

say that I is a model of φ or that φ is satisfied in I. A path structure I is a model

of a set of formulas if it is a model of every formula in the set.

A path structure I is a 2-valued model of a definite serial Horn-T R transaction

base P if all the rules in P are satisfied in I (that is, I |= R for every R ∈ P). 2

We now define two order relations between path structures. In classical logic pro-

gramming, a Herbrand interpretation σ1 precedes another interpretation σ2, written

σ1 � σ2 if all not -free literals that are true in σ1 are also true in σ2 and all not -literals

that are true in σ2 are also true in σ1. We also say that a Herbrand interpretation

σ1 is smaller (that is, it contains less information) than another interpretation σ2,

written σ1 ≤ σ2 if all not -free literals that are true in σ1 are also true in σ2 and all

not -literals that are true in σ1 are also true in σ2.

If M1 and M2 are two Herbrand path structures, then M1 �M2 if

M1(π) �M2(π) for every path, π. We also have M1 ≤M2 if M1(π) ≤M2(π) for

every path, π.

A model M of P is minimal with respect to � iff for any other model, N, of P

N �M implies N = M. The least model of P is a minimal model that is unique. In

[BK95], it was shown that every definite Horn T R program has a unique least total

model.

An existential serial goal is a statement of the form ∃X̄ψ where ψ is a serial

goal and X̄ is a list of all free variables in ψ. For instance, ∃Xmove(X, blk2) is an

existential serial goal. Informally, the truth value of an existential goal in T R is

determined over sequences of states, called execution paths, which makes it possible

12

to view truth assignments in T R’s models as executions. If an existential serial goal,

ψ, defined by a program P, evaluates to true over a sequence of states D0, . . . Dn, we

say that it can execute at state D0 by passing through the states D1, ..., Dn−1, and

ending in the final state Dn. Formally, this is captured by the notion of executional

entailment, which is written as follows:

P,D0, . . . Dn |= ψ

2.1.3 A Proof Theory for the serial-Horn Transaction Logic

The =I proof theory for serial-Horn T R, described in [BK95, BK98c], resembles the

well-known SLD resolution proof strategy for Horn clauses, but it has additional infer-

ence rules and axioms. The theory aims to prove statements of the form P,D0 --- `ψ,

which are called sequents. Here P is a set of serial-Horn rules and φ is a serial-Horn

goal, i.e., a formula that has the form of a body of a serial-Horn rule. An infer-

ence succeeds if and only if it finds an execution for the transaction ψ—a sequence

of database states D1, . . . , Dn—such that P,D0,D1, . . . ,Dn |= ψ. Informally, this

statement says that transaction ψ can successfully execute starting from state D0.

The axiom of the =I proof theory for serial-Horn T R uses a special propositional

constant in the T R language, namely state (also abbreviated as ()), which is true

only on all paths of length 1 (those are all database states). In the model-based

declarative semantics, that is, for any path structure M and path π, it is the case

that M, π |= state if and only if π is a path of length 1. state is false (that is,

M(π)(state) = f) on every path having more than one state.

Axioms: P,D --- ` ()

Inference Rules: In Rules 1–3 below, σ is a substitution, a and b are atomic for-

mulas, and φ and rest are serial goals.

1. Applying transaction definitions :

Suppose a ← φ is a rule in P whose variables have been renamed apart

so that the rule shares no variables with b⊗ rest. If a and b unify with a

most general unifier σ, then

13

P,D --- ` (∃) (φ⊗ rest)σ
P,D --- ` (∃) (b⊗ rest)

2. Querying the database:

If b is a fluent literal, bσ and rest σ share no variables, and bσ is true in

the database state D then

P,D --- ` (∃) rest σ
P,D --- ` (∃) (b⊗ rest)

3. Performing elementary updates :

If bσ and rest σ share no variables, and b σ is an elementary action that

changes state D1 to state D2 then

P,D2 --- ` (∃) rest σ
P,D1 --- ` (∃) (b⊗ rest)

Given an inference system, an executional deduction (or proof) of a sequent, seqn, is

a series of sequents, seq1, seq2, . . . , seqn−1, seqn, where each seqi is either an axiom-

sequent or is derived from earlier sequents by one of the above inference rules. If

D0, D1, ..., Dn−1, Dn are the database states of these sequents, respectively, then

Dn,Dn−1, . . . ,D1,D0 is called the execution path of the deduction.

Theorem 2.1 (Soundness and Completeness [BK95]) If φ is a serial-Horn

goal, the executional entailment

P,D0,D1, . . . ,Dn |= (∃)φ
holds if and only if there is an executional deduction of (∃)φ whose execution path

is D0,D1, . . . ,Dn.

It is important to keep in mind that this completeness result does not prescribe

any particular way of applying the inference rules. If these rules are applied in the

forward direction, then all execution paths will be enumerated and completeness will

be realized. However, such proofs are undirected, exhaustive,and impractical. In

contrast, if we apply the rules backwards, then we obtain a strategy that generalizes

the usual SLD resolution with left-to-right literal selection—exactly the strategy used

in Prolog. This strategy provides an efficient, goal-directed search strategy for proofs,

but it is, unfortunately, incomplete. In many cases, recursive (especially left-recursive)

14

rules cause SLD resolution with left-to-right literal selection to get stuck in an infinite

depth-first search of the proof tree. Just as in ordinary logic programming, to make

the above proof theory complete for an SLD-style strategy, it is necessary for the first

rule (the one that most resembles SLD resolution) to be applied in a breadth-first

manner, but this is hard to implement efficiently.

2.2 Tabled Logic Programming

The paradigm of Tabled Logic Programming (TLP) was invented to circumvent Pro-

log’s incompleteness: the computation based on an SLD-like resolution procedure

with a depth - first goal selection strategy. This incompleteness problem has been

studied extensively in the logic programming literature [TS86, CW96], leading to the

development of tabling (or memoing) as an efficient algorithm for logically complete

implementation of logic programs based on SLD resolution [War92, SW94]. The best

known implementation of tabling is XSB,1 but there are others, such as Yap,2

B-Prolog,3 and Mercury.4

The idea behind tabling is to maintain in a table all subgoals encountered in a

query evaluation and answers to these subgoals. If a subgoal encountered more than

once, the evaluation reuses information from the table rather than re - performing

resolution against program clauses.

The technique is simple, but it has very important consequences. The tabling

technique ensures termination of programs with the bounded term - size property,

those are the programs where the size of subgoals and answers produced during an

evaluation is less than some fixed number. This leads to an easier technique to

reason about termination than in basic Prolog and better termination properties.

For instance, using tabling, a query to a Prolog predicate for transitive closure over a

graph would terminate computing all the reachability pairs of nodes avoiding infinite

branches and redundant computation due to repeated subgoals in the search space of

SLD resolution. The technique avoids redundant evaluation of subgoals.

1http://xsb.sourceforge.net
2http://www.dcc.fc.up.pt/~vsc/Yap
3http://www.probp.com
4http://www.cs.mu.oz.au/mercury

15

Tabling can also be used to evaluate programs with negation according to the

Well-Founded Semantics (WFS) [VRS91] (including programs that have recursion

through negation). Tabling can achieve the optimal complexity for query evaluation

for queries to Datalog programs with negation (with or without function symbols)

and other large classes of programs, since it does not recompute the answers for any

goals that it already encountered. Finally, tabling integrates closely with Prolog and

implicitly with Transaction Logic because of the top - down evaluation strategy.

2.3 Defeasible Reasoning

We conclude this preliminary chapter by introducing preliminaries to the second part

of this thesis, namely defaults and defeasible reasoning over Transaction Logic. De-

feasible reasoning in logic programming (LP) has been successfully used to model a

broad range of application domains and tasks, including security policies, regulations,

laws, Web services, aspects of inductive/scientific learning and natural language un-

derstanding. There has been a multitude of formal approaches to defeasibility based

on a large variety of intuitions about the desired behavior [BH95, BE99, BE00, DST03,

DS01, EFLP03, GS98, Gro99, Nut94, Pra93, SI00, WZL00, ZWB01]. Most of these

are based on Reiter’s Default Logic [Rei80], stable models [GL88], and only a few

[Gro99, MN06, WGK+09a] use the well - founded semantics [VRS91].

Our approach builds upon our previous work on unifying research on defeasible

reasoning in classical logic programming [WGK+09a]. The LPDA novel approach has

the advantages that generalizes Courteous Logic [Gro99] and other previous defeasible

LP approaches to include HiLog-style higher - order [CKW93] and F-logic style object

- oriented features [KLW95], and has the ability to combine multiple defeasible LP

approaches within a single system.

LPDA deals with tagged rules, expressions of the form

@r L :-Body (2)

where r, called the tag of the rule, is a term, L, called the head of the rule, is a not -

free literal in L, and Body, called the body of the rule, is a conjunction of literals

in L. A logic program with defaults and argumentation theories is a set

16

of tagged rules. The LPDA framework abstracts the intuitions about defeasibility

into argumentation theories, a separate set of rules that contain a special predicate

$defeatedAT that does not appear in the rule heads of the main program. The

semantics of LPDA are based on well - founded models [VRS91] and stable models

[GL88], and for further details the reader can examine its details in [WGK+09a].

Chapter 3

Tabling for Transaction Logic

A number of implementations of T R exist [Hun96a, Hun96b, Sle00, F.S00, YKZ03,

Kif] but, unfortunately, all are logically incomplete. The major barrier to complete-

ness for these implementations is similar to the reasons for Prolog incompleteness:

the computation is based on an SLD- like resolution procedure with a depth - first

goal selection strategy. We extend Transaction Logic with tabling, keeping into con-

sideration that T R deals with the phenomenon of changing states, which is not an

issue in classical logic programming, where state changes are viewed as a non - logical

feature that is best left outside of the scope of the tabling mechanism.

The following example shows the effects of the original proof theory presented in

Section 2.1 of this thesis.

Example 3.1 (Consuming paths)

Suppose edge is a binary fluent and delete(edge(N,M)) denotes the action of deleting

the edge that goes from node N to node M . The following rules compute reachability

in the graph by traversing edges and then swallowing them:

reach(X, Y) : −
reach(X,Z)⊗ edge(Z, Y)⊗ delete(edge(Z, Y)).

reach(X,X).

(3)

Note that the first rule defines the action reach recursively.

Lets consider the initial graph in Figure 1 and a query reach(a,X) to find all nodes

X reachable from the node a and return the states obtained after the deletion of each

17

18

path. Notice that the example has a recursive definition. Just as in Prolog, it is not

hard to see that the SLD strategy for the above proof theory will get stuck in infinite

derivation paths. As seen in Figure 2, the proof tree is infinite and the reach(a,X)

query will run into an infinite loop by applying the first rule for reach(X, Y) over

and over again before it would return any single solution. 2

a

c

b

d

Figure 1: An initial graph for the consuming paths reachability example

reach(a,Z),edge(Z,Y),delete(edge(Z,Y)) s02:

reach(a,X) s01:

[X/Z]

Figure 2: SLD-style tree for the query reach(a,X) in the consuming paths example
with an infinite derivation branch

Just as in ordinary logic programming, to make the above proof theory complete

for an SLD-style strategy, it is necessary for the first rule (the one that most resembles

SLD resolution) to be applied in a breadth - first manner, but this is hard to define

and implement efficiently.

T R tabling requires memoing of the underlying database state and not just mem-

oing of the previously called subgoals. Clearly, this is a major problem both in terms

of space and time. Of course, a powerful formalism such as Transaction Logic does not

come without a price, but our contribution is in showing that there is ample room

for optimization. After describing the extended tabling algorithm, we discuss the

major trade - offs in its implementation and show several time/space optimizations.

We implemented a dozen of algorithms, which combine our optimizations in various

ways. In the end of this chapter we discuss six of those that illustrate the most salient

points, the rationale behind each of them, and then present our experimental results.

These results show that a proper integration of our techniques results in a system

with the best overall performance and scalability characteristics.

19

3.1 Tabling for Definite Serial Horn-Transaction

Logic Programs

Tabling for definite serial-Horn T R is analogous to tabling for Datalog, but with one

major difference: not only the goals that are yet to be proved need to be memoized,

but also the database states in which the calls to those goals were made. Likewise,

not only the answers to these goals must be memoized, but also the states that get

created by execution of those goals. We first describe the main principles of the

algorithm and then incorporate it into the proof theory of Section 2.1 by modifying

the first inference rule (we call the new inference system FT).

The main idea in tabled logic programming is to re - use answers that were com-

puted for previous calls to the same goal. First, predicates of the program are parti-

tioned into the tabled ones and those that are not tabled. In principle, all predicates

could be tabled and query execution would still be correct. However, in some cases,

knowing that some predicates do not have to be tabled (while still preserving com-

pleteness) can lead to significant savings (Sections 3.2, 3.4). One tabled goal is said to

dominate another in tabled resolution if the two goals are variants of each other (vari-

ant tabling), i.e., are identical up to variable renaming, or if the first goal subsumes

the second (subsumption - based tabling). When a subgoal to a tabled predicate

starting in a particular state is encountered, a check is made to see whether this is

the first occurrence of this subgoal in that state (i.e., no dominating goal call was

made before in the same state).

• If the call is new, the pair (goal, state) is saved in a global data structure called

the table space, and evaluation uses normal clause resolution to compute answers

and generate new database states for the subgoal. The computed

(answer - unification, new - state) pairs are recorded in the answer table created

for the aforesaid (goal, state) pair each time they are computed.

• If the call is not new, i.e., a pair (goal, state) exists in the table space for a

dominating goal, the answers to the call are returned directly from the answer

table for (goal, state) and no clause resolution is used.

The evaluation goes on by returning new answers to subgoals until all answers for all

20

goals generated during this process are computed.

The Inference System FT):

As in the previous section, P is a transaction base, D and Di are any databases, σ

denotes substitutions, a and b atomic formulas, and φ, rest are definite serial-Horn

goals.

Axioms: P,D1 --- ` state
Rule 1a. Applying transaction definitions for tabled predicates:

Suppose b’s predicate is tabled and there is no dominating pair (c,D1) in the

table space. Let a ← φ be a rule in P whose variables have been renamed

apart from b⊗rest (i.e., the rule shares no variables with the goal) and suppose

that a and b unify with the most general unifier σ. Then:

P,D1 --- ` (∃) (φ⊗ rest)σ
P,D1 --- ` (∃) (b⊗ rest)
(b,D1) ∈ table space

∀ P,D1 . . .Di ` bγ, (bγ,Di) ∈ answer table(b,D1)

That is, given a sequent P,D1 --- ` (∃) (φ⊗ rest)σ, the rule allows us to derive

P,D1 --- ` (∃) (b⊗ rest). In addition, (b,D1) is added to the table space, and

for all γ such that P,D1 . . .Di`bγ is derivable, the answer (bγ,Di) is added to

the answer table for (b,D1).

Rule 1b. Returning answers from answer tables:

Suppose: (1) b’s predicate symbol is declared as tabled, (2) there is a dominating

pair (c,D1) in the table space, (3) the answer table for (c,D1) has an entry

(a,Di), and (4) a and b unify with most general unifier σ. Then:

P,Di --- ` (∃) (rest)σ

P,D1 --- ` (∃) (b⊗ rest)

Rule 1c. Applying transaction definitions for non - tabled predicates:

This rule is identical to Rule 1 in the proof theory of Section 2.1: let a ← φ

be a rule in P and a’s predicate symbol is not tabled. Assume that this rule’s

variables have been renamed apart from b ⊗ rest and that a and b unify with

most general unifier σ. Then:

21

P,D1 --- ` (∃) (φ⊗ rest)σ
P,D1 --- ` (∃) (b⊗ rest)

Rule 2. Querying the database:

If b is a fluent literal, bσ and rest σ share no variables, and bσ is true in the

database state D1, then:

P,D1 --- ` (∃) rest σ
P,D1 --- ` (∃) (b⊗ rest)

Rule 3. Performing elementary updates :

If bσ and rest σ share no variables, and b σ is an elementary action that changes

state D1 to state D2, then:

P,D2 --- ` (∃) rest σ
P,D1 --- ` (∃) (b⊗ rest)

The rest of the tabling proof theory for Transaction Logic (Rules 2 and 3) is iden-

tical to the original theory of Section 2.1. The inference system FT also contains the

same axiom of the =I proof theory for serial-Horn T R that says that the propositional

constant state is true only on all paths of length 1: P,D --- ` ().

The rules 1a–1c modify the original proof theory for T R by capturing the effects

of tabling. Rule 1a creates new entries in the table space and their associated answer

tables. When a call to a subgoal is complete, the corresponding answer (both the

substitution and the resulting database state) are added to an appropriate answer

table. Rule 1b deals with calls for which dominating table entries already exist. In

those cases, no clause resolution is used and answers are returned directly from the

appropriate answer tables. Rule 1c is identical to Rule 1 of the original proof theory

for Transaction Logic, but here it is applied only to non - tabled predicates. It simply

does clause resolution SLD-style. Notice that Rule 1b might change the current

database state after returning an answer for b, since the returned answer might have

been obtained as a result of execution of state - changing actions.

We show first a simple example where the main properties of tabling are easy to

observe: completeness and termination.

22

Example 3.2 (Simple infinite derivations) Suppose flag is a 0-ary fluent and

insert(flag) denotes the action of inserting the flag in the current database, while

delete(flag) denotes the action of deleting the flag from the current database.

a(X) : − insert(flag)⊗ b(X).

b(X) : − delete(flag)⊗ a(X).

b(X) : − test(X).

(4)

test(1). test(2). test(3). (5)

Suppose that the initial database is the empty database. Given the query ?− a(X)., the

original system performs consecutive insertions and deletions of flag ad infinitum.

This type of depth - first execution is neither complete nor terminates. However, it is

easy to observe that the tabled execution performs one insertion and one deletion of

flag and is suspended, because it’s useless to continue these consecutive updates. The

system will then query for test(X) and terminate. Although in the original system,

there were an infinite number of possible executions of a(X), corresponding to the

path - answers of the form 〈{}, {flag}, {}, . . . , {flag}〉, it is pointless to compute all

of them if all that the user wants is the initial and the final database states. In this

case, the transaction succeeds for a(1), a(2) and a(3), all the solution paths starting

in the database state {} and ending in the database state {flag}. 2

We modify the definition of deduction in Section 2.1 to accommodate tabling: A

tabled deduction for P,D ---` (∃)φ, is a series of sequents, where each sequent is an

axiom or is derived from earlier sequents by an inference rule of the above tabling

inference system.

Theorem 3.2 (Soundness and Completeness) Suppose φ is a definite serial-

Horn goal.

Soundness: If there is a tabled deduction of the sequent P,D1 --- ` (∃)φ with

the execution path 〈D1 . . .Dn〉 then the executional entailment P,D1 . . .Dn |= (∃)φ
holds.

Completeness: If the executional entailment P,D1D2 . . .Dn−1Dn |= (∃)φ holds

then there exists a tabled deduction of the sequent P,D1 --- ` (∃)φ with an execution

23

path 〈D1,D
′
2 . . .D

′
m,Dn〉 that starts in the database state D1 and ends in Dn.

Proof: See Appendix B. 2

This theorem is different from the completeness of the proof theory in Section 2.1

(Theorem 2.1) in that it does not guarantee that all execution paths will be found: it

only guarantees that all final states will be found. This is a very essential difference

because the number of all execution paths can be infinite (even in simple cases where

function symbols are not involved), while the number of final states is often finite.

The user typically is interested in finding out whether a particular transaction can

execute starting at a particular state and finish in a particular final state (or a group of

states). The fact that there are additional executions where the same sub - sequence

sequence of states repeats itself (which is the main cause of infiniteness) is usually of

no interest to the user. This leads to the following important termination results.

Theorem 3.3 (Termination)

Let P be a program with no function symbols with arity greater than 0, that is, it

allows only constants (i.e., 0-ary function symbols). Let us further assume that all

recursive predicates in P are marked as tabled. Then, for any definite serial-Horn goal

φ, the tabled proof theory finds one or more proofs of P,D ---`(∃)φ and terminates.

Proof: See Appendix C. 2

Note that the above theorem does not guarantee that all executions found by the

original proof theory of [BK95] will also be found by the tabling proof theory, and

this is a good thing! In this way, the new proof theory will find all the executions

that matter, and will be able to terminate. In the Appendix C we compute an upper

bound for the number of sequents in the proof of any transaction using the tabled

derivation trees defined in the Section 3.1.1).

3.1.1 Tabled-T R derivation trees

In this section we introduce the tabled derivation trees, a formalism used in the proof

of termination of the tabled inference system FT and also to exemplify the inference

in a user friendly way similar to that of Extended SLG (SLGX) in [Swi99].

24

Given the tabled proof theory, a program P, an initial database D and a definite

serial-Horn goal φ, we can build a Tabled-T R derivation tree with a root correspond-

ing to the goal φ and the database D, whose nodes correspond to sequents in the

proof theory. Each arc is labeled with an inference rule and a set of substitutions σ,

while each node is a pair 〈answer − substitution, database state〉 that corresponds

to a new sequent obtained by applying the inference rule on the parent sequent. In

fact, each node in the tree is associated with one and only one database, namely the

current state of the database that starts the paths on which the transaction has to be

proved true. The construction of this tree proceeds as follows. In the initial step, the

goal φ becomes the root of the tree and is associated with the initial database, bD,

constituting parts of the sequent: P,D --- ` (∃)φ. A node is empty if the current goal

in the sequent is empty (these are the success leaves of the derivation tree). These

empty goals correspond to application of axioms in the proof theory and they still

contain a current database state. A node is completed (completely evaluated) if it is

empty, or if it is a node that is not a suspended sequent (that is, the inference rule

1b is applied for it returning answers from answer table of a dominating goal) and no

inference rule can be applied to the node, or it is a suspended sequent where there is

a completed node for the dominating pair (c,D) in the table space whose all entries

(a,D′) were applied with most general unifiers to the current node (all of its possi-

ble answers were fed to the node) and all possible operations have been done on its

nodes, and the nodes of subtree upon which the node depends. A ground subgoal is

completely evaluated when an answer is derived for it and all the returning databases

have been determined. A node is active if it not completed. At each step in the tree

construction that follows the initial step, an active node is chosen in the tree and we

proceed by applying a resolution which has not been performed yet. If the resolution

succeeds and we reach an empty goal, we add a child node to the current node for

the sequent resulting from the resolution. A tree is completed if all it’s nodes are

completed.

25

reach(a,Z),edge(Z,Y),del.edge(Z,Y) s02:

reach(a,X) s01:

[X/Z]

Figure 3: The tabled resolution tree at step 2 for the query reach(a,X) in the consum-
ing paths example

3.1.1.1 A Step-by-step Tabling Example for Definite Serial Horn Trans-

action Logic

Lets consider the consuming paths example 3 to provide a detailed example for tabled

Horn-T R. We reproduce this short example here:

reach(X, Y) : −
reach(X,Z)⊗ edge(Z, Y)⊗ delete(edge(Z, Y)).

reach(X,X).

(6)

The tabled resolution (implemented with delaying) uses two tables: a solution

table to save the tabled queries and a lookup table to mark the answers tried in each

node in the evaluation tree for calls that were not dominant calls. In the Figure 3,

node 1 is a dominating call because it was the first time the evaluation encountered

the goal reach(a, V ariable), while node 2 is a dominated node for reach(a, V ariable).

The call reach(a,X) and the initial state of the graph is saved in the call−initial state
column of the table, while the node 2 is added to the lookup table with no solutions

currently tried. The computation in node 2 is stalled until we have additional solutions

for the query.

The Figure 4 shows the resolution for the consuming paths top - down tabled

example where the second rule is applied and an answer to the query is computed

and added to the solution table: a can be reached from a (i.e., reach(a, a)), leaving

the database in the initial database state, s0.

The Figure 5 shows that the solution reach(a, a) in state s0 for the

query reach(a,X) was applied in the node 2 and two new solutions are

found by the algorithm: reach(a, b) bringing the database into the new state

{edge(a, c), edge(b, a), edge(b, d)} and reach(a, c) bringing the database into the new

26

reach(a,Z),edge(Z,Y),del.edge(Z,Y) s02:

reach(a,X) s01:

[X/Z]

[] s0

[X/a]

Figure 4: The tabled resolution tree at step 3 for the query reach(a,X) in the consum-
ing paths example

reach(a,Z),edge(Z,Y),del.edge(Z,Y) s02:

reach(a,X) s01:

[X/Z]

[] s0

[X/a]

edge(a,Y),del.edge(a,Y) s0

[Z/a]>s0

[Y/b] [Y/c]

del.edge(a,b) s0 del.edge(a,c) s0

[] s1 [] s2
a

c

b

d

a

c

b

d

a

c

b

d

Figure 5: The tabled resolution tree at step 7 for the query reach(a,X) in the consum-
ing paths example

database state {edge(a, b), edge(b, a), edge(b, d)}. The answer reach(a, a) with result-

ing state s0 is marked in the lookup table as tested for the node 2.

The Figure 5 shows that the solution reach(a, a)ins0 for the query

reach(a,X) was applied in the node 2 and two new solutions are found

by the algorithm: reach(a, b) bringing the database into the new state

{edge(a, c), edge(b, a), edge(b, d)} and reach(a, c) bringing the database into the new

database state {edge(a, b), edge(b, a), edge(b, d)}. The answer reach(a, a) with result-

ing state s0 is marked in the lookup table as tested for the node 2.

Following the application of the two solutions reach(a, b) and reach(a, c) to

the dominated call in the node 2, additional solutions are added to the domi-

nant goal reach(a,X), namely reach(a, a), bringing the database into the new state

{edge(a, c), edge(b, d)} and reach(a, d) bringing the database into the new database

state {edge(a, c), edge(b, a)} (see Figure 6. The dominated goal 2 in the lookup table

marks that the answers reach(a, b) and reach(a, c) were applied to 2.

27

reach(a,Z),edge(Z,Y),del.edge(Z,Y) s02:

reach(a,X) s01:

[X/Z]

[] s0

[X/a]

edge(a,Y),del.edge(a,Y) s0

[Z/a]>s0

[Y/b] [Y/c]

del.edge(a,b) s0 del.edge(a,c) s0

[] s1 [] s2

edge(b,Y),del.edge(b,Y) s1

[Z/b]>s1

[Y/a] [Y/c]

del.edge(b,a) s1 del.edge(b,c) s1

[] s3 [] s4

a

c

b

d

a

c

b

d

a

c

b

d

Figure 6: The tabled resolution tree at step 11 for the query reach(a,X) in the con-
suming paths example

reach(a,Z),edge(Z,Y),del.edge(Z,Y) s02:

reach(a,X) s01:

[X/Z]

[] s0

[X/a]

edge(a,Y),del.edge(a,Y) s0

[Z/a]>s0

[Y/b] [Y/c]

del.edge(a,b) s0 del.edge(a,c) s0

[] s1 [] s2

edge(b,Y),del.edge(b,Y) s1

[Z/b]>s1

[Y/a]

del.edge(b,a) s1

[] s3

edge(c,Y),del.edge(c,Y) s2

[Z/c]>s2

[Y/c]

del.edge(b,c) s1

[] s4

fail

edge(a,Y),del.edge(a,Y) s3

[Z/a]>s3

[Y/c]

del.edge(a,c) s3

[] s5

Figure 7: The tabled resolution tree at step 12 for the query reach(a,X) in the con-
suming paths example

The algorithm continues by feeding all answers to the dominated node 2 and

computing all answers to the query reach(a,X). The algorithm finds all the solutions

(i.e., answer substitutions and return states) for the query, terminates and does not

repeat inferences, being an optimal computation for the query.

28

reach(a,Z),edge(Z,Y),del.edge(Z,Y) s02:

reach(a,X) s01:

[X/Z]

[] s0

[X/a]

edge(a,Y),del.edge(a,Y) s0

[Z/a]>s0

[Y/b] [Y/c]

del.edge(a,b) s0 del.edge(a,c) s0

[] s1 [] s2

edge(b,Y),del.edge(b,Y) s1

[Z/b]>s1

[Y/a]

del.edge(b,a) s1

[] s3

edge(c,Y),del.edge(c,Y) s2
[Z/c]>s2

[Y/d]

del.edge(b,d) s1

[] s4

fail

edge(a,Y),del.edge(a,Y) s3
[Z/a]>s3

[Y/c]

del.edge(a,c) s3

[] s5

edge(d,Y),del.edge(d,Y)
[Z/d]>s4

fail

edge(c,Y),del.edge(c,Y)
[Z/c]>s5

fail

Figure 8: The tabled resolution tree at step 14 for the query reach(a,X) in the con-
suming paths example

3.2 Problems and Solutions in Implementing

Tabled Transaction Logic

In this section we discuss the major hurdles on the way to implementing the algorithm

of Section 3.1 and propose a number of solutions. Then we describe six different

implementations that progressively adopt these solutions. A performance evaluation

of these implementations is described in Section 3.4.

3.2.1 Main Difficulties with Implementing Tabled Transac-

tion Logic

The first obvious problem in implementing Transaction Logic is the transactional

semantics of its actions, which requires atomicity. As it turned out, this is the easiest

problem to address, and all existing implementations support atomicity.

The hard implementational issues have to do with tabling. These issues stem

from the same major difficulty, which is easy to spot after a quick review of the

tabling algorithm: unlike normal logic programming, tabling in T R implies saving

the underlying database states as part of the answer tables. This raises the following

problems:

1. Space. Saving database states in answer tables potentially leads to huge dupli-

cation of information. This is particularly troublesome for large database states

(e.g., tens of thousands or even millions of facts).

2. Time. Tabling database states implies the following time - consuming opera-

tions:

29

(a) Copying of states. Since states are modified in the course of transaction

execution, tabled states must be copied, since once tabled the contents of

that state must stay immutable.

(b) Comparison of states. When a transactional subgoal is invoked at a state,

we must check whether that particular goal/state pair is already tabled.

This involves comparison of states as sets. In the worst case, comparing

two states might take O(n · log(n)) time, where n is the size of the states.

Worse, newly created states might have to be compared with other tabled

states to determine if the newly created set of facts is a genuinely new

state or has been seen before.

(c) Querying of states. The states created during the execution of transactions

must be efficiently queryable. We will soon see, however, that there is a

tension between the efficiency of querying and the various solutions to the

aforementioned problems with time and space.

(d) Reinstating states. During backtracking and restarting of suspended goals

with new solutions, the data structures for current state need to be re-

sumed for querying and updating. This process might take a constant

time when just pointers to the state have to be changed or a variable time

when new data structures necessary for querying need to be created. A

similar operation in SLG-WAM is called forward trail of reinstalling vari-

able bindings. Both operations have the goal to reinstate the environment

in the suspended computation.

(e) Backtracking of updates. Although, it’s a problem inherited from T R
and not a new issue in tabling of T R, backtracking of updates is done

differently in various data structures.

Each of the above problems has a number of solutions, but the different solutions

involve various trade - offs, so it is not obvious how the different solutions fare when

combined. The next section discusses ideas that lead to substantial savings in various

situations.

30

3.2.2 The Space of Possible Solutions

We will now map the space of possible approaches to the problems listed in the pre-

vious section and discuss the various trade - offs in adopting the different space - and

time - saving solutions. In Section 3.3, we discuss the most interesting combinations

of these solutions, and their performance is evaluated in Section 3.4.

3.2.2.1 Space issues in tabled T R

Our first observation is that although the initial state of a transaction might be huge,

a typical transaction changes only a few dozens of facts. Transactions that originate

in AI or graph algorithms, as in our Examples 3.1, 3.4.1, and 3.4.2, might modify

hundreds or even thousands of facts, but this is still far cry from millions or even

billions of facts that an initial state might contain. This suggests an obvious idea:

differential logs. That is, instead of tabling an entire state, we can represent a state

as a pair of the form (initial state, changelog). This representation not only saves

space, but also reduces the amount of time required for copying states. A differential

log is normally represented as a pair of logs (InsertLog,DeleteLog). The former

contains the records of inserted facts and the latter of deleted ones. Differential logs

introduce a trade - off between the decreasing cost of storing and copying states and

the increasing time for querying database states. Depending on the data structures

used for change logs, this overhead could be a constant factor of 2 or more.

The next possibility is to employ the various forms of compression, such as:

• Sharing. Logs can be stored using data structures, like tries, which enable high

degree of sharing, so the total space requirement would be less than the sum of

the sizes of all the logs.

• Factoring. Database facts can be stored on a heap and shared among states.

The states themselves can refer to these facts using pointers or a numbering

scheme. Thus, duplication of facts that are common to many different states is

much less costly (only one word per duplicate fact).

• Table skipping. It might be possible to reduce the number of states that need

to be tabled by carefully analyzing the rules and determining that only the

31

s0 = {edge(a, b), edge(a, c), edge(b, a), edge(b, d)}
s1 = {edge(a, c), edge(b, a), edge(b, d)}
s2 = {edge(a, b), edge(b, a), edge(b, d)}

s3 = {edge(a, c), edge(b, d)}
s4 = {edge(a, c), edge(b, a)}

s5 = {edge(b, d)}

Table 1: A set of states saved during the tabling algorithm

states associated with certain subgoals have to be tabled. Other states can be

modified directly without the need for storing or copying them. The theoretical

basis for skipping is Theorem 3.3. All that is needed is to ensure that enough

predicates are tabled to affect termination. The theorem states that it suffices

to table just the recursive predicates, but in some cases even that much might

be unnecessary.

• Double-differential logs. When table - skipping is used, the changes made by

the transaction with respect to the previous tabled state can be kept in a log and

not merged to that state until the next tabled state is reached. In this case, the

current state is represented as a pair

(tabled state, changelog relative to tabled state). In turn, the tabled state is

represented as a pair

(initial state,main changelog), so the entire state is represented using the ini-

tial state and two relative change logs. The first of these logs is called the

main change log and the second is the residual change log. We call this state

representation strategy double - differential logging.

The techniques of sharing and factoring are exemplified in the Figures 9 and 10

where we have an example with 4 fluents edge(a, b), edge(a, c), edge(b, a) and edge(b, d)

and 5 possible states (see Table 1). The tries are very compact and reusing common

facts in multiple states occupies a relatively compact space.

Subsumptive tabling Finally, in general, a transaction depends on only a small

portion of the database state. In such a case, if a transaction repeats itself on differ-

ent databases, but the database portion that it depends on remains the same, this

32

edge/2

a b

b c a d

r1 r2 r3 r4

Figure 9: Rule trie example

r1
r2

r2

r3

r4

r4

s1

r3

s0

s2

r4

s3

r4

s4

r3

r4

s5
r4

r3

Figure 10: State trie example

33

derivation branch can be suspended and the proof theory slightly modified to account

for this optimization. Such detections of dependencies between transaction calls and

database fluents can be done using the dependency graph (like the one that we ad-

dress later in this thesis in Section 3.5). One example that could take advantage of

this feature is the Hamiltonian cycle use case mentioned in the evaluation Section

3.4.1.

3.2.2.2 Time issues in tabled T R

Two of the main time - related issues are copying and comparing of states. The third

issue, which stems from the suggestion to use differential logs, has to do with the

increased cost of querying the underlying database states.

• State comparison. Our first observation is that, in most cases, the newly created

states are different from most of the already seen tabled stated. So, we need a

fast method to rule out most of the equalities. One such method is based on

incremental hash functions. Simple incremental hash functions are cardinality,

the total number of arities of the facts in the states, or, for example, any function

of the form h̄(State) = Σe∈State h(e) modN . For better results, one can employ

several such functions. (These hash functions must be incremental so they could

be computed quickly over large sets.)

If the hash functions fail to differentiate among the new state and some of the

tabled states, the sets must be compared directly. This can be made faster

if replicas of tabled states are kept sorted, since comparing two sorted lists is

linear in the size of the lists.

Still, this is not completely satisfactory if, for example, a newly created state has

to be directly compared with multiple tabled states, which the hash functions

failed to tell apart. It turns out, however, that the problem can be avoided by

the use of data structures, such as tries. For instance, we can store the already

seen tabled states as sorted lists in a trie. Then, comparison of any new state

with all the stored states can be done in time linear in the size of the new state

and will not depend on the number of the already seen states. We can further

combine hashing with trie comparison by representing each tabled state as a

34

list whose prefix (say, the first three elements, if we choose to use three hash

functions) are the hash values of our hash functions and the rest is a sorted list

of the actual facts that belong to the state. Thus, in searching the trie the first

few comparisons will be made based on the hash values and then states will be

discriminated based on the actual facts they contain.

• Separate state repository. Tabled states and goal calls are typically kept in tries,

because this data structure enables fast (linear time) checks to find out whether

a pair (call, state) had been seen before. The question is then whether these

pairs are stored in one trie (say, as a term pair(call, state)) or the calls are stored

in one trie and states in another (the latter is called a state repository). Storing

states and calls in the same trie typically requires more space (because calls

and states tend to share less structure in such tries) and time (since call - state

comparisons tend to fail later than in the case of separate state repositories).

• Querying of states. The data structures used for differential logs make a big

difference for the querying time of the states, since in order to find out whether

a particular fact is in a state one has to query both the initial state and the log.

For double-differential logs, the overhead is even higher, since two logs must be

queried in addition to the initial state. Since the initial state is static, it can

be designed in the most advantageous way as far as querying is concerned. For

the logs, we have to balance the insertion time against the query time.

Unordered lists are best as far as the update time goes, but they are some of

the worst for querying. Also, for state comparison we need sorted list, which

makes unsorted lists less attractive. Tries are good for querying and updating,

but they are poor at maintaining the sorted order among the facts. For state

comparison, tries must be converted to lists at the cost of n · log(n) · |S|, where

|S| is the number of facts in the trie.

Nevertheless, in our experiments, we stored some logs as tries, since they are the

most optimized data structure in our underlying platform, XSB. To compensate

for the tries’ inefficiency in keeping the logs sorted, we sometimes maintained

sorted lists as auxiliary data structures. A much better choice would have been

B+ trees, as they can be made shallow (thus improving the search) and they

35

naturally keep data sorted.

• Copying of states. First, note that the table skipping and factoring methods that

were introduced as space - saving techniques are also important time - saving

techniques, because the fewer states are tabled — the fewer state - comparisons

and copying are needed. Double - differential logs can also reduce the number

of times states have to be copied. This happens because in double - differential

logging, new tabled states are created by merging the previous tabled state

with the residual log. This is done just before entering the next tabled state.

In contrast, in single - differential logging, states that might get tabled at the

next opportunity are initially created by copying the state that was tabled just

now. The copy is then modified directly and it gets saved in the state repository

when the next tabled call is made. If no new tabled call is reached, the copy

has been made in vain. Double-differential logging delays copying of states and

thus is less prone to wasteful copying.

Beyond that, the fastest data structure to copy would be a list. In fact, if logs

are represented as unsorted lists then no copying would be needed whatsoever.

Logs can simply be passed as arguments to the predicates that represent actions.

For instance, the log at state k could be

(InsertLogk, DeleteLogk) and the next state (say, after inserting p) it would be

([p|InsertLogk], DeleteLogk), which shares the lists InsertLogk and DeleteLogk

with the previous state.

Unfortunately, as discussed earlier, lists are not efficient for querying, and we

need them sorted. In our performance evaluation, we compared list - based

implementations with others to validate the trade - off between copying and

querying of states. With an eye on querying, balanced trees are reasonably

efficient to copy, since their space overhead is a constant factor (compared to

lists). In our comparisons, however, red - black trees and AVL trees did worse

than tries because tries are highly optimized in XSB. However, an optimized

implementation of B+ trees would be far superior than tries. The space overhead

factor for B+ trees is only 1 + 1/(k − 1), where k is the degree of the tree, and

they can be copied very efficiently, if implemented in a low - level language like

C.

36

Thus, a trade - off exists between the costs of querying and copying, which we

evaluate in our performance study.

3.3 Implementations of Tabled Transaction Logic

Overall, we implemented more than a dozen of different algorithms, which realize

various combination of the above ideas. In this section, we discuss six of the most

interesting such implementations1 .

Common features. All implementations discussed here share the following com-

mon features, which were introduced earlier:

• Data compression via factoring.

• Differential logs.

• State comparison:

– via incremental hash functions — to quickly rule out most false matches

– state repositories that use tries to store replicas of the main differential logs

— to ensure at most linear - time match of newly created states against

all previously seen states

Implementation 1. This implementation uses the above common features in which

differential logs are single, since table - skipping is not used. The logs are maintained

as ordered lists stored in the state repository. New states are constructed via inser-

tion - sort operations. As noted earlier, lists are a poor choice for querying states,

but they are near - optimal for copying. Recall that a differential log has the form

(InsertLog,DeleteLog). Moving to the next state is accomplished by inserting a

record in the insertion or deletion logs. In the worst case, this is linear in the log size,

but the average is under 3/4 of the log size. Since successive states often share their

list tails, this can also result in space savings.

1http://flora.sourceforge.net/tr-interpreter-suite.tar.gz

37

Implementation 2. This implementation is similar to #1, but logs are stored both

as ordered lists and tries. The ordered lists reside in the state repository, as before,

and tries are used to speed up querying. When moving from state to state, the tries

are modified directly, without copying, so the only significant overhead here is the

need to maintain a query trie. To improve performance, creation of the query trie

can be delayed until the first query or update.

Implementations 3a and 3b. These implementations use table skipping to re-

duce the number of tabled states. Table-skipping avoids state comparison and copy-

ing when executing non - tabled (usually non - recursive) actions. State copying is

still required at tabled states. Furthermore, since states produced by non - tabled

transactions are not saved in tables, there is no need to check if we have seen such

states before. Both implementations use sorted lists to represent logs. However, 3a

uses single differential log and 3b uses double logs.

Implementations 4a and 4b. Like 3a and 3b, these implementations use table

skipping, where 4a uses single differential logs and 4b uses double logs. The difference

is that 4a represents its single log as a trie and 4b does the same for its main differential

log. The residual differential log in 4b is still maintained as a sorted list. (In our tests,

the residual differential logs were generally short, which did not justify the overhead

of using tries for them.) Similar to the implementation 2, the creation of the main

differential log (e.g., for the implementations 4b) is delayed until such data structure

is needed.

3.4 Applications and performance evaluation

The following examples provide a test - bed for performance evaluation study.

3.4.1 Hamiltonian cycles

A Hamiltonian cycle is a cycle in a directed graph that visits each vertex exactly once.

Similarly to consuming paths, Hamiltonian cycles are detected here by swallowing the

38

already traversed vertexes.

hCycle(Start, Start) : − not vertex(X).

hCycle(Start,X) : −
edge(X, Y)⊗ vertex(Y)

⊗delete(vertex(Y))⊗ insert(mark(X, Y))

⊗hCycle(Start, Y)⊗ insert(vertex(Y)).

(7)

This solution to Hamiltonian paths relies on the transactional semantics of T R. The

second rule does the search and there are many possible ways for it to fail. Due to

the transactional semantics of the logic, changes to the database state made while

expanding these failing derivation paths are “forgotten” and new derivations are then

tried. 2

Note that so far we have been describing the consuming paths and Hamiltonian

cycle examples procedurally, in terms of search. The actual model - theoretic se-

mantics has none of that. It simply says that (in Example 3.4.1) the transaction

hCycle(Start, Start) can execute, i.e., that there is an executional entailment of the

form

P,D0, . . . Dn |= hCycle(Start, Start)

where D0 is the original graph, if and only if there is a Hamiltonian cycle in the

graph. The actual cycle can be extracted from the above sequence of states. While

the model theory is completely declarative, the aforesaid search does take place: it is

performed by the sound and complete proof theory of T R, which appears later.

3.4.2 Artificial Intelligence planning in the blocks world

The following rules define a STRIPS-like planner for building pyramids of blocks. We

represent the blocks world using the fluents on(x, y), which say that block x is on top

of block y and isclear(x), which says that nothing is on top of block x. The action

pickup(X) picks up block X and the action putdown(X, Y) puts it down on top of

block Y . The action move(X,From, To) moves block X from its current position on

top of block From to a new position on top of block To. This action is defined by

combining the afore mentioned actions pickup and putdown if certain pre - conditions

39

are satisfied. In addition, it defines the recursive action stack, which represents the

pyramid building transaction.

stack(0, Block).

stack(N,X) : − N > 0⊗move(Y,X)⊗ stack(N − 1, Y)

⊗on(Y,X).

stack(N,X) : − N > 0⊗ on(Y,X)⊗ unstack(Y)

⊗stack(N,X).

unstack(X) : − on(Y,X)⊗ unstack(Y)⊗ unstack(X).

unstack(X) : − isclear(X) ∧ on(X, table).

unstack(X) : − (isclear(X) ∧ on(X, Y) ∧ Y 6= table)

⊗move(X, table).
unstack(X) : − on(Y,X)⊗ unstack(Y)⊗ unstack(X).

move(X, Y) : − X 6= Y ⊗ pickup(X)⊗ putdown(X, Y).

pickup(X) : − isclear(X)⊗ on(X, Y)

⊗delete(on(X, Y))⊗ insert(isclear(Y)).

putdown(X, Y) : − isclear(Y)⊗ not on(X,Z1)

⊗not on(Z2, X)⊗ delete(isclear(Y))

⊗insert(on(X, Y)).

(8)

The above rules represent a straightforward algorithm for building a pyramid. The

first rule says that stacking zero blocks on top of X is a no - op. The second rule

says that, for bigger pyramids, stacking N blocks on top of X involves moving some

other block, Y , on X and then stacking N − 1 blocks on Y . To make sure that the

planner did not remove Y from X while building the pyramid on Y , we are verifying

that on(Y,X) continues to hold at the end. Looking down at the definition of move

we may notice that this action will not be performed if X is not clear. The third

rule for stack says that in that case the robot should unstack whatever is no X and

make X clear. The unstack action is also recursively defined and is, in a sense, the

opposite of stacking. Definition of the other actions is straightforward. 2

40

3.4.3 Evaluation for tabled T R implementations

The tabled T R implementations were tested on a workstation with Pentium dual

- core 2.4GHz CPU and 3GB memory running on Ubuntu Linux and XSB Prolog

version 3.2.

In describing the results of our tests, we use tables that show time (in seconds)

and space (in Kb) costs for the different implementations using the problems in this

section of gradually increasing size. To increase accuracy, we make the tests run for

considerable amounts of time and avoid the possibility where different algorithms

might pick up solutions that incur different costs. To this end, our tests compute

all possible solutions for every problem in our suite and the numbers of solutions for

each case are listed in the tables.

One of the important goals of this performance study is to demonstrate the benefits

of table - skipping and double - differential logging. To show this, we include tables

that display the numbers of tabled (saved) states, the numbers of times states were

copied, and the numbers of times new states were compared with the contents of

the state repositories (table - skipping implementations should do fewer of these

operations). These tables also help us explain the reported times and assess the

various trade - offs.

The overall conclusion from the study is that table - skipping and double - differen-

tial logging incur relatively small overheads for small problems, but bring substantial

savings for larger problems and make them scale better. Likewise, maintaining data

structures, like tries, that speed up querying of states brings significant speedups.

The main overhead of those of our implementations that rely on tries (implementa-

tions 2, 4a, and 4b) is that copying tries is slow (7 times slower than copying lists

in XSB). Since XSB’s tries do not preserve the order on their contents, we had to

also keep states as sorted lists — both time and space overhead. The use of B+ trees

in lieu of tries would have solved both of these problems, if an efficiently integrated

version existed for XSB.

The suite of the different implementations of T R and of the test

cases used in this comparison is provided at http://flora.sourceforge.net/

tr-interpreter-suite.tar.gz.

41

Consuming paths

Table 2 shows execution times and memory consumption for the consuming paths

problem for graphs with 100, 250, and 350 vertices. The row # of Solutions also

shows the total number of solutions found.

It might seem surprising that Implementation 1, which incorporates only the basic

optimizations, is one of the two best performers. Implementation 3, which adds

table skipping, does only infinitesimally better. The explanation for this behavior is

provided by Table 3: The nature of the consuming paths problem is such that all

states must be tabled, so there is no advantage to table - skipping. Indeed, Table

3 shows that the number of tabled states and state comparisons is exactly the same

for all implementations and depends only on the problem size. Using efficient data

structures for logs, such as tries, does not help either. Only a relatively small number

of queries is issued, and the benefits of faster querying using tries are negated by the

overhead of copying tries compared to lists (earlier we mentioned that copying a trie

takes 7 times longer). Tries also take more space than lists and, since the number

of tabled states is the same for all implementations, the ones that maintain the logs

using tries require significantly more space.

Nevertheless, it is easy to demonstrate that even for the consuming paths problem

the use of table - skipping, tries, and double - differential logging is greatly beneficial.

To see this, we can use the consuming paths method to find ten paths simultaneously

in ten disjoint graphs. Our solution to this problem was obtained from the original

consuming paths problem by simply repeating the “consuming” part of the rules in

42

(3) ten times on different edge predicates.

reach(X, Y) : −
reach(X,Z)

⊗ edge1(Z, Y)⊗ delete(edge1(Z, Y))

⊗ edge2(Z, Y)⊗ delete(edge2(Z, Y))

...

⊗ edge10(Z, Y)⊗ delete(edge10(Z, Y)).

reach(X,X).

(9)

Table 4 clearly shows that table - skipping, tries, and differential logging bring sub-

stantial time benefits, as Implementation 4a, which incorporates all of these optimiza-

tions is by far the best.

Similarly to the ordinary consuming paths example, the explanation is provided

by Table 5: the number of tabled states and state comparisons performed by the

table - skipping implementations 3 – 4b is ten times less than the corresponding

numbers for implementations 1 and 2. We also see that table - skipping is better

memory - wise, since implementations 3a and 3b consume half of the memory used

by Implementation 1. Implementations 4a and 4b are much more memory hungry

compared to implementations 3a and 3b because of the use of query tries, which

consume much more memory than lists.

Hamiltonian cycles

Our next experiment computes all Hamiltonian cycles in graphs of sizes 50, 150,

and 200 nodes. The results are shown in Table 6. This table provides several inter-

esting observations:

• In constructing Hamiltonian cycles, many more queries are issued than in the

case of consuming paths, so efficient data structures for querying are important.

Thus, Implementation 2 is much faster than Implementation 1.

43

• Table 7 shows that using table - skipping reduces the number of tabled states and

state comparisons by about 1/3. This is not high enough to offset the benefits of

fast querying, so Implementation 1 is still slightly better that Implementations

3a and 3b.

• The querying overhead of double - differential logging is quite noticeable in this

case, so the times for implementations 3b and 4b are higher than for implemen-

tations 2 and 3a. Nevertheless, Implementation 4b beats 3b (both use double

differential logs) because it uses query tries rather than lists.

• The number of state comparisons performed by versions 3a and 4a is higher

than in case of 3b and 4b. This validates our earlier observation that, since

double - differential logging defers state copying and comparison (unlike single -

differential logs), this might lead to fewer of such comparisons and copies being

done overall. This problem is partially responsible for the higher runtime of

Implementation 4a, which makes a larger number of expensive trie copies and

comparisons. The other reason is that the query tries need to be transformed

into sorted lists at state comparison.

As with consuming paths, it is easy to demonstrate that, for larger examples, the

combination of table - skipping, query tries, and double - differential logging, i.e.,

Implementation 4b, scales better and is the overall winning combination. To this

end, we can use the problem of constructing ten Hamiltonian cycles in ten disjoint

graphs analogously to the way the ten simultaneous consuming paths problem was

constructed in (9). Table 8 shows the results, which do not require further elaboration.

Blocks World

We conclude our performance study with the blocks world planning example for

pyramids of 5, 6, and 7 blocks. Since the number of plans grows exponentially, we

44

could not evaluate larger problems on our test machine. Our results are shown in

Table 9.

Since our largest problem uses only seven active blocks, the main differential logs

and, especially, the residual logs tend to be quite small. As a result, there is no

significant benefit in using query tries. Similarly, although Table 10 indicates that

table skipping reduces the number of comparisons by the factor of 3, the overhead

of creating and comparing all those extra states in implementations 1 and 2 is not

high. On the other hand, implementations 3b and 4b suffer slightly due to the higher

querying overhead associated with double - differential logging.

Interestingly, Table 10 again shows the higher number of state comparisons (and

therefore state copies) performed by single - differential logging implementations 3a

and 4a. In case of 4a, this leads to a significant overhead because copying and

comparing tries takes 7 times more time than in case of lists. Since Implementation

3a uses lists (and these lists are short) this implementation is not seriously affected

by all the extra copying.

Once again, transforming our planning problem into one in which ten separate

pyramids are being built in ten parallel worlds clearly shows the advantage of our

optimizations. The performance figures in Table 11 point to Implementation 4b as a

clear winner.

In this section we presented several examples using the tabled T R interpreter. In

Appendix A, we present a new language for complex event processing using transac-

tion logic.

3.5 Tabling for Concurrent Transaction Logic Pro-

grams

We end this chapter by attacking the problem of lifting the tabling technique from

the Sequential Transaction Logic to its concurrent version. Concurrent Transaction

45

Logic (CT R) [BK96] extends the sequential version of the T R with the operator for

concurrent or parallel execution “|” and the isolation operator “�”. The formula

φ|ψ means that the subtransactions φ and ψ execute concurrently (interleaved). The

formula �φ means that φ must execute “atomically” and its execution should not be

interleaved with any other transactions.

In the following paragraphs, we describe CT R and we show that the same tabling

technique used for the sequential version is incapable of functioning for all the pro-

grams using the concurrent version of T R due to the fact that multiple parts of the

program can be executed interleaved. We show that memoizing the set of so - called

“hot” components and execution candidates at each step does not solve the infinite

recursion problem by means of counter - examples.

Formally, Concurrent Transaction Logic extends the concept of paths (sequences

of databases) to sequences of paths, called multi - paths. Formally, a multi - path

is a finite sequence of paths, where each constituent path represents a period of

continuous execution, separated by periods of suspended execution. For example,

if D0, D1, D2, . . . , D6 are database states, then 〈D0D1D2, D3D4, D5D6〉 is a multi -

path.

If the 〈D0D1D2, D3D4, D5D6〉 multi - path was the execution history of an action

φ then the action had three periods of continuous execution: D0D1D2, D3D4 and

D5D6. In the first period, φ changed the database from D0 to D2 going through the

intermediate state D1 and is suspended, re - awakening at state D3. Similarly, in φ’s

second period of continuous execution, it changed the database from D3 to D4 and is

suspended, while in its third period of continuous execution, it changed the database

from D5 to D6 and finishes.

In the following definitions, we introduce the interleaving and reduction operations

on multi - paths. The inverse operation of the split operation from Section 2.1 is called

concatenation.

Definition 3.10 (Concatenation) Suppose that κ = 〈D1 . . . Dk〉 and

κ′ = 〈Dk . . . Dk+l〉 are two paths, where Dk is the last state of the path κ and the first

state of the path κ′. Then, their concatenation is the path κ ◦ κ′ = 〈D1 . . . Dk+l〉.

46

Definition 3.11 (Interleaving) Suppose that π1, . . . , πn are multi - paths, then

a multi - path π is an interleaving if it can be partitioned into order - preserving

subsequences π1, . . . , πn. The set of all interleavings of two multi - paths π1 and π2 is

denoted π1||π2 κ
′ = 〈Dk . . . Dk+l〉.

Definition 3.12 (Reduction) Suppose that τ = 〈κ1, . . . , κn〉 is a multi - path.

If the paths κi and κi+1 can be concatenated, for some i, then τ reduces to the multi

- path τ ′ = 〈κ1, . . . , κi−1, κi ◦ κi+1, κi+2, . . . , κn〉.

CT R formulas are interpreted by multi - path structures which are used to tell

which ground atoms (fluents and actions) are true on what multi - paths. They are

similar to Herbrand path structures for Sequential T R, the difference being that the

mapping I conforms to the reduction operation: if a multi - path π1 reduces to a

multi - path π2, then I(π1)(a) = t implies I(π2)(a) = t for every atom a (i.e., if a can

execute along π1 then it can also execute along π2). It was also shown in Lemma 3.6

in [BK96] that this property is true for any formula φ if a multi - path π1 reduces to

a multi - path π2, then I(π1)(φ) = t implies I(π2)(φ) = t (i.e., if φ can execute along

π1 then it can also execute along π2).

Concurrent goals are defined recursively as follows:

• If P is a fluent or an action literal then P is a concurrent goal.

• If P is a concurrent goal, then so are �P and 3P .

• If P1 and P2 are concurrent goals then so are P1 | P2, P1 ⊗ P2 and P1 ∧ P2.

2

A concurrent rule is an expression of the form H : − B., where H is a not - free

literal and B is a concurrent goal.

A proof theory for concurrent Horn transaction logic An inference system for

CT R, FC [BK96], verifies that P,D0 ---` (∃)φ, saying, informally, that transaction

(∃)φ can successfully execute starting from state D0 if and only if an execution path

is found for the transaction (i.e., a sequence of databases D0, D1, . . . , Dn such that

47

P,D0, D1, . . . , Dn`(∃)φ). The inference system FC tries to execute transactions left

- to - right, that is, left subtransactions first. These “left” subtransactions are called

“hot” components and are defined as follows:

Definition 3.13 (Hot Components) Consider φ a concurrent goal. Its set of hot

components hotφ is:

• hot(()) = {}, where () is the empty goal.

• hot(b) = {b}, where b is an atomic formula.

• hot(φ1 ⊗ φ2 ⊗ . . . ⊗ φn) = hot(φ1).

• hot(φ1 | φ2 | . . . | φn) = hot(φ1) ∪ . . . ∪ hot(φn).

• hot(� φ1) = {� φ1}. 2

Informally, hot components are those subprocesses that are ready to execute. In

Figure 12, we illustrate the hot components of a few transaction formulas.

Definition 3.14 (Inference in FC) Consider a concurrent Horn transaction base

P and D is any database state.

Axioms: P,D --- ` (), for any D.

Inference Rules: In Rules 1–4 below, σ is a substitution, φ and φ′ are concurrent

serial conjunctions, and a is an atomic fluent or action in hot(φ).

1. Applying transaction definitions:

Suppose b ← β is a rule in P whose variables have been renamed apart

so that the rule shares no variables with φ. If a and b unify with a most

general unifier σ, then

P,D --- ` (∃)φ′σ
P,D --- ` (∃)φ

where φ′ is obtained from φ by replacing a hot occur-

rence of a with β.

48

2. Querying the database:

If a is a fluent literal, aσ and φ′ σ share no variables, and aσ is true in

the database state D then

P,D --- ` (∃)φ′ σ
P,D --- ` (∃)φ

where φ′ is obtained from φ by deleting a hot occur-

rence of a.

3. Performing elementary updates:

If aσ and φ′ σ share no variables, and a σ is an elementary action that

changes state D1 to state D2 then

P,D2 --- ` (∃)φ′ σ
P,D1 --- ` (∃)φ

where φ′ is obtained from φ by deleting a hot occur-

rence of a.

4. Executing atomic transactions:

If �α is a hot component in φ then

P,D2 --- ` (∃) (α ⊗ φ′)

P,D1 --- ` (∃)φ
where φ′ is obtained from φ by deleting a hot

occurrence of �α.

Example 3.3 (CTR workflow example 1) Lets consider the program where we

have two recursive actions: a recursive producer a and a recursive consumer b. Note

that here ins/1 and del/1 are considered strict updates, i.e., ins(i) (i is a fluent)

fails if t is already in the current database state, respectively, del(i) fails if t is not

in the current database state. In fact, this is just syntactical sugar and not a real

restriction since strict updates can be always be represented with non - strict updates:

ins(i) as not t ⊗ not− strict− insert(i) and del(i) as t ⊗ not− strict− delete(i).

Suppose i is a fluent, ins.i denotes the action of strict inserting i in the database

and del.i denotes the action of strict deleting i from the database. The following rules

define a workflow:

c : −a|b.
a : −a ⊗ ins.i ⊗ ins.i.

a : −ins.i ⊗ ins.i.

b : −b ⊗ del.i ⊗ del.i ⊗ del.i.

b : −del.i ⊗ del.i ⊗ del.i.

(10)

49

a | b {}2:

c {}1:
{}

(a, ins.i, ins.i) | b {}

{}

a | (b, del.i, del.i, del.i) {} (ins.i, ins.i) | b {} a | (del.i, del.i, del.i) {}

(a, ins.i, ins.i, ins.i, ins.i) | b {}

(a, ins.i, ins.i, ins.i, ins.i, ins.i, ins.i)
| b

{}

infinite

Figure 11: Part of the resolution tree for the Concurrent T R Example 3.3

And the query: : −c. is a query to execute the action c, which tries to communicate

between the “producer” action a and the “consumer” action b.

2

Like in serial Horn-T R, the SLD style proof theory for several queries to recursive

programs goes into infinite loops. Such an infinite branch in the SLD proof can be

seen in Figure 11.

The CT R proof theory 3.14 can be modified in a similar way the proof theory for

the serial Horn-T R was modified. However, we will show that the tabling algorithm

cannot always be applied to CT R because no suitable tabling component can be

found. Tabling the entire goal does not solve the issue showed in Figure 11 because

the goal is extended ad infinitum. Tabling the set of hot components is not correct

either due to the interleaving of entire concurrent conjunctions and not only of the

hot components. Consider a concurrent Horn transaction base P, any database state

D, a substitution σ, any concurrent conjunctions φ and φ′, the sets of hot components

for the concurrent conjunctions φ and φ′, namely hot(φ) and hot(φ′), and an atomic

fluent or action in hot(φ), a. For simplicity, lets also consider that all the predicates

in the program are tabled. One set of hot components is said to dominate another

set of hot components in tabled resolution if the for each goal in any of the sets there

is a dominant goal (see Section 3.1) in the other set. For instance, if the dominance

relation is the variant relation, i.e., identity up to variable renaming, then this type

of CT R tabling is a form of variant tabling, while if for each goal in the first set of

hot components there is a subsuming goal in the second set, then the technique is

50

a subsumption - based tabling. When a goal φ is called, the set of hot components

hot(φ) is encountered and one hot component is selected as a candidate to be executed

in a particular state, a check is made to see whether this is the first occurrence of

this set of hot components and candidate component was tabled before in that state

(i.e., no dominating set of hot components and dominant candidate were encountered

before in the same state). If pair formed by the set of hot components and the

execution candidate is new, the tuple (hot(φ), candidate, state) is saved in the global

data structure called the table space, and the evaluation uses normal clause resolution

to compute answers and generate new return database states.

Lets consider that we modified the first inference rule in the CT R proof theory

3.14.

Suppose φ is a goal for the program P. If the pair (hot(φ), candidate) is encoun-

tered for the first time at state D (i.e., no dominating entry (Set, Candidate,D) is

in the table space), then the transaction definitions are applied as before. Let b← β

be a rule in P whose variables have been renamed apart so that the rule shares no

variables with φ. If the candidate a and the head b unify with a most general unifier

σ, then

P,D --- ` (∃)φ′σ
P,D --- ` (∃)φ

where φ′ is obtained from φ by replacing the hot occurrence of the candidate a with

β.

The computed (candidate answer - unification, new - state) answer pairs cannot

be recorded for the aforesaid (hot(φ), candidate, state) entry because this result is due

to the interleaving of all parts of concurrent conjunctions, and not of the execution

of only the hot candidate. As a consequence, in the general case, there is nothing to

be saved as answers for any tuple (Set, candidate, state) in the table space. We also

show by means of a counter - example that such a tabling algorithm for CT R does

not help with termination. Figure 13 shows the application of this tabling algorithm

on the Example 3.3 and the query to c fails on all paths. However, Figure 12 shows

a successful derivation. In consequence the method in incomplete.

However, the proof procedure FT works for programs with no interactions between

concurrent branches in the transaction base. If φ was a goal for the program P, with

a candidate a in the set of hot components hot(φ), and b ← β the rule in P whose

51

a | b {}2:

c {}1:

a | (b, del.i, del.i, del.i)

(a, ins.i, ins.i) | (del.i, del.i, del.i) {}

{}

(ins.i, ins.i, ins.i) | (del.i, del.i, del.i) {i}

(ins.i, ins.i, ins.i) | (del.i, del.i) {}

(ins.i, ins.i) | (del.i, del.i) {i}

(ins.i, ins.i) | (del.i) {}

(ins.i,ins.i, ins.i, ins.i) | (del.i, del.i, del.i)

{}

(ins.i) | (del.i) {i}

ins.i {}

{i}

Figure 12: A successful branch in the resolution tree for the Concurrent T R Example
3.3

Suspended/
Tabling
stopped

a | b {}2:

c {}1:
{}

(a, ins.i, ins.i) | b {}

{}

a | (b, del.i, del.i, del.i) {} (ins.i, ins.i) | b {} a | (del.i, del.i, del.i) {}

(ins.i, ins.i) | (b, del.i, del.i, del.i) {} (ins.i, ins.i) | (del.i, del.i, del.i) {}

fail

(a,ins.i, ins.i) | (b, del.i, del.i, del.i) {} (ins.i, ins.i) | (del.i, del.i, del.i) {}

(ins.i) | (del.i, del.i, del.i) {i}

ins.i | (del.i, del.i) {}

del.i, del.i {i}

del.i {}

Suspended/
Tabling
stopped

Suspended/
Tabling
stopped

Suspended/
Tabling
stopped

Figure 13: Tabling of only hot components for the Concurrent T R Example 3.3

52

variables have been renamed apart so that the rule shares no variables with φ, then,

for non - interfering computations, if the sequent P,D --- D′ ` (∃)βσ is derived in

isolation with the rest of φ and the answer (hot(φ), βσ,D′) can be added to the answer

table associated with the table entry (hot(φ), a,D).

In non - interfering computations, there are either only queries, only inserts, or

only deletes, in which case the outcome of a goal for different interleavings does

not change because the different branches do not interact. Such interactions can be

found by examining the rules in the transaction base using an algorithm based on

the dependency graph to detect the dependencies between predicates. Given a CT R
program, the nodes in the dependency graph are: all predicates that are heads of

rules and all queries and elementary operations invoked in the rules. The graph has

an edge from X to Y , if for some rules X is the predicate in the head of the rule and

Y is a predicate or an elementary operation in the rule body.

Example 3.4 (Financial Transactions) Lets consider the program where we have

the balance of a bank account represented by relation balance(Acct, Amt) and the

following transactions: change balance(Acct, Bah,Bal2), to change the balance of

an account from Ball to Bal2, withdraw(Amt,Acct) to withdraw an amount from

an account, sell(Product, Amt,Acct) to sell a product to a customer with the account

Acct.

withdraw(Amt,Acct) : − balance(Acct, Bal) ⊗ Bal ≥ Amt

⊗ change balance(Acct, Bal, Bal − Amt).
change balance(Acct, Bal, Bal2) : − del.balance(Acct, Ball) ⊗ ins.balance(Acct, Bal2).

sell(Amt, Product, Acct) : − withdraw(Amt,Acct) | ins.delivered(Product, Acct).

(11)

To withdraw Amt from an account, Acct, the balance of the account is retrieved by

the query balance(Acct, Bal) and, then the test Bal ≥ Amt compares the balance with

the amount to ensure that the account will not be overdrawn. The change balance

rule uses two elementary updates, del.balance and ins.balance, to change the balance

of an account from Ball to Bal2. The third rule defines the action sell as withdrawing

the money form the account and, in parallel, delivering the product. If one of the

transfers succeeds and the other fails, then CT R query for sell(Amt, Product, Acct)

53

c

a b

ins.i del.i

Figure 14: The dependency graph for the Concurrent T R Example 3.3

sell(Amt,Product,Acct)

withdraw(Amt,Acct) ins.delivered(Product,Acct)

balance(Acct,Bal) change_balance(Acct, Bal,Bal2)

del.balance(Acct,Ball) ins.balance(Acct,Ball2)

Figure 15: The dependency graph for the Concurrent T R Example 3.4

behaves correctly, rolling back the entire transaction.

2

The dependency graph for the Concurrent T R Example 3.3 is depicted in Figure

14, while The dependency graph for the Concurrent T R Example 3.4 is depicted in

Figure 15.

Given an action predicate a, the insert set of a, written Ins(a), is the set of all

insert(f) predicates reachable from node a in the dependency graph, where f is a

fluent predicate. For an action a, the query set of a, written Query(a), is the set of

all calls to f predicates reachable from node a in the dependency graph, where f is

a fluent predicate. Similarly, given an action predicate a, the delete set of a, written

Dels(a), is the set of all delete(f) predicates reachable from node a in the dependency

graph, where f is a fluent predicate. Two action predicates, a1 and a2, do not interact

if the intersection of the set Ins(a1) withDels(a2), the intersection of the setDels(a1)

with Ins(a2), the intersection of the set Query(a1) with Ins(a2), the intersection of

the set Ins(a1) with Query(a2), the intersection of the set Query(a1) with Dels(a2)

54

and the intersection of the set Dels(a1) with Query(a2) are empty. For concurrent

goals where the concurrent actions do not interact the tabling technique memoizing

the set of “hot” components and the candidate at each step solves the infinite recursion

problem because the concurrent process can be reduced to sequential cases. In can be

easily seen from the dependency graph 14 for the Concurrent T R Example 3.3 that

the intersection of the set Ins(a) with Dels(b) is non empty. The dependency graph

15 for the Concurrent T R Example 3.4 also shows that the above condition for the

concurrent formula withdraw(Amt,Acct) | ins.delivered(Product, Acct) is satisfied,

in which case the two actions are non - interacting and the tabling algorithm is pos-

sible. The concurrent formula withdraw(Amt,Acct) | ins.delivered(Product, Acct)

can be reduced to a sequential case by writing the last rule as two definitions of the

action sell:

sell(Amt, Product, Acct) : − ins.delivered(Product, Acct) ⊗ withdraw(Amt,Acct).

sell(Amt, Product, Acct) : − withdraw(Amt,Acct) ⊗ ins.delivered(Product, Acct).

(12)

in which case the tabling algorithm reduces to the Sequential T R tabling inference

system FT .

55

Graph size 100 250 350
of Solutions 5050 31375 61425

CPU Mem. CPU Mem. CPU Mem.
1 0.128 806 1.544 4843 3.940 9473
2 0.212 5538 2.292 66413 5.996 173389
3a 0.136 807 1.540 4843 3.924 9473
3b 0.152 806 1.672 4843 4.608 9473
4a 0.224 10325 2.796 128434 7.880 337070
4b 0.204 5538 2.128 66413 5.680 172976

Table 2: Times for finding consuming paths in graphs

Graph size 100 250 350
States Comp. States Comp. States Comp.

1 5051 5050 31376 31375 61426 61425
2 5051 5050 31376 31375 61426 61425
3a 5051 5050 31376 31375 61426 61425
3b 5051 5050 31376 31375 61426 61425
4a 5051 5050 31376 31375 61426 61425
4b 5051 5050 31376 31375 61426 61425

Table 3: Numbers of tabled states and state comparisons for finding consuming paths
in graphs

Graph size 100 200 250
CPU Mem. CPU Mem. CPU Mem.

1 6.236 4580 47.642 18219 92.425 28881
2 8.568 371762 M.Err. M.Err. M.Err. M.Err.
3a 4.796 2533 37.182 10066 71.840 15620
3b 4.024 2533 30.073 10065 58.083 15620
4a 1.780 77873 13.536 596734 25.929 1155434
4b 1.292 39744 8.564 301429 16.325 582398

Table 4: Time and space for building 10 consuming paths in 10 graphs

56

Graph size 100 200 250
States Comp. States Comp. States Comp.

1 50501 50500 201001 201000 313751 313750
2 50501 50500 201001 201000 313751 313750
3a 5051 5050 20101 20100 31376 31375
3b 5051 5050 20101 20100 31376 31375
4a 5051 5050 20101 20100 31376 31375
4b 5051 5050 20101 20100 31376 31375

Table 5: Numbers of tabled states and state comparisons for building 10 consuming
paths in 10 graphs

Graph size 50 150 200
of Solutions 50 150 200

CPU Mem. CPU Mem. CPU Mem.
1 0.252 2412 8.392 51543 23.405 118248
2 0.244 6111 4.144 132082 9.148 303932
3a 0.164 2362 3.956 51091 10.100 118566
3b 0.236 7337 5.644 187927 13.968 442537
4a 0.300 15284 6.852 330211 16.105 755352
4b 0.300 15446 5.696 379042 12.584 885453

Table 6: Times for finding Hamiltonian cycles in graphs

Graph size 50 150
States Comp. States Comp.

1 7403 7500 67203 67500
2 7403 7500 67203 67500
3a 4903 5051 44703 45151
3b 4903 5000 44703 45000
4a 4903 5051 44703 45151
4b 4903 5000 44703 45000

Table 7: Numbers of tabled states and state comparisons for finding Hamiltonian cycles

57

Graph size 50 150
CPU Mem. CPU Mem.

1 4.912 164777 M.Err. M.Err.
2 6.052 424113 M.Err. M.Err.
3a 3.076 9878 86.505 255174
3b 4.340 14854 105.814 391963
4a 1.656 58959 M.Err. M.Err.
4b 1.356 46072 27.4210 1228925

Table 8: Times for finding 10 Hamiltonian cycles in 10 graphs

Blocks 5 6 7
of Pyramids 120 720 5050

CPU Mem. CPU Mem. CPU Mem.
1 0.212 576 2.392 5586 29.265 63207
2 0.196 656 2.100 6197 26.265 68636
3a 0.196 546 2.192 5286 27.905 60105
3b 0.228 544 2.528 5284 31.661 60102
4a 0.288 3296 3.268 46269 41.958 1005012
4b 0.204 608 2.268 5793 28.117 64915

Table 9: Time and space requirements for building pyramids of N blocks in blocks
worlds

Blocks 5 6 7
States Comp. States Comp. States Comp.

1 1546 4210 13327 42792 130922 480326
2 1546 4210 13327 42792 130922 480326
3a 501 9767 4051 107882 37633 1364911
3b 501 1300 4051 13020 37633 144354
4a 501 9767 4051 107882 37633 1364911
4b 501 1300 4051 13020 37633 144354

Table 10: Numbers of tabled states and state comparisons for building pyramids in
blocks worlds

58

Blocks 5 6 7
CPU Mem. CPU Mem. CPU Mem.

1 1.800 9696 21.457 72741 286.413 128150
2 1.780 29289 19.441 233285 M.Err. M.Err.
3a 1.140 889 13.208 7346 172.838 55984
3b 1.808 892 21.433 7349 287.413 75930
4a 1.312 30988 15.588 409155 M.Err. M.Err.
4b 1.096 1614 11.984 12854 148.109 128150

Table 11: Time and space requirements for building pyramids of N blocks in 10 parallel
blocks worlds

Formula Hot components
a | b {a, b}

a | delete(i) ⊗ b {a, delete(i)}
�(a ⊗ b) | delete(i) ⊗ b {�(a ⊗ b), delete(i)}

(a | b) ⊗ (c | d) {a, b}
(a ⊗ b) | (c ⊗ d) {a, c}

Table 12: CT R formulas and their hot components

Chapter 4

A Well-founded Semantics for

Transaction Logic with Defaults

and Argumentation Theories

Defeasible reasoning is an important paradigm, which has been extensively studied as

a knowledge representation paradigm, including in fields such as policies, regulations,

law, learning, and others [BH95, BE99, BE00, DST03, DS01, EFLP03, GS98, Gro99,

Nut94, Pra93, SI00, WZL00, ZWB01]. We combine T R with defeasible reasoning

and show that the resulting logic language has many important applications. This

logic is called T RDA (Transaction Logic with Defaults and Argumentation Theories)

because it extends T R in the direction of the recently proposed logic programming

with defaults and argumentation theories (LPDA) [WGK+09b], a recently proposed

unifying framework for defeasible reasoning. In order to accomplish the above tasks

we define the well-founded semantics [VRS91] for T R.

T RDA extends traditional logic programming, Transaction Logic, and LPDA and

their application domains. Moreover, we show that the combined logic enables a num-

ber of interesting applications, such as specification of defaults in action theories and

heuristics for pruning search in such search - intensive applications as planning. We

also demonstrate the usefulness of the approach by experimenting with a prototype

of T RDA and showing how heuristics expressed as defeasible actions can significantly

reduce the search space as well as execution time and space requirements.

59

60

4.1 Defeasibility in Transaction Logic

In this section we define a form of defeasible Transaction Logic, which we call Trans-

action logic with defaults and argumentation theories (T RDA). The development

was inspired by our earlier work on logic programming with argumentation theo-

ries, which did not support actions [WGK+09b]. Language-wise, the only difference

between T RDA and serial T R is that the rules in T RDA are tagged.

4.1.1 T RDA Syntax

Definition 4.15 (Tagged rules) A tagged rule in the language T RDA is an ex-

pression of the form

@r H : − B. (13)

where the tag r of a rule is a term. The head literal, H, and the body of the rule, B,

have the same restrictions as in Definition 2.2.

A serial T RDA transaction base P is a set of rules, which can be strict or

defeasible. 2

Definition 4.16 (T RDA Transaction formula) A T RDA transaction formula

in the language T RDA is a literal, a serial goal, a tagged or an untagged serial rule.

2

We note that the rule tag in the above definition is not a rule identifier: several

rules can have the same tag, which can be useful for specifying priorities among sets

of rules.

Strict rules are used as definite statements about the world. In contrast, defea-

sible rules represent defeasible defaults whose instances can be “defeated” by other

rules. Inferences produced by the defeated rules are “overridden.” We assume that

the distinction between strict and defeasible rules is specified in some way: either

syntactically or by means of a predicate (note that in this thesis, we consider strict

rules to be unlabeled rules as in Definition 2.2).

Definition 4.17 (Rule handle) Given a rule of the form (13), the term

handle(r,H) (14)

61

is called the handle of that rule. 2

T RDA transaction bases are used in conjunction with argumentation theories,

which are sets of rules that define conditions under which some rule instances in the

transaction base may be defeated by other rules. The argumentation theory and the

transaction base share the same set of fluent and action symbols.

Definition 4.18 (Argumentation theory) An argumentation theory, AT, is

a set of strict serial rules. We also assume that the language of T RDA includes a

unary predicate, $defeatedAT, which may appear in the heads of some rules in AT

but not in the transaction base. A T RDA P is said to be compatible with AT if

$defeatedAT does not appear in any of the rule heads in P, 2

The rules AT are used to specify how the rules in P get defeated. This can be

accomplished using special predicates defined in T RDA, such as, the !opposes and

!overrides predicates in the courteous argumentation theories. For the purpose of

defining the semantics, we assume that the argumentation theories AT are grounded.

This grounding can be done by appropriately instantiating the variables and meta -

predicates in AT.

Although Definition 4.18 imposes almost no restrictions on the predicate

$defeatedAT, practical argumentation theories are likely to require that it is exe-

cuted hypothetically, i.e., that its execution does not change the current state. This

is certainly true of the argumentation theories used in this thesis.

4.1.2 T RDA Well - founded Semantics

We extend the well - founded semantics for logic programing [VRS91] to T RDA using

the Przymusinski-style definition [Prz94]. In the following definition, we use the usual

three truth values t, f , and u, which stand for true, false, and undefined, respectively.

We also assume the existence of the following total order on these values: f < u < t.

Definition 4.19 (3-valued Partial Herbrand interpretation) A partial Her-

brand interpretation is a mapping H that assigns f , u or t to every formula L in

B.

62

A partial Herbrand interpretation H is consistent relative to an atomic for-

mula L if it is not the case that H(L) = H(negL) = t. H is consistent if it is

consistent relative to every formula. H is total if, for every ground not -free formula

L (other than u), either H(L) = t and H(negL) = f or H(L) = f and H(negL) = t.

Partial Herbrand interpretations are used to define path structures, which are

used to tell which ground atoms (fluents and actions) are true on what paths. Path

structures play the same role in T R and T RDA as the role played by the classical

semantic structures in classical logic. The semantic structures of T RDA are mappings

from paths to partial Herbrand interpretations.

Definition 4.20 (3-valued Herbrand Path Structure) A partial Herbrand

Path Structure is a mapping I that assigns a partial Herbrand interpretation to

every path subject to the following restrictions:

1. I(〈D〉)(d) = t, if d ∈ D;

I(〈D〉)(d) = f , if neg d ∈ D;

I(〈D〉)(d) = u, otherwise, for every ground base fluent literal d and every

database state D.

2. I(〈D1,D2〉)(insert(p)) = t if D2 = D1 ∪ {p} \ {neg p} and p is a ground

fluent literal;

I(〈D1,D2〉)(insert(p)) = f , otherwise.

3. I(〈D1,D2〉)(delete(p)) = t if D2 = D1\{p}∪{neg p} and p is a ground fluent

literal;

I(〈D1,D2〉)(delete(p)) = f , otherwise.

Without loss of generality, in defining the semantics of T RDA we will consider

ground rules only. This is possible because all variables in a rule are considered to be

universally quantified, so such rules can be replaced with a set of all of their ground

instantiations.

We assume that the language includes the following special propositional con-

stants: uπ and tπ, for each path π. Informally, tπ is a propositional transaction that

is true precisely over the path π and false on all other paths; uπ is a propositional

transaction that has the value u over π and is false on all other paths.

63

Definition 4.21 (T RDA 3-valued Truth valuation in path structures) Let I

be a path structure, π a path, L a ground not -free literal, and let F , G ground serial

goals We define truth valuations with respect to the path structure I as follows:

• If P is a not -free literal then I(π)(p) is already defined because I(π) is a Her-

brand interpretation, by definition of I.

• If φ and ψ are serial goals and π = π1 ◦ π2 then I(π)(φ ⊗ ψ) =

min(I(π1)(p), I(π2)(q)).

• If φ and ψ are serial goals then I(π)(φ ∧ ψ) = min(I(π)(p), I(π)(q)).

• If φ is a serial goal then I(π)(notφ) =∼ I(π)(φ), where ∼ t = f , ∼ f = t, and

∼ u = u.

• If φ is a serial goal and π = 〈D〉, where D is a database state, then

I(π)(3φ) = max{I(π′)(φ) | π′ is a path that starts at D}
I(π)(3φ) = f , otherwise.

• For a strict serial rule F :-G,

I(π)(F :-G) = t iff I(π)(F) ≥ I(π)(G).

• For a defeasible rule @r F :-G,

I(π)(@r F :- G) = t iff

I(π)(F) ≥ min (I(π)(G), I(〈D0〉)(not 3 $defeated(handle(r, F)))),

where D0 is the first database in the path π.

• For any path π:

I(π)(tπ) = t and I(π′)(tπ) = f , if π′ 6= π;

I(π)(uπ) = u and I(π′)(uπ) = f , if π′ 6= π.

We will write I, π |= φ and say that φ is satisfied on path π in the path structure I

if I(π)(φ)=t.

We will say that a path structure I is total if, for every path π and every serial goal

φ, I(π)(L) is either t or f . 2

Definition 4.22 (T RDA 3-valued Model of a transactional formula) A path

structure, I, is a model of a transaction formula φ if I, π |= φ for every path π.

64

In this case, we write I |= φ and say that say that I is a model of φ or that φ is

satisfied in I. A path structure I is a model of a set of formulas if it is a model of

every formula in the set.

Definition 4.23 (Model of T RDA) A path structure I is a model of a serial T RDA

transaction base P if all the rules in P are satisfied in I (that is, if I |= R for every

R ∈ P). Given a T RDA transaction base P, an argumentation theory AT, and a

path structure M, we say that M is a model of P with respect to the argumentation

theory AT, written as M |= (P,AT), if M |= P and M |= AT. 2

Like classical logic programs, the Herbrand semantics of serial T R can be for-

mulated as a fixpoint theory [BK98a]. In classical logic programming, given two

Herbrand partial interpretations σ1 and σ2, σ1 � σ2 if all not -free literals that are

true in σ1 are also true in σ2 and all not - literals that are true in σ2 are also true in

σ1. Similarly, given two Herbrand partial interpretations σ1 and σ2, σ1 ≤ σ2 if all

not - free literals that are true in σ1 are also true in σ2 and all not - literals that are

true in σ1 are also true in σ2.

Definition 4.24 (Order on Path Structures) If M1 and M2 are two Herbrand

partial path structures, then M1 �M2 if M1(π) �M2(π) for every path, π (truth

ordering). Similarly, we have M1 ≤M2 if M1(π) ≤M2(π) for every path, π (infor-

mation ordering).

A model M of P is minimal with respect to � iff for any other model, N, of P

N �M implies N = M. The least model of P is a minimal model that is unique.

It is well - known that in ordinary logic programming any set of Horn rules always

has a least model. In [BK95], it is shown that every definite Horn T R program has a

unique least total model. Theorem 4.4, below, shows that this property is preserved

by serial not -free T R programs, but in this case the model might be a partial path

structure. Serial not -free programs are more general than the positive T R programs

because the undefined propositional symbol uπ for some path π may occur in the

bodies of the program clauses.

65

Theorem 4.4 (Unique Least Partial Model for serial not -free T R programs)

If P is a not -free T R program, then P has a least Herbrand model, denoted

LPM(P).

Proof: See Appendix D. 2

Example 4.5 Let the T R program P be:

a : − state.

b : − a⊗ u〈D∅〉.

c : − c⊗ u〈D∅〉.

where a, b, and c are action symbols and D∅ is the empty database state. The least

partial model of P is a path structure that maps any 1-path to a classical Herbrand

partial model where a is true, c is false, and b is undefined. All other paths are mapped

to the classical Herbrand partial model where all formulas are mapped to u. Note that

b is not false in LPM(P) because the truth value of the sequential conjunction of

premises in the second rule is u, so the truth value of b must be at least u. 2

For not -free T R programs, the least partial model LPM(P) can be obtained as

the least fixed point of the immediate consequence operator T̂ , which is applied to

all paths. However, we will not pursue this line here.

Next we define well - founded models for T RDA by adapting the definition from

[Prz94]. First, we define the quotient operator, which takes a T RDA program P and

a path structure I and yields a serial-Horn T R program
P

I
.

Definition 4.25 (T RDA Quotient) Let P be a set of T RDA rules and I a path

structure for P. The T RDA quotient of P by I, written as
P

I
, is defined through

the following sequence of steps:

1. First, each occurrence of every not - literal of the form notL in P is replaced

by tπ for every path π such that I(π)(notL) = t and with uπ for every path π

such that I(π)(notL) = u.

66

2. For each labeled rule of the form @r L :-Body obtained in the previous step,

replace it with the rules of the form:

L :- t〈Dt〉 ⊗ Body

L :- u〈Du〉 ⊗ Body

for each database state Dt such that

I(〈Dt〉)(not (3 $defeated(handle(r, L)))) = t

and each database state Du such that

I(〈Du〉)(not (3 $defeated(handle(r, L)))) = u

3. Remove the labels from the remaining rules.

The resulting set of rules is the quotient
P

I
. 2

Note that in Step 1 of the above definition of the quotient each occurrence of

notL is replaced with different tπ and uπ for different π’s, so every rule in P may be

replaced with several (possibly infinite number of) not -free rules. All combinations of

replacements for the not - literals in the body of the rules have to be used. Only the

π’s where I(π)(notL) = f are not used, which effectively means that the rule instances

that correspond to those cases are removed from consideration. Also note that, the

T RDA quotient of a T RDA transaction base P with respect to an argumentation

theory AT (the program union P ∪ AT) for any path structure I,
P ∪ AT

I
, is a

negation-free T R program, so, by Theorem 4.4, it has a unique least Herbrand

model, LPM(
P ∪ AT

I
).

We will now give the definition for the immediate consequence operator Γ. For

compatibility with the classical notations in logic programming, we will use the set

representation of Herbrand models: I+ = {L | L ∈ I is a not -free literal}, I− =

{L | L ∈ I is a not -literal} and I = I+ ∪ I−.

Definition 4.26 (T RDA immediate consequence operator) The

incremental consequence operator, Γ, for a T RDA transaction base P with respect

67

to the argumentation theory AT takes as input a path structure I and generates a new

path structure as follows:

Γ(I) =def LPM

(
P ∪ AT

I

)
Suppose I∅ is the path structure that maps each path π to the empty Herbrand in-

terpretation in which all propositions are undefined (i.e., for every path π and every

literal L, we have I∅(π)(L) = u.

The ordinal powers of the immediate consequence operator Γ are defined inductively

as follows:

• Γ↑0(I∅) = I∅;

• Γ↑α(I∅) = Γ(Γ↑α−1(I∅)), for α a successor ordinal;

• Γ↑α(I∅)(π) = ∪β<αΓ↑β(I∅)(π), for every path π and α a limit ordinal.

2

The operator Γ is monotonic with respect to the ≤ order relation when P and

AT are fixed (see Appendix E). Because Γ is monotonic, the sequence {Γ↑n(I∅)}
(Γ↑0(I∅), Γ↑1(I∅), Γ↑2(I∅), . . .) has a least fixed point and is computable via transfinite

induction (see Appendix E).

Definition 4.27 (Well-founded model) The well - founded model of a T RDA

transaction base P with respect to the argumentation theory AT, written as

WFM(P,AT), is defined as the limit of the sequence {Γ↑n(I∅)}. 2

The next theorem states that our constructive computation of the least model of

the program (P,AT) is correct.

Theorem 4.5 (Correctness of the Constructive T RDA Least Model)

WFM(P,AT) is the least model of (P,AT).

Proof: See Appendix E. 2

The next theorem shows that T RDA programs under the well - founded seman-

tics reduce to ordinary T R programs under the same well - founded semantics. In

conclusion, T RDA can be implemented using ordinary transaction logic programming

systems that support the well - founded semantics.

68

Theorem 4.6 (T RDA Reduction) WFM(P,AT) coincides with the well - founded

model of the T R program P′ ∪ AT, where P′ is obtained from P by

changing every defeasible rule (@r L :- Body) ∈ P to the plain rule

L :- not (3 $defeated(handle(r, L)))⊗ Body and removing all the remaining tags.

Proof: See Appendix F. 2

4.2 Argumentation theory representatives

Various argumentation theories can be defined to abstract the multiple intuitions

about defeasibility. These argumentation theories are a set of definitions for concepts

that a reasoner might use to argue why certain conclusions are to be defeated or to

win over other conclusions. In the following sections we define two such argumenta-

tion theories: one for the generalized courteous logic programs (GCLP) ([Gro99] being

the only commercially available defeasible reasoning formalism, i.e., IBM’s Common-

Rules1), and one for defeasible logic, a popular formalism that attracts a lot of

attention in the field.

4.2.1 The GCLP T R courteous argumentation theory

As our first example of an argumentation theory, we present here a particularly in-

teresting argumentation theory which extends generalized courteous logic programs

(GCLP) [Gro99] to T R under the T RDA framework. This argumentation theory

was used in the trade 4.6 and planning 3.4.2 examples in Section 4.4.1. We will call

this argumentation theory GCLP T R. As any argumentation theory in this frame-

work, GCLP T R defines a version of the $defeated predicate using various auxiliary

concepts. We define these concepts first. The user - defined predicates !opposes and

!overrides are relations specified over rule handles telling the system what rules

are in opposition, respectively, what rules are preferred over the application of other

rules. For instance, in the example 4.6, the predicate instance !opposes(handle(,

sell(Stock)), handle(, buy(Stock))) is used to specify that any rule whose head is

an instance of the sell/1 relation is incompatible with any rule whose head is an

1http://www.alphaworks.ibm.com/tech/commonrules

69

instance of the buy/1 with the same argument Stock (that is, selling and buying the

same stock in the same state is contradictory). In a parallel manner, the predicate

!overrides specifies that some actions have higher priority than other actions. For

instance, in the same trade example 4.6, the predicate instance !overrides(handle(

sell action,), handle(buy action,)) is used to specify that the rule sell action has

higher priority than the rule buy action, regardless to their rule heads if an opposition

situation arises.

The predicate $defeated is defined indirectly in terms of the predicates !opposes

and !overrides. In the following definitions the variables R and S are expected to

range over rule handles, while the implicit current state identifier D is expected to

range over the possible database states. A rule is $defeated if it is refuted or rebutted

by some other rule, where the former rule itself is defeasible (in our case, tagged) and

the winning rule is not compromised, or the rule is disqualified. We will define these

relations shortly, for the moment we just mention the most common meanings of these

predicates: $refutes means that a higher - priority rule implies a conclusion that is

incompatible with the conclusion implied by the another rule, $rebuts means that

a pair of rules assert conflicting conclusions without being able to select a conclusion

“more important” than the other conclusion, $compromised means that it’s argument

rule handle is defeated by some other rule handle, while $disqualified is a special

situation when a rule defeats itself (for instance, such a situation is actually possible

in the block world when the action of moving an unique block requires this action to

beat all other move actions, but not itself).

$defeated(R) : − $refutes(S,R) ∧ not $compromised(S).

$defeated(R) : − $rebuts(S,R) ∧ not $compromised(S).

$defeated(R) : − $disqualified(R).

(15)

In this thesis we define a single GCLP-style argumentation theory, so we will

use the most common interpretation of the aforementioned predicates. However, the

reader should keep in mind that the argumentation theory is an input in our theory

and can be changed as needed.

A rule R $refutes another rule S if R has higher - priority than S and R’s

conclusion is incompatible with the conclusion of S. Two rule handles are in conflict

70

if they are both candidates and (their handles) are in opposition to each other. These

are defined as follows:

$refutes(R, S) :- $conflict(R, S) ∧ !overrides(R, S).

$conflict(R, S) :-

$candidate(R), $candidate(S), !opposes(R, S).

(16)

A rule R $rebuts another rule S if the two rules assert conflicting conclusions, but

neither rule is “more important” than the other, that is, there is preference relation

can be inferred between the two rules. This intuition can also be expressed in several

different ways, but we have selected the following definition 18 as the most intuitive

definition matching the GCLP theory. We define a candidate rule handler as a rule

instance whose body is hypothetically true in the current database state (that is, it

can be executed hypothetically in the current state) in the rule 19, and the symmetric

!opposes relation in the rule 20 with the addition that every literal must oppose

its explicit negation (neg) in the rule 21. We use two meta-predicates, body and

call, where the body meta - predicate in $candidate binds B to the body of a rule

with handle R, and the call meta - predicate takes a serial goal and executes it. We

emphasize that the key aspect of the candidacy predicate is the fact that the bodies

are executed hypothetically, so they do not modify the current state of the database.

$rebuts(R, S) :- $candidate(R) ∧ $candidate(S) ∧ (17)

!opposes(R, S) ∧ not $compromised(R) ∧ (18)

not $refutes(, R) ∧ not $refutes(, S).

$candidate(R) :- body(R,B)⊗3call(B). (19)

!opposes(X, Y) :- !opposes(Y,X). (20)

!opposes(handle(, H), handle(, neg H)). (21)

71

A rule is compromised if it is defeated, and it is disqualified if it transitively

defeats itself. The predicate $defeatstc denotes the transitive closure of the predicate

$defeats.

$compromised(R) :- $refutes(, R) ∧ $defeated(R).

$disqualified(X) :- $defeatstc(X,X).

$defeatstc(X, Y) :- $defeats(X, Y).

$defeatstc(X, Y) :- $defeatstc(X,Z) ∧ $defeats(Z, Y).

(22)

As in [WGK+09b], one can define other versions of the above argumentation

theory, which differ from the above in various edge cases. However, defining such

variations is tangential to our main focus here.

4.2.2 An argumentation theory for defeasible logic

We develop here an argumentation theory that captures the reasoning in the Defea-

sible Logic family of logics [Nut94, ABGM01, AM02, MN06]. This form of defeasible

reasoning is particularly interesting because Governatori, Rotolo and Sadiq used it

to execute workflows in [GRS04]. Formally, Defeasible Logic is a triple (R, > , K),

where K is a finite set of literals, R is a set of rules, such that if q is any ground literal

then the rules whose head is q, R[q] is finite, and “>” is a superiority relation on

R. Defeasible Logic partitions the rules R into strict, defeasible, and defeater rules,

where :

(a) the strict rules are rules which cannot be defeated and need to be satisfied even

if the database is inconsistent,

(b) the defeasible rules are rules that can be defeated either by facts inferred by the

strict rules or by the defeaters, and

(c) the defeater rules are used only to defeat other rules, but they do not produce

any inferences. The purpose of the defeater rules is to block inferences produced by

other rules.

The opposition among literals is limited to p and neg p, for each fluent p, while the

use of the default negation is not allowed, so all literals are not -free, and rule tags

are unique identifiers of the rules. The theory of Defeasible Logic easily translates

into the computation of the fixed point of four sets: ground literals that are strictly

72

true, ground literals that are strictly false, ground literals that are defeasible true,

and ground literals that are defeasible false.

We need a few special predicates provided by the interpreter: a meta - predicate

head/2 that binds the first argument to the head of a rule with the identifier the

second argument, a meta - predicate body/2 that binds the first argument to the

body of a rule with the identifier the second argument, a meta - predicate call/1

that takes a serial goal and executes it on an execution path and and a predicate

break ⊗ /3 that takes a serial conjunction B1 ⊗B2 ⊗ . . .⊗Bn and returns the first

element of the conjunction as the second argument and the rest of the conjunction as

the third argument or state if the conjunction was a single element B1.

The program the following extra predicates: !strict/1 for rules that cannot be

defeated, $defeater/1 for rules used only to defeat other rules, but do not produce

any inferences, and > /2 as a superiority relation between rules.

A rule is defeated if any of the following conditions hold: another conclusion in

conflict with the current conclusion is definitely proved, the conclusion is detected by

a defeater (because defeaters make no inferences), or the conclusion is refuted.

$defeated(handle(T,H)) :- $conflict(handle(T,H), handle(S,H))

∧ head(S,H) ∧ $definitely(H).

$defeated(handle(T,H)) :- $defeater(handle(T,H)).

$defeated(handle(T,H)) :- $refutes(, handle(T,H)).

Two rules are in conflict if they are both candidates and their literals are incom-

patible (i.e., a literal L and its explicit negation negL).

$conflict(handle(T1, H1), handle(T2, H2)) :-

$candidate(handle(T1, H1)) ∧ $candidate(handle(T2, H2))

∧ !opposes(H1, H2).

$candidate(R) :- body(R,B)⊗3call(B).

!opposes(L1, negL1).

!opposes(negL1, L1).

73

A literal is definitely proved if it is the head of a strict rule whose body is proved

only by strict clauses. We prove the body by proving all the literals in the body using

the meta predicate break ⊗ and recursion. The effects of the $definitely call are

not visible to the rest of the computation.

$definitely(L) :- 3strictly proved(L).

strictly proved(state).

strictly proved(L) :- !strict(R) ∧ head(R,L)

∧ body(R,B)⊗ strictly proved conj(B).

strictly proved conj(state).

strictly proved conj(B) :- break ⊗ (B,B1, B2)

⊗strictly proved(B1)⊗ strictly proved conj(B2).

An additional rule is added to the instances of the predicate > /2 to state that

any strict rule has priority to any non - strict rule:

> (R1, R2) :- !strict(R1) ∧ not !strict(R1).

Finally, the $refutes/2 relation is defined using the notions of $candidate and

$conflict.

$refutes(S, T) :- $conflict(S, T) ∧ $candidate(S) ∧ $candidate(T)

∧ not $refutes(, S).

$refutes(, S) :- $conflict(S, T) ∧ $candidate(T)

∧ > (T, S) ∧ not $defeater(T).

4.3 T RDA discussion and related work

Although a great number of works deal with defeasibility in logic programming, few

have goals similar to ours: to lift defeasible reasoning from static logic programming

to a logic for expressing knowledge base dynamics, such as T R. Such lifting opens up

new applications for Transaction Logic by allowing it to take advantage of preferences

among rules and defeasibility. As far as the actual chosen approach to defeasible

reasoning is concerned, this work is based on [WGK+09b], and extensive in-depth

74

comparison with other works on defeasible reasoning can be found there. There,

we compare LPDA based approaches to the frameworks presented by Gelfond and

Son in [GS98] (i.e., the logic of prioritized defaults), by Delgrande, Schaub, and

Tompits in [DST03] (i.e., the ordered logic programs), and by Eiter et al. in [EFLP03]

(i.e., the meta - interpretation approach to handling preferences) because they allow

adaptive behaviours in using the preference information similar to our argumentation

various theories. The main difference from [GS98] is that our approach distills all the

differences between the different default theories to the notion of an argumentation

theory with a simple interface to the user - provided domain description, the predicate

$defeated. In the case of [DST03], the framework does not come with a unifying

model - theoretic semantics, but comes as a transformation of normal logic programs

under the stable model semantics. The variable part is the transformation, which

encodes a fairly low - level mechanism: the order of rule applications required to

generate the preferred answer set. In the following paragraphs we will focus on

comparing our work with prior research on defeasibility of actions.

The main contribution here relies not in the use of different argumentation theo-

ries, but in the lifting of LPDA to a dynamic logic, such as T R. To our knowledge,

none of the works surveyed by [DSTW04] has a similar goal as ours, but some defea-

sible logic formalisms match various applications of T R, and such, we will compare

our work with these works aimed to apply defeasible reasoning to various dynamic

domains. In particular, we compare our work with the most representative works

aiming to apply defeasible reasoning in planning represented in ASP, namely, the

approach by Son and Pontelli in [SP02, SP03, SP04, SP06] and the approach by

Delgrande, Schaub and Tompits in [DST04, DST07b, DST07a]. On another hand,

the approaches adopted in [GRS04, GMS06, GR10] aim to apply defeasible reasoning

for another application of the results presented in this thesis, namely, in modeling,

execution and verification of workflows.

The work [SP06] develops a high-level language for the specification of preferences

over trajectories and provides a logic programming encoding of the language based on

answer set planning. They combine the action language B [GL98] with the prioritized

default theory developed in [GS98]. T RDA is quite different from [SP06] in that

it is a full-fledged logic that combines both declarative and procedural elements,

75

while [SP06] specifically is geared towards specifying preferences over trajectories in

planning. Whereas T RDA deals with infinite domains and allows function symbols

and non-deterministic actions, the approach in [SP06] considers only planning with

complete information on finite domains and deterministic actions. Thus, although

the two approaches have common applications in the area of planning, they target

different knowledge representation scenarios.

The approach in [DST04, DST07a] uses two types of preferences over plans for

achieving goals in a plan. The choice order specifies when a plan satisfying a goal, φ1,

is preferred over another plan satisfying another goal φ2. The temporal order specifies

when the planning heuristic has a preference concerning the order in which subgoals

are to be achieved. That is, when subgoals must become true in a specific order.

The set of solution histories is ordered according to these partial order relations,

≤c (choice) and ≤t (temporal), and the maximal elements are chosen as the most

preferred solutions. Both of these types of preference can be expressed in the T RDA

framework, although due to the difference in the semantics the exact relationship

needs further study. In the choice ordering, the application of rule definitions for

actions whose effect is to update fluents in the fluent serial goal φ2 are defeated when

actions that update fluents in the fluent serial goal φ1 can be executed. In the temporal

ordering, application of rule definitions for actions whose effect is to update fluents in

the fluent serial goal φ2 are defeated if some fluents in the fluent serial goal φ1 were

not satisfied. This encoding mirrors the dualism between fluents and corresponding

actions that update these fluents signaled in [DST07a]. Moreover, while the original

work by Delgrande, Schaub, and Tompits in [DST03] was a framework of ordered logic

programming that could use a variety of preference handling strategies, its application

to planning resumes to a single behaviour of dealing with preferences.

Other systems have also adopted various kinds of preferences in planning, for

instance, quality of planning in [Bal04], solving multiple prioritized goals [Bal09], but

these works do not study a unified context for an active deductive database such as

ours, but special cases of using defeasible logic programming formalisms to implement

certain problems or translations of certain dynamic languages (for instance, action

languages) in LP formalisms supporting certain kinds of defeasibility. In [EFL+03], a

framework for planning with cost preferences is introduced. Each action is assigned a

76

numeric cost, and plans with the minimal cost are considered to be optimal. Clearly,

this work uses a completely different type of preferences and tackles a different and

very specific problem in planning, which we do not address. Similar to our work,

[EFL+03]’s work is the only other work that deals with planning in the presence of

non - deterministic actions.

Finally, regarding dealing with preferences in modeling, execution and verification

of workflows, we mention the work of Governatori et al. on modelling notions like

delegation of tasks in the execution of a workflow. Another work by the same group,

[GMS06], deals compliance of workflows to a given regulation formulated in a variant

of deontic logic, allowing expressions similar to what we have in transaction logic

(with sequences of task/actions and or branching of actions), but not dealing with

defeasible reasoning. Recently, [GR10] extended the work of [GMS06] to model control

flow patterns in workflows. However, in the last two papers defeasible reasoning is not

studied at all, while in the case of the first paper is just tangential to our goals, being

applied in the special case of delegation from one agent to another (more important)

agent.

4.4 Applications, implementation and evaluation

We implemented an interpreter for T RDA in XSB 2 and tested it on a number of

examples, including Example 3.4.2. The goal of these tests was to demonstrate how

preferential heuristics can be expressed in T RDA and to evaluate their effects on the

efficiency of planning (see Example 4.7).

4.4.1 T RDA Aplications in action priorities, planning and

workflows

In this section, we employ several applications in order to illustrate the advantages of

extending Transaction Logic with the well founded semantics and defeasible reasoning.

Using the GCLP T R courteous argumentation theory, the rules in these examples are

more powerful than simple T R rules since they use a relative independence in writing

2http://xsb.sourceforge.net/

77

the rule bodies, but retain the concept of defeasible reasoning. The meaning of the

!opposes and !overrides predicates is the same as in the Section 4.2.1.

Example 4.6 (Stock market actions) Consider a broker who trades stock on the

market. He uses a computerized system, which makes various decisions about buy-

ing and selling stocks. The system weighs recommendations, which sometimes might

conflict with each other, and performs appropriate actions. For simplicity, we ignore

issues such as the amount of funds available for purchase and so on.

@buy actionbuy(Stock, Amount) : −
recommendation(buy, Stock)⊗ owns(Stock, Qty)⊗
delete(owns(Stock, Qty))⊗ insert(owns(Stock, Qty + Amount)).

@sell actionsell(Stock, Amount) : −
recommendation(sell, Stock)⊗ owns(Stock, Qty)⊗
delete(owns(Stock, Qty))⊗ insert(owns(Stock, Qty −Amount)).

!opposes(sell(Stock), buy(Stock)).

!overrides(sell action, buy action).

recommendation(buy, C) : − services(X).

recommendation(sell, C) : − media(X).

services(acme).

media(acme).

owns(acme, 100).

trade(Stock, Amount) : − buy(Stock, Amount).

trade(Stock, Amount) : − sell(Stock, Amount).

(23)

The above rules specify that selling and buying the same stock as part of the same

decision is contradictory, so these rules are declared to be in conflict. To be on the

safe side, the second rule (sell) is said to override the first (buy). Lets consider an

existential goal (∃)trade(acme, 100). Without the !opposes and !overrides infor-

mation this goal would have two non - deterministic possible executions: one in which

the trader buys an additional 100 stocks in the company acme, and another one in

which the trader sells his 100 stocks because he got recommendations both to buy stocks

for services companies and to sell the stocks for media companies. However, the sec-

ond execution is preferred because, in such a contradictory state it’s advisable to sell

the stocks. 2

78

Example 4.7 (Blocks world planning) This example illustrates the use of defea-

sible reasoning for heuristic optimization of planning in the blocks world. The example

is similar to the one used in Section 3.4.2, but here the rules are labeled and addi-

tional information about the opposition and the priority between actions is used in

the defeasible reasoning. The T RDA program below is designed to build pyramids of

blocks that are stacked on top of each other so that smaller blocks are piled up on

top of the bigger ones. The construction process is non - deterministic and several

different blocks can be chosen as candidates to be stacked on top of the current partial

pyramid. The heuristic uses defeasibility to give priority to larger blocks so that higher

pyramids can be constructed.3

In this example, we represent the blocks world using the familiar fluents on(x, y)

and isclear(x) (see Section 3.4.2), but also the new fluent larger(x, y), which says

that the size of x is larger than the size of y. The action pickup(X) picks up block X

and the action putdown(X, Y) puts it down on top of block Y . These actions are spec-

ified by the second and third rules, respectively. The action move(Block, From, To),

specified by the first rule, moves Block from its current position on top of block From

to a new position on top of block To, where the block Block is smaller then the block

To. This action is defined by combining the afore mentioned actions pickup and

putdown if certain pre - conditions are satisfied. The stacking action (included later

in this section) then uses the move action to construct pyramids. The key observa-

tion here is that at any given point several different instances of the rule tagged with

mv rule might be applicable and several different moves might be performed. The

predicate !opposes stipulates that two different move - actions for different block are

considered to be in conflict (because only one action at a time is allowed).

3For more information about planning with T R the reader is referred to [BK95].

79

@mv rule(Block, To) move(Block, From, To) : −
(on(Block, From) ∧ larger(To, Block))⊗
pickup(Block, From)⊗ putdown(Block, To).

pickup(X, Y) : − (isclear(X) ∧ on(X, Y))⊗
delete(on(X, Y))⊗ insert(isclear(Y)).

putdown(X, table) : − (isclear(X) ∧ not on(X, Z))

⊗insert(on(X, table)).

putdown(X, Y) : − (isclear(X) ∧ isclear(Y) ∧ not on(X, Z))

⊗delete(isclear(Y))⊗ insert(on(X, Y)).

!opposes(move(B1, F1, T1), move(B2, F2, T2)) : − B1 6= B2.

(24)

Note that the first rule is tagged with a term, mv rule(Block, To) and, according

to our conventions, such a rule is defeasible. Various heuristics can be used to im-

prove construction of plans for building pyramid of blocks. In particular, we can use

preferences among the rules to cut down on the number of plans that need to be looked

at. For instance, the following rule says that move - actions that move bigger blocks

are preferred to move - action that move smaller blocks (unless the blocks are moved

down on the table surface).

!overrides(mv rule(B2, T o), mv rule(B1, T o)) : −
larger(B2, B1) ∧ To 6= table.

(25)

Consider the configuration of blocks in (26).

on(blk1, blk4). on(blk2, blk5).

on(blk3, table). on(blk4, table). on(blk5, table).

isclear(blk1). isclear(blk2). isclear(blk3).

larger(blk2, blk1). larger(blk3, blk1). larger(blk3, blk2).

larger(blk4, blk1). larger(blk5, blk2). larger(blk2, blk4).

(26)

Although, both blk1 and blk2 can be moved on top of blk3, moving blk2 has higher

priority because it is larger.

For moving blocks to the table surface, we use the opposite heuristic, one which

80

prefers unstacking smaller blocks:

!overrides(mv rule(B2, table), mv rule(B1, table)) : − larger(B1, B2). (27)

In our example, this makes unstacking blk1 and moving it to the table surface

preferable to unstacking blk2, since the former is a smaller block. This blocks the

opportunity to then move blk4 on top of blk2 and subsequently put blk1 on top of blk4.

These preference rules can be applied to a pyramid-building program like this:

stack(0, Block).

stack(N, X) : − N > 0⊗move(Y, , X)⊗ stack(N − 1, Y)⊗ on(Y,X).

stack(N, X) : − (N > 0 ∧ on(Y, X))⊗ unstack(Y)⊗ stack(N, X).

unstack(X) : − on(Y, X)⊗ unstack(Y)⊗ unstack(X).

unstack(X) : − isclear(X) ∧ on(X, table).

unstack(X) : − (isclear(X) ∧ on(X, Y) ∧ Y 6= table)⊗move(X, , table).

unstack(X) : − on(Y, X)⊗ unstack(Y)⊗ unstack(X).

(28)

Testing the above program on the tabled interpreter shows that the aforesaid rule

preferences can significantly reduce the number of plans that need to be considered —

sometimes to just one plan. 2

Example 4.8 (Workflow modeling and execution example) This example il-

lustrates the use of defeasible reasoning for modeling business workflows. Transaction

Logic have been used before for modeling concurrent workflows in [DKRR98, Dav02,

DKR04]. Although, these works address a multitude of issues, including model check-

ing for verifying workflows, integration of the data flow into the control flow by using

transition conditions, sub - workflows, loops and iteration, and so on, priorities be-

tween different execution paths in the workflow haven’t been considered before, leaving

the task of implementing opposition and preferences between execution branches to the

programmer. Although we don’t talk in the T RDA defeasible reasoning about various

aspects of transaction logic used in modeling workflows, like concurrency and con-

straints on the interleaved execution, in this case of non - recursive workflows, this

81

program can be systematically transformed into a purely sequential T R program.

Let’s consider the following example of a workflow where various branches in the

workflow execution oppose other branches. In this scenario depicted in Figure 16,

a buy transaction is designed to make a financial transaction and a delivery of a

product.

start_buy

delivery

express
mail

gold
member

ground
mail

end

pay

pay
credit_card

pay cheque

b1

b3

b2

b4

OR

OR

PAR MERGE

Figure 16: A transaction workflow example for defeasible reasoning in T R

The following T RDA program implements this simple workflow using sub - work-

flow actions defined in T R. The execution process is non - deterministic and sev-

eral different OR-branches of the workflow can be chosen to be executed. In this

example, we represent the transaction buy as an interleaving of transactions, namely

pay|delivery, where these transactions can non - deterministically choose various op-

tions: pay with credit card or with wire transfer from a bank account and deliver

using express or ground mail. However, the policy of the store is that if the customer

is a gold member, then the delivery is done using express mail, otherwise using

ground mail, or, that a wire transfer from a bank account is preferred to a credit

card payment since the payment does not require a filling period. These actions are

specified below by the opposes and overrides rules, respectively. The action delivery,

defined by the second and the third rules, and the action pay, defined by the forth

and the fifth rules, combine sub - workflows (actions) determined by what internal

conditions are satisfied.

The key observation here is that at any given point certain workflow branches

are preferred over other workflow branches. For instance, a successful branch

@b4 pay cheque is preferred instead of the branch @b3 pay credit card although both

82

might be applicable and several different combinations of the concurrent - branches in

the workflow might be performed.

buy : − pay|delivery.

@b1delivery : − gold member ⊗ express mail.

@b2delivery : − ground mail.

@b3pay : − pay credit card.

@b4pay : − pay cheque.

!opposes(b1, b2).

!overrides(b1, b2).

!opposes(b4, b3).

!overrides(b4, b3).

gold member.

express mail : − insert(delivered express mail).

ground mail : − insert(delivered ground mail).

pay credit card : − credit card credentials⊗ insert(credit card payment).

pay cheque : − bank account⊗ insert(bank payment).

credit card credentials.

bank account.

(29)

2

4.4.2 T RDA Evaluation

Table 13 shows how the preferential heuristic of Example 4.7 helps reduce the number

of plans for pyramid construction (pruning away the plans for uninteresting pyra-

mids), space, and time requirements. It shows that the number of plans and space

requirements are reduced by an order of magnitude and time is reduced by a factor of

about 5. The discrepancy between improvements in the runtime and the reduction in

the number of plans can be explained by the fact that, even without the optimizing

heuristics, out implementation of T RDA takes advantage of sharing of partially con-

structed plans among the different searches. Therefore, the reduction in the runtime

is not as dramatic compared to the reduction and space and the number of plans.

83

We conclude the evaluation section with the extreme case where we have a world

of 10,000 blocks blk1, blk2, ..., blk10,000 being on the table with blk2 being larger than

the block blk1 and blk3 being larger than both blocks blk1 and blk2, and so on, and

an existential goal, (∃)stack(10, 000, blk10,000) for stacking a pyramid of 9,999 blocks

on the block blk10,000 as a base. The original tabling algorithm presented in [FK10a]

would try to try plan 9,999 different pyramids where one block blki, 1 ≤ i ≤ 9, 999,

would sit separately on the table and easily fail because this requires a very large

memory to store all reachable states. With the heuristic rules in Section 4.4.1, the

new algorithm will return a single pyramid containing the blocks blk2 to blk10,000 with

the block blk1 sitting separately on the table, the rule being that on top of each clear

block blki is preferred to stack the block blki−1 since it’s the largest clear block on the

table. This will succeed in a short time because it requires only 1,000 steps and only

1,000 intermediate states to store in tables.

84

World size No heuristics With preferential heuristics

10 blocks
Plans 120 8
Time(sec.) 0.078 0.016
Space(kBs) 155 26
Tabled states 296 36
Transient states 165 17
State comps. 605 89

20 blocks
Plans 1140 18
Time(sec.) 0.563 0.109
Space(kBs) 1162 60
Tabled states 2491 76
Transient states 1330 37
State comps. 4410 189

30 blocks
Plans 4060 28
Time(sec.) 2.390 0.438
Space(kBs) 3730 90
Tabled states 8586 116
Transient states 4495 57
State comps. 14415 289

40 blocks
Plans 9880 38
Time(sec.) 7.000 1.219
Space(kBs) 8562 120
Tabled states 20581 156
Transient states 10660 77
State comps. 33620 389

50 blocks
Plans 19600 48
Time(sec.) 17.109 2.938
Space(kBs) 16347 150
Tabled states 40476 196
Transient states 20825 97
State comps. 65025 489

Table 13: Time, space, tabled states and state comparisons for planning in the blocks
world with and without preferential heuristics

Chapter 5

Conclusion and future work

In this thesis we focused on Transaction Logic, a language for specifying actions

and state updates similar to Datalog rules with state changing elementary actions in

the body of rules. We have addressed the following aspects: tabled definite Horn-

Transaction Logic and defeasible reasoning in Transaction Logic.

Tabled Transaction Logic In the first part of the thesis we adapted the com-

monly used tabling technique [TS88, War92, SW94] from ordinary logic programs to

Transaction Logic. We have shown that the proof theory of Transaction Logic modi-

fied with tabling is sound, complete and it terminates for programs satisfying certain

conditions. We discussed a host of difficulties in implementing tabling for Transaction

Logic and proposed various optimizations. The implementation was developed within

the framework of XSB and it combines several different optimizations as plug - ins,

enabling us to compare the different optimizations.

Defaults and defeasibility for Transaction Logic In the second part of the

thesis we developed a well - founded semantics and a theory of defeasible reason-

ing for Transaction Logic. This extends our previous work on defeasible reasoning

in logic programming using argumentation theories from static logics to a logic of

state changes and transaction, which is capable to representing both declarative and

procedural knowledge. We also extend the Courteous style of defeasible reasoning

[Gro99] to incorporate actions, planning, and other dynamic aspects of knowledge

representation. We believe that TRDA can become a rich platform for expressing

85

86

heuristics about actions. Along the way, we defined the well founded semantics for

the T RDA extension of T R, an adaptation of the classical well founded semantics of

[VRS91] for the T R dynamic logic. The primary advantages of this part of this work

are: a direct model theory for defeasible Transaction Logic, a simple implementation

for Courteous and other defeasible reasoning approaches as argumentation theories

to this extension for T R, and better control over edge case behavior.

The appendix outlines our contributions to complex event processing using T R
with the goal of detecting event patterns of interest. We present a rule language

for event processing with several event operators and temporal relationships, used in

combining events into patterns, detecting complex events, and addressing issues like

event filtering, routing, and consumption.

We outline here the possible future directions of the research in this thesis. In the

short term, the following research problems are within grasp.

Formalisms for tabled evaluations developed for normal logic programs, such as,

SLG [CW96] and Extended SLG (SLGX) [Swi99], could be lifted to Transaction

Logic Programming. For instance, we believe that in the partial deduction procedure

for the SLG resolution, the SLG systems of the form (A : δ), where A is a subgoal and

δ is a sequence of annotated rules for A, can be extended with the state in which the

call to the goal A was made (two pairs would be considered different even if the two

subgoals are identical but the calling states are different). The six fundamental SLG

transformations can be modified with the above change for systems, so that each query

in a calling state can be transformed step by step into a set of answers and return

states. This new partial deduction technique would be a program transformation

for Transaction logic that specializes the transaction logic program for a serial goal

to produce a more efficient program equivalent to the original program as far as

the serial goal is concerned. Similarly, the SLGX algorithm from [Swi99] can be also

reformulated to fit T R. The SLG forest consisting of trees whose nodes have the form:

Answer Template : − Delay Set | GoaLList or fail, could include information

about the states where these calls were made (Call State). Moreover, the delay

literals in the Delay Set should also be annotated with the calling state Call State,

while answers should be annotated with their return states. We suspect that both

extensions are sound and search space complete for the existence of paths between

87

any two states with respect to the well-founded partial model for T R programs that

address a finite number of states and all non-floundering queries.

The effects of tabling on a large number of optimizations have not been stud-

ied and it’s another possible future direction. Such optimizations can include: the

transformations of T R programs described in [Hun96b] and [F.S00], pushing fluents

ahead of actions in the rule bodies and optimizations inherited from normal logic pro-

gramming like heuristics for join - order optimization complemented by complexity

analysis, and specialization.

In the long term, there are various interesting and highly challenging directions

to pursue. The following are a few of these directions. We plan to further validate

our results by incorporating an efficient implementation of B+ trees. We also believe

that applications on the new tabled and defeasible T R extensions have important ap-

plications in security frameworks, semantic Web services composition and execution,

and we plan to investigate these applications.

Bibliography

[ABGM01] G. Antoniou, D. Billington, G. Governatori, and M.J. Maher. Represen-

tation results for defeasible logic. ACM Trans. Comput. Log., 2(2):255–

287, 2001.

[AFR+10a] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stuehmer, Nenad

Stojanovic, and Rudi Studer. A rule-based language for complex event

processing and reasoning. In International Conference on Web Rea-

soning and Rule Systems (RR) (shortlisted for the Best Paper Award),

Bressanone/Brixen, Italy, September 2010.

[AFR+10b] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stuehmer, Nenad

Stojanovic, and Rudi Studer. Etalis: Rule-based reasoning in event

processing. In Reasoning in Event-based Distributed Systems, Studies in

Computational Intelligence series, Springer Verlag, LNCS, 2010.

[AFRS11] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic.

EP-SPARQL: A Unified Language for Event Processing and Stream

Reasoning. In 20thInternational World Wide Web Conference (WWW),

March 2011.

[AFSS09a] Darko Anicic, Paul Fodor, Roland Stuehmer, and Nenad Stojanovic.

Event-driven approach for logic-based complex event processing. In

IEEE International Conference on Computational Science and Engi-

neering (CSE), Vancouver, Canada, August 2009.

[AFSS09b] Darko Anicic, Paul Fodor, Roland Stühmer, and Nenad Stojanovic. An

approach for data-driven logic-based complex event processing. In The

88

BIBLIOGRAPHY 89

3rd ACM International Conference on Distributed Event-Based Systems

(DEBS), 2009.

[All83] James F. Allen. Maintaining knowledge about temporal intervals. In

Communications of the ACM 26, 11, 832-843, 1983.

[AM02] G. Antoniou and M.J. Maher. Embedding defeasible logic into logic

programs. In Int’l Conference on Logic Programming, pages 393–404,

2002.

[Bal04] Marcello Balduccini. Usa-smart: Improving the quality of plans in an-

swer set planning. In PADL, 2004.

[Bal09] Marcello Balduccini. Solving the wise mountain man riddle with an-

swer set programming. In Ninth International Symposium on Logical

Formalizations of Commonsense Reasoning, 2009.

[BE99] G. Brewka and T. Eiter. Preferred answer sets for extended logic pro-

grams. Artificial Intelligence, 109:297–356, 1999.

[BE00] G. Brewka and T. Eiter. Prioritizing default logic. In Intellectics and

Computational Logic – Papers in Honour of Wolfgang Bibel, pages 27–

45. Kluwer Academic Publishers, 2000.

[BH95] F. Baader and B. Hollunder. Priorities on defaults with prerequisites,

and their application in treating specificity in terminological default

logic. Journal of Automated Reasoning, 15(1):41–68, 1995.

[BK93] Anthony J. Bonner and Michael Kifer. Transaction logic programming.

In ICLP, pages 257–279, 1993.

[BK94a] A.J. Bonner and M. Kifer. Applications of transaction logic to knowl-

edge representation. In Proceedings of the International Conference on

Temporal Logic, number 827 in Lecture Notes in Artificial Inteligence,

pages 67–81, Bonn, Germany, July 1994. Springer-Verlag.

[BK94b] Anthony J. Bonner and Michael Kifer. An overview of transaction logic.

Theoretical Computer Science, 133 (2):205–265, 1994.

BIBLIOGRAPHY 90

[BK95] A.J. Bonner and Michael Kifer. Transaction logic programming (or

a logic of declarative and procedural knowledge). Technical Re-

port CSRI-323, University of Toronto, November 1995. http://

www.cs.toronto.edu/˜bonner/transaction-logic.html.

[BK96] Anthony J. Bonner and Michael Kifer. Concurrency and communication

in transaction logic. In JICSLP, pages 142–156, 1996.

[BK98a] A.J. Bonner and M. Kifer. Results on reasoning about action in transac-

tion logic. In B. Freitag, H. Decker, M. Kifer, and A. Voronkov, editors,

Transactions and Change in Logic Databases, volume 1472 of LNCS.

Springer-Verlag, Berlin, 1998.

[BK98b] A.J. Bonner and M. Kifer. The state of change: A survey. In B. Freitag,

H. Decker, M. Kifer, and A. Voronkov, editors, Transactions and Change

in Logic Databases, volume 1472 of LNCS. Springer-Verlag, Berlin, 1998.

[BK98c] Anthony J. Bonner and Michael Kifer. A logic for programming database

transactions. In Logics for Databases and Information Systems, pages

117–166, 1998.

[BN07] Moritz Y. Becker and Sebastian Nanz. A logic for state-modifying au-

thorization policies. In ESORICS, 2007.

[Bon97] Anthony J. Bonner. Modular composition of transaction programs with

deductive databases. In DBPL, pages 373–395, 1997.

[CKW93] W. Chen, Michael Kifer, and D.S. Warren. HiLog: A foundation

for higher-order logic programming. Journal of Logic Programming,

15(3):187–230, February 1993.

[Com79] Douglas Comer. Ubiquitous B-Tree. ACM Computing Surveys,

11(2):121–137, 1979.

[CW96] Weidong Chen and David Scott Warren. Tabled evaluation with delaying

for general logic programs. Journal of the ACM, 43 (1):20–74, 1996.

BIBLIOGRAPHY 91

[Dav02] Hasan Davulcu. A Game Logic for Workflows of Non-cooperative Ser-

vices. PhD thesis, State University of New York at Stony Brook, 2002.

[DKR04] Hasan Davulcu, Michael Kifer, and I. V. Ramakrishnan. Ctr-s: a logic

for specifying contracts in semantic web services. In WWW, pages 144–

153, 2004.

[DKRR98] Hasan Davulcu, Michael Kifer, C. R. Ramakrishnan, and I. V. Ramakr-

ishnan. Logic based modeling and analysis of workflows. In PODS,

pages 25–33, 1998.

[DPR96] A. Dovier, A. Policriti, , and G. Rossi. Integrating lists, multisets, and

sets in a logic programming framework. Applied Logic, 3:213–229, 1996.

[DS01] P.M. Dung and Tran Cao Son. An argument-based approach to reason-

ing with specificity. Artificial Intelligence, 133(1-2):35–85, 2001.

[DST03] James P. Delgrande, Torsten Schaub, and Hans Tompits. A framework

for compiling preferences in logic programs. Theory and Practice of

Logic Programming, 2:129–187, 2003.

[DST04] James P. Delgrande, Torsten Schaub, and Hans Tompits. Domain-

specific preferences for causal reasoning and planning. In Didier Dubois,

Christopher A. Welty, and Mary-Anne Williams, editors, KR, pages

673–682, Whistler, Canada, 2004. AAAI Press.

[DST07a] James P. Delgrande, Torsten Schaub, and Hans Tompits. A general

framework for expressing preferences in causal reasoning and planning.

J. Log. and Comput., 17:871–907, October 2007.

[DST07b] James P. Delgrande, Torsten Schaub, and Hans Tompits. A preference-

based framework for updating logic programs. In Chitta Baral, Gerhard

Brewka, and John S. Schlipf, editors, LPNMR, volume 4483 of Lec-

ture Notes in Computer Science, pages 71–83, Tempe, AZ, USA, 2007.

Springer.

BIBLIOGRAPHY 92

[DSTW04] J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A classification and

survey of preference handling approaches in nonmonotonic reasoning.

Computational Intelligence, 20(12):308–334, 2004.

[EFL+03] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel

Polleres. Answer set planning under action costs. J. Artif. Int. Res.,

19:25–71, August 2003.

[EFLP03] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Computing preferred

answer sets by meta-interpretation in answer set programming. Theory

and Practice of Logic Programming, 3(4):463–498, 2003.

[FA] Paul Fodor and Darko Anicic. Event TransAction Logic

Inference System (ETALIS). The ETALIS Web Site.

http://code.google.com/p/etalis.

[FA09] Paul Fodor and Darko Anicic. The fast flowers delivery use case.

In ETALIS CEP system. Included in Languages for event process-

ing, Event Processing Technical Society http: // www. ep-ts. com/

content/ view/ 79/ 109/ and the The Fast Flowers Delivery Use Case

chapter, accompanying the book Event Processing In Action by Opher

Etzion and Peter Niblett, Manning Publications, 2009.

[FAR+10] Paul Fodor, Darko Anicic, Sebastian Rudolph, Roland Stuehmer, Nenad

Stojanovic, and Rudi Studer. Processing out-of-order event streams in

etalis. In ACM International Conference on Distributed Event-Based

Systems (DEBS), fast abstract, Cambridge, United Kingdom, July 2010.

[FAR11] Paul Fodor, Darko Anicic, and Sebastian Rudolph. Results on out-of-

order event processing. In International Symposium on Practical Aspects

of Declarative Languages (PADL), Austin, Texas, USA, January 2011.

[FK10a] Paul Fodor and Michael Kifer. Tabling for transaction logic. In Proceed-

ings of the 12th international ACM SIGPLAN symposium on Principles

and practice of declarative programming, PPDP ’10, pages 199–208, New

York, NY, USA, 2010. ACM.

BIBLIOGRAPHY 93

[FK10b] Paul Fodor and Michael Kifer. Tabling for transaction logic. In

12thInternational ACM SIGPLAN Symposium on Principles and Prac-

tice of Declarative Programming (PPDP), Hagenberg, Austria, July

2010.

[FK11] Paul Fodor and Michael Kifer. Transaction logic with defaults and argu-

mentation theories. In 27thInternational Conference on Logic Program-

ming, ICLP ’11, July 2011.

[Fod09] Paul Fodor. Initial results on justification for the tabled transaction

logic. In AAAI Spring Symposium, 2009.

[F.S00] Amalia F.Sleghel. An optimizing interpreter for concurrent transaction

logic. Master’s thesis, University of Toronto, 2000.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics

for logic programming. In Proceedings of ICLP/SLP, pages 1070–1080.

MIT Press, 1988.

[GL98] Michael Gelfond and Vladimir Lifschitz. Action languages. Electron.

Trans. Artif. Intell., 2:193–210, 1998.

[GMS06] Guido Governatori, Zoran Milosevic, and Shazia Sadiq. Compliance

checking between business processes and business contracts. In Inter-

national Enterprise Distributed Object Computing Conference (EDOC),

pages 221–232, 2006.

[GR10] Guido Governatori and Antonino Rotolo. Norm compliance in business

process modeling. In International Web Rule Symposium (RuleML),

pages 194–209, 2010.

[Gro99] B.N. Grosof. A courteous compiler from generalized courteous logic

programs to ordinary logic programs. Technical Report Supplementary

Update Follow-On to RC 21472, IBM, July 1999.

[GRS04] Guido Governatori, Antonino Rotolo, and Shazia Sadiq. A model of dy-

namic resource allocation in workflow systems. In Klaus-Dieter Schewe

BIBLIOGRAPHY 94

and Hugh E. Williams, editors, Database Technology 2004, Dunedin,

New Zealand. Conference Research and Practice of Information Tech-

nology, pages 197–206, 2004.

[GS78] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for bal-

anced trees. In SFCS ’78: Proceedings of the 19th Annual Symposium on

Foundations of Computer Science, pages 8–21, Washington, DC, 1978.

IEEE Computer Society.

[GS98] Michael Gelfond and Tran Cao Son. Reasoning with prioritized defaults.

In Selected papers from the Third International Workshop on Logic Pro-

gramming and Knowledge Representation, pages 164–223, London, UK,

1998. Springer-Verlag.

[Hun96a] Samuel Hung. Transaction logic prototype, 1996.

[Hun96b] Samuel Y.K. Hung. Implementation and performance of transaction

logic in prolog. Master’s thesis, University of Toronto, 1996.

[Kif] Michael Kifer. FLORA-2: An object-oriented knowledge base language.

The FLORA-2 Web Site. http://flora.sourceforge.net.

[KLW95] Michael Kifer, G. Lausen, and J. Wu. Logical foundations of object-

oriented and frame-based languages. Journal of ACM, 42:741–843, July

1995.

[Liu98] M. Liu. Relationlog: a typed extension to datalog with sets and tuples.

Journal of Logic Programming, 36, 1998.

[Llo84] J.W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1984.

[MN06] F. Maier and D. Nute. Relating defeasible logic to the well-founded se-

mantics for normal logic programs. In Int’l Workshop on Non-monotonic

Reasoning, 2006.

[Mos74] Y. N. Moschovakis. Elementary Induction on Abstract Structures.

North-Holland, 1974.

BIBLIOGRAPHY 95

[Nut94] D. Nute. Defeasible logic. In Handbook of logic in artificial intelligence

and logic programming, pages 353–395. Oxford University Press, 1994.

[Pon92] E. Pontelli. Logic programming with sets: Theory and implementation.

Master’s thesis, University of Houston, 1992.

[Pra93] H. Prakken. An argumentation framework in default logic. Annals of

Mathematics and Artificial Intelligence, 9(1-2):93–132, 1993.

[Prz94] T.C. Przymusinski. Well-founded and stationary models of logic pro-

grams. Annals of Mathematics and Artificial Intelligence, 12:141–187,

1994.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–

132, 1980.

[RK07] Dumitru Roman and Michael Kifer. Reasoning about the behavior of

semantic web services with concurrent transaction logic. In VLDB, pages

627–638, 2007.

[RK08] Dumitru Roman and Michael Kifer. Semantic web service choreogra-

phy: Contracting and enactment. In Amit P. Sheth, Steffen Staab,

Mike Dean, Massimo Paolucci, Diana Maynard, Timothy W. Finin,

and Krishnaprasad Thirunarayan, editors, International Semantic Web

Conference, volume 5318 of Lecture Notes in Computer Science, pages

550–566, Karlsruhe, 2008. Springer.

[SI00] C. Sakama and K. Inoue. Prioritized logic programming and its applica-

tion to commonsense reasoning. Artificial Intelligence, 123(1-2):185–222,

2000.

[Sle00] Amalia F. Sleghel. Concurrent transaction logic prototype, 2000.

[SP02] Tran Cao Son and Enrico Pontelli. Reasoning about actions in priori-

tized default theory. In Logics in Artificial Intelligence, pages 369–381,

2002.

BIBLIOGRAPHY 96

[SP03] Tran Cao Son and Enrico Pontelli. Adding preferences to answer set

planning. In ICLP, 2003.

[SP04] Tran Cao Son and Enrico Pontelli. Reasoning about actions and plan-

ning with preferences using prioritized default theory. In Computational

Intelligence 20(1), 2004.

[SP06] Tran Cao Son and Enrico Pontelli. Planning with preferences using logic

programming. Theory Pract. Log. Program., 6:559–607, September 2006.

[SRV01] R. Sekar, I. V. Ramakrishnan, and A. Voronkov. Term indexing. In

Handbook of automated reasoning, pages 1853–1964. Elsevier Science

Publishers B. V., Amsterdam, The Netherlands, The Netherlands, 2001.

[SW94] T. Swift and D.S. Warren. An abstract machine for SLG resolution:

Definite programs. In Int’l Logic Programming Symposium, Cambridge,

MA, November 1994. MIT Press.

[Swi99] Terrance Swift. A new formulation of tabled resolution with delay. In

Proceedings of the 9th Portuguese Conference on Artificial Intelligence

(EPIA), pages 163—177, 1999.

[TS86] H. Tamaki and T. Sato. OLD resolution with tabulation. In Int’l Confer-

ence on Logic Programming, pages 84–98, Cambridge, MA, 1986. MIT

Press.

[TS88] Hisao Tamaki and Taisuke Sato. Old resolution with tabulation. In

ICLP, pages 84–98, 1988.

[VRS91] A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics

for general logic programs. Journal of ACM, 38(3):620–650, 1991.

[War92] David Scott Warren. Memoing for logic programs. Communications of

the ACM, 35 (3):93–111, 1992.

[WGK+09a] H. Wan, B.N. Grosof, M. Kifer, P. Fodor, and S. Liang. Logic pro-

gramming with defaults and argumentation theories. In ICLP, pages

432–448, 2009.

BIBLIOGRAPHY 97

[WGK+09b] Hui Wan, Benjamin Grosof, Michael Kifer, Paul Fodor, and Senlin

Liang. Logic programming with defaults and argumentation theories. In

Proceedings of the 25th International Conference on Logic Programming,

ICLP ’09, pages 432–448, Berlin, Heidelberg, 2009. Springer-Verlag.

[WZL00] K. Wang, L. Zhou, and F. Lin. Alternating fixpoint theory for logic

programs with priority. In First Int’l Conference on Computational

Logic (CL’00), number 1861 in Lecture Notes in Computer Science,

pages 164–178. Springer, 2000.

[YKZ03] Guizhen Yang, Michael Kifer, and Chang Zhao. FLORA-2: A rule-based

knowledge representation and inference infrastructure for the Semantic

Web. In International Conference on Ontologies, Databases and Appli-

cations of Semantics (ODBASE-2003), volume 2888 of Lecture Notes in

Computer Science, pages 671–688. Springer, November 2003.

[ZWB01] Y. Zhang, C.M. Wu, and Y. Bai. Implementing prioritized logic pro-

gramming. AI Communications, 14(4):183–196, 2001.

Appendix A

Application of Transaction Logic in

CEP

In parallel to our work presented in the main part of the thesis we have applied T R
to the area of Complex Event Processing (CEP). In this appendix, we outline this

additional work. For more details the reader can consult several documents about the

ETALIS language for event composition [AFSS09a, AFR+10a, AFR+10b, AFSS09b,

FAR+10, FAR11].

CEP has the task of processing streams of events with the goal of detecting event

patterns of interest. An event represents something that occurs, happens or changes

the current state of affairs. For example, an event may signify a problem, a threshold,

an opportunity, an information becoming available or a deviation. An atomic event is

defined as an instantaneous occurrence of interest at a point in time. In order to de-

scribe more complex dynamic matters that involve several atomic events, formalisms

have been created which allow for combining atomic into complex events using event

operators and temporal relationships. The goal of CEP is to detect complex events

according to a set of event patterns, addressing other issues like event filtering, rout-

ing, consumption and transformation. It is typically assumed that events in an event

stream are totally ordered, that is, the order in which events are received by the system

is the same as their time stamp order.

We implemented such a CEP system in Prolog using T R named ETALIS 1

1ETALIS: http://code.google.com/p/etalis

98

APPENDIX A. APPLICATION OF TRANSACTION LOGIC IN CEP 99

[AFSS09a, AFR+10a, AFR+10b, AFSS09b] with various extensions: support for

garbage collection [FAR11], processing of out - of - order event streams [FAR+10],

time - based and count - based windowing [FA], justification and debugging, support

for streams of RDF triples in the Semantic Web domain [AFRS11] and extended

applications [FA09].

In the ETALIS system, the events occur over time intervals, time instants as well

as durations being modeled as nonnegative rational numbers q ∈ Q+. Events can

be atomic or complex, while no distinction is made in their applicability to rules. In

ETALIS, an atomic event refers to an instantaneous occurrence, i.e., the time interval

length is zero. Although not a requirement, atomic events are ground (i.e. predicates

followed by arguments which are terms not containing variables). Intuitively, the

arguments of a ground atom describing an atomic event denote information items

(i.e. event data) that provide additional information about the event.

Events participate in composition rules to trigger complex events. The syntax of

ETALIS Language for Events allows for the description of event patterns as event

rules of the form: complexEvent← eventPattern. When an event stream of atomic

events is fed into the system, all patterns are considered and complex events are

triggered. A variable assignment is a mapping µ : V ar → Con assigning a value to

every variable. The event stream is formalized as a mapping ε : Ground→ 2Q+
from

ground predicates into sets of nonnegative rational numbers. It thereby indicates at

what time instants what simple events occur. As a side condition, it is required that ε

is free of accumulation points, i.e. for every q ∈ Q+, the set {q′ ∈ Q+ | q′ < q and q′ ∈
ε(g) for some g ∈ Ground} is finite.

We define an interpretation I : Ground→ 2Q+×Q+
as a mapping from the ground

atoms to sets of pairs of nonnegative rationals, such that q1 ≤ q2 for every 〈q1, q2〉 ∈
I(g) for all g ∈ Ground. Given an event stream ε, an interpretation I is called a

model for a rule set R – written as I |=ε R – if the following conditions are satisfied:

C1 〈q, q〉 ∈ I(g) for every q ∈ Q+ and g ∈ Ground with q ∈ ε(g)

C2 for every rule complexEvent ← eventPattern and every variable assignment

µ , Iµ(complexEvent) ⊆ Iµ(eventPattern) where Iµ is inductively defined as

follows:

APPENDIX A. APPLICATION OF TRANSACTION LOGIC IN CEP 100

pattern Iµ(pattern)

q {〈q, q〉} for all q ∈ Q+

p1 seq p2 {〈q1, q4〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q3, q4〉 ∈ Iµ(p2)

for some q2, q3 ∈ Q+ with q2 < q3}
p1 and p2 {〈min(q1, q3),max(q2, q4)〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q3, q4〉 ∈ Iµ(p2)

for some q2, q3 ∈ Q+}
p1 par p2 {〈min(q1, q3),max(q2, q4)〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q3, q4〉 ∈ Iµ(p2)

for some q2, q3 ∈ Q+ with max(q1, q3) < min(q2, q4)}
p1 or p2 Iµ(p1) ∪ Iµ(p2)

p1 equals p2 Iµ(p1) ∩ Iµ(p2)

p1 meets p2 {〈q1, q3〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q2, q3〉 ∈ Iµ(p2)

for some q2 ∈ Q+}
p1 starts p2 {〈q1, q3〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q1, q3〉 ∈ Iµ(p2)

for some q2 ∈ Q+ with q2 < q3}
p1 finishes p2 {〈q1, q3〉 | 〈q2, q3〉 ∈ Iµ(p1) and 〈q1, q3〉 ∈ Iµ(p2)

for some q2 ∈ Q+ with q1 < q2}

The intuitive meanings for the patterns presented above are the following (we

assume that instances of two events, p1 and p2, are occurring):

• p1 seq p2 represents a sequence of two events, i.e. an occurrence of p1 is followed

by an occurrence of p2; thereby p1 must end before p2 starts.

• p1 and p2 is a pattern that is detected when instances of both p1 and p2 occur

no matter in which order.

• p1 par p2 occurs when instances of both p1 and p2 happen, provided that their

intervals have a non - zero overlap.

• p1 or p2 is triggered for every instance of p1 or p2.

• p1 equals p2 is triggered when the two events occur exactly at the same time

interval.

APPENDIX A. APPLICATION OF TRANSACTION LOGIC IN CEP 101

• p1 meets p2 happens when the interval of an occurrence of p1 ends exactly

when the interval of an occurrence of p2 starts.

• p1 starts p2 is detected when an instance of p2 starts at the same time as an

instance of p1.

• p1 finishes p2 is detected when an instance of p2 ends at the same time as an

instance of p1.

It is worth noting that the defined pattern language captures the set of all possible

13 relations on two temporal intervals as defined in [All83]. The set can also be used

for rich temporal reasoning.

Given an interpretation I and some q ∈ Q+, we let I|q denote the interpretation

defined via I|q(g) = I(g) ∩ {〈q1, q2〉 | q2− q1 ≤ q}.
Given two interpretations I and J , we say that I is preferred to J if there exists

a q ∈ Q+ with I|q ⊂ J |q.
A model I is called minimal if there is no other model preferred to I. It is easy

to show that for every event stream ε and rule set R there is a unique minimal model

Iε,R. Given an atom a and two rational numbers q1, q2, we say that the event a[q1,q2]

is a consequence of the event stream ε and the rule base R (written ε,R |= a[q1,q2]), if

〈q1, q2〉 ∈ Iε,Rµ (a) for some variable assignment µ. The behavior of the event stream

ε beyond the time point q2 is irrelevant for determining whether ε,R |= a[q1,q2] is

the case. For any two event streams ε1 and ε2 with ε1(g) ∩ {〈q, q′〉 | q′ ≤ q2} =

ε2(g) ∩ {〈q, q′〉 | q′ ≤ q2} we have that ε1,R |= a[q1,q2] exactly if ε2,R |= a[q1,q2]. This

justifies to take the perspective of ε being only partially known (and continuously

unveiled along a time line) while the task is to detect event - consequences as soon

as possible.

An example of CEP rules is the transitive closure rules in (30). The event e of

arity 2 is an atomic event, while the event tc of arity 2 is a composed event computing

the transitive closure of the event stream composed of instances of the event e. In

this example and in the semantics above, the event pattern is considered under the

so - called unrestricted policy. In event processing, consumption policies deal with an

issue of selecting particular events occurrences when there are more than one event

instance applicable and consuming events after they have been used in patterns.

APPENDIX A. APPLICATION OF TRANSACTION LOGIC IN CEP 102

tc(X, Y)← e(X, Y).

tc(X, Y)← tc(X,Z) seq e(Z, Y).
(30)

We now define how T R is used for the run - time detection of complex events

in ETALIS. Lets consider the CEP rule e ← a seq b seq c.. The first step in the

algorithm is events coupling or binarization of events, an operation that break event

formulas into rules with one operand and at most two events. For example, now we

can rewrite the rule e ← a seq b seq c. as ie1 ← a seq b, and the e ← ie1 seq c.

Every monitored event (either atomic or complex), including intermediate events,

will be assigned with one or more rules, fired whenever that event occurs. Using the

binarization, it is more convenient to construct T R rules for three reasons. First, it

is easier to implement an event operator when events are considered on “two by two”

basis. Second, the binarization increases the possibility for sharing among events

and intermediate events, when the granularity of intermediate patterns is reduced.

Third, the binarization eases the management of rules. Each new use of an event (in

a pattern) amounts to appending one or more rules to the existing rule set. However

what is important for the management of rules, we don’t need to modify existing rules

when adding new ones.

The second step in the algorithm accepts binary rules and produces T R rules

belonging to two different classes of rules: goal inserting rules and checking rules.

The sequence operation in the event binary rule ie1 ← a SEQ b is converted into the

following rules:

a(T1, T2) : −trigger all(a s(T1, T2)).

a s(T1, T2) : −insert(goal(b, a(T1, T2), e1)).

b(T3, T4) : −trigger all(b s(T3, T4)).

b s(T3, T4) : −goal(b, a(T1, T2), ie1), T2 < T3, ie1(T1, T4).

The first and the third rules call all the rules triggered by the event in an arbitrary

order where a s and b s are the various definitions of a and b in the program. The

second rule will fire when a occurs, and the meaning of the goal it inserts is as follows:

“an event a has occurred at [T1, T2],
2 and we are waiting for b to happen in order

to detect ie1”. Obviously, the goal does not carry information about the times for

2Apart from the time stamp, an event may carry other data parameters. They are omitted here
for the sake of readability.

APPENDIX A. APPLICATION OF TRANSACTION LOGIC IN CEP 103

b and ie1, as we don’t know when they will occur. The second event in the goal

denotes the event that has just occurred, while the role of the first event in the goal

is to specify what we are waiting for to detect an event that is on the third position

in the goal. The forth rule belongs to the class of checking rules. It checks whether

certain prerequisite goals already exist in the database, in which case it triggers the

more complex event. The time occurrence of ie1 (i.e. T1, T4) is defined based on the

occurrence of constituting events (i.e. a(T1, T2), and b(T3, T4)). Calling ie1(T1, T4),

this event is effectively propagated either upward (if it is an intermediate event) or

triggered as a finished complex event.

The algorithm sketched above was applied for all operands and the resulting set

of event calls (and truth values in the final database if we would insert corresponding

fluents for these event calls in the database) matches the events in the fixed point

semantics of the ETALIS language defined above. Both the above translation and our

fixed point semantics is defined for the the “unrestricted” consumption policy (we are

still investigating if similar fixed point semantics and run - time detection algorithms

can be developed for other consumption policies). For further details on ETALIS the

reader is referred to [AFSS09a, AFR+10a, AFR+10b, AFSS09b, FAR+10, FAR11].

Appendix B

Appendix: Tabled T R Soundness

and Completeness

In this appendix, we prove the soundness and completeness of the inference system

FT developed in Section 3.1. For convenient reference, we reproduce the axioms and

inference rules of system FT below. If P is a transaction base and Di (1 ≤ i) are

database state identifiers, then FT is the following system of axioms and inference

rules.

Axioms: P,D1 --- ` state
Rule 1a. Applying transaction definitions for tabled predicates:

Suppose b’s predicate is tabled and there is no dominating pair (c,D1) in the

table space. Let a ← φ be a rule in P whose variables have been renamed

apart from b⊗rest (i.e., the rule shares no variables with the goal) and suppose

that a and b unify with the most general unifier σ. Then:

P,D1 --- ` (∃) (φ⊗ rest)σ
P,D1 --- ` (∃) (b⊗ rest)
(b,D1) ∈ table space

∀ P,D1 . . .Di ` bγ, (bγ,Di) ∈ answer table(b,D1)

That is, given a sequent P,D1 --- ` (∃) (φ⊗ rest)σ, the rule allows us to derive

P,D1 --- ` (∃) (b⊗ rest). In addition, (b,D1) is added to the table space, and

for all γ such that P,D1 . . .Di`bγ is derivable, the answer (bγ,Di) is added to

the answer table for (b,D1).

104

APPENDIX B. APPENDIX: TABLED T R SOUNDNESS AND COMPLETENESS 105

Rule 1b. Returning answers from answer tables:

Suppose: (1) b’s predicate symbol is declared as tabled, (2) there is a dominating

pair (c,D1) in the table space, (3) the answer table for (c,D1) has an entry

(a,Di), and (4) a and b unify with most general unifier σ. Then:

P,Di --- ` (∃) (rest)σ

P,D1 --- ` (∃) (b⊗ rest)

Rule 1c. Applying transaction definitions for non - tabled predicates:

This rule is identical to Rule 1 in the proof theory of Section 2.1: let a ← φ

be a rule in P and a’s predicate symbol is not tabled. Assume that this rule’s

variables have been renamed apart from b ⊗ rest and that a and b unify with

most general unifier σ. Then:

P,D1 --- ` (∃) (φ⊗ rest)σ
P,D1 --- ` (∃) (b⊗ rest)

Rule 2. Querying the database:

If b is a fluent literal, bσ and rest σ share no variables, and bσ is true in the

database state D1, then:

P,D1 --- ` (∃) rest σ
P,D1 --- ` (∃) (b⊗ rest)

Rule 3. Performing elementary updates :

If bσ and rest σ share no variables, and b σ is an elementary action that changes

state D1 to state D2, then:

P,D2 --- ` (∃) rest σ
P,D1 --- ` (∃) (b⊗ rest)

Theorem 3.2 (Soundness and Completeness)

Suppose φ is a definite serial-Horn goal.

Soundness: If there is a tabled deduction of the sequent P,D1 --- ` (∃)φ with

the execution path 〈D1 . . .Dn〉 then the executional entailment P,D1 . . .Dn |= (∃)φ
holds.

Completeness: If the executional entailment P,D1D2 . . .Dn−1Dn |= (∃)φ holds

APPENDIX B. APPENDIX: TABLED T R SOUNDNESS AND COMPLETENESS 106

then there exists a tabled deduction of the sequent P,D1 --- ` (∃)φ with an execution

path 〈D1,D
′
2 . . .D

′
m,Dn〉 that starts in the database state D1 and ends in Dn.

Note that the path 〈D1,D
′
2 . . .D

′
m,Dn〉 has only the extremities D1 and Dn, but

does not have to be identical with the path 〈D1,D2 . . .Dn−1,Dn〉 as a result of the

fact that the intermediate states D′2, . . . ,D
′
m can be different from the intermediate

states D2, . . . ,Dn−1.

Proof:

Soundness: The inference system FT is sound if all its axioms and inference rules

are sound. First, we consider the axioms P,D1 --- ` state. For any database state

D1, we have M,D1 |= state by definition of the propositional constant state for all

models M of P. Thus, we have P,D1 |= state.

Inference Rule 1: To prove the soundness of the inference rules 1a, 1b and 1c,

suppose that a ← φ is a rule in P whose variables have been renamed apart from

b⊗ rest, a and b unify with the most general unifier σ.

Rules 1a and 1c: Suppose that b is a call to a tabled predicate encountered

for the first time in a current state D1 (i.e., no dominating pair (c,D1) is in the

table space) and we apply Rule 1a, or b is is a call to a non-tabled predicate and

we apply Rule 1c, and P,D1 . . .Dn |= (∃) (φ ⊗ rest)σ holds. For every model M

of P, M, 〈D1 . . .Dn〉 |= (∃) (φ⊗ rest)σ holds by executional entailment. Therefore,

M, 〈D1 . . .Dn〉 |=ν (φ⊗rest)σ for some variable assignment ν and, by Definition 2.8,

we also have: M, 〈D1 . . .Di〉 |=ν φσ and M, 〈Di . . .Dn〉 |=ν rest σ for some split

〈D1 . . .Di〉 ◦ 〈Di . . .Dn〉 of the path 〈D1 . . .Dn〉. Due to the fact that M is a

model of P, it is also a model of a ← φ and M, 〈D1 . . .Di〉 |=ν aσ holds. On

account that a and b unify with the most general unifier σ, aσ = bσ, it results that

M, 〈D1 . . .Di〉 |=ν bσ holds. By Definition 2.8, we also have that M, 〈D1 . . .Dn〉 |=ν

(b⊗ rest)σ and M, 〈D1 . . .Dn〉 |= (∃) (b⊗ rest) hold.

Rule 1b: There exists a dominating pair (c,D1) in the table space such that bγ =

cγ. Suppose a and c unify with the most general unifier σ: aσ = bσ. Hence, aσγ =

bγσ. Since M, 〈D1 . . .Di〉 |=ν aσ holds, we obtain that M, 〈D1 . . .Di〉 |=ν bγσ holds.

Hence, by Definition 2.8, M, 〈D1 . . .Dn〉 |=ν (b ⊗ rest)γσ and M, 〈D1 . . .Dn〉 |=
(∃) (b⊗ rest) hold.

APPENDIX B. APPENDIX: TABLED T R SOUNDNESS AND COMPLETENESS 107

The proof for the inference Rules 2 and 3 is identical to the classical T R case

[BK95], so we skip it. Since all the axioms and the inference rules used to prove se-

quents of the form P,D --- ` (∃)φ are sound, it results that the executional entailment

P,D1 . . .Dn |= (∃)φ holds.

Completeness:

Lets consider a serial goal b. We will prove the following claim. Here we use `n-t

to denote non-tabled inference in the proof theory F I from [BK95] and ` for the

tabled inference system FT .

Claim B.1: For any given path 〈D1,D2 . . .Dn−1,Dn〉, if P,D1 ---`n−tb with

some execution path 〈D1,D2 . . .Dn−1, Dn〉, then P,D1 ---`b with an execution path

〈D1,D
′
2 . . .D

′
m, Dn〉 with the same extremities D1 and Dn.

Using Claim B.1 and the completeness of the non-tabled inference system F I , we

can also deduce the completeness of the tabled inference system. Namely, suppose the

executional entailment P,D1D2 . . .Dn−1Dn |= b holds. By completeness of the non-

tabled inference system, it follows that P,D1 ---`n−t b is derivable with the execution

path 〈D1,D2 . . .Dn−1,Dn〉. By the above Claim B.1, it follows that P,D1 ---`b with

some execution path 〈D1,D
′
2 . . .D

′
m, Dn〉 that ends in the final state Dn.

It remains to prove Claim B.1. We will prove it by induction on the number of ap-

plications of inference axioms and rules of the non-tabled inference system N ≥ 1. We

will use a stronger variant of the non-tabled inference system F I , denoted F IS, where

sequents have the form P,D1 . . .Dn`n−tψ. The inference rules 1, 2 and 3 are changed

by replacing D1 --- with D1 . . .Dn and D2 --- with D2 . . .Dn everywhere. This is a

simple extension of the inference system Ground F I in [BK95] which also applies

to non-ground transactions (Ground =I assumes that all transaction invocations are

ground, but we don’t make this assumption in F IS). We will also use a stronger vari-

ant of the proof theory FT , where sequents have the form P,D1, . . .Dn`ψ. We will

denote the stronger theory with FTS . Similarly to [BK95], it can be shown that any

proof in this stronger theory can be converted to a proof in the original theory. Rule

1a is changed as follows:

APPENDIX B. APPENDIX: TABLED T R SOUNDNESS AND COMPLETENESS 108

P,D1,D2 . . .Dn ` (∃) (φ⊗ rest)σ
P,D1,D2 . . .Dn ` (∃) (b⊗ rest)

(b,D1) ∈ table space

∀ P,D1 . . .Di ` bγ, (bγ,Di) ∈ answer table(b,D1)

Rule 1b is changed as follows: suppose (1) b’s predicate symbol is declared as tabled,

(2) there is a dominating pair (c,D1) in the table space, (3) the answer table for

(c,D1) has an entry (a,Di), and (4) a and b unify with most general unifier σ. Then:

P,Di . . .Dn ` (∃) (rest)σ

P,D1 . . .Di . . .Dn ` (∃) (b⊗ rest)
The rest of the inference rules (i.e., 1c, 2 and 3) are changed by replacing D1 --- with

D1 . . .Dn and D2 --- with D2 . . .Dn everywhere.

We now return to proving the Claim B.1 using the theory FTS . Suppose N = 1.

Then b is a fluent, an elementary update, or the propositional constant state. These

can be derived only via the inference rules 2, 3, or the axioms. Since these steps are

identical for the tabled and the non-tabled inference systems, the claim follows.

For the induction step, consider the sequent Σ = P,D1 . . .Dn`n−t ∃b ⊗ rest

derived via N + 1 derivation steps in the non-tabled inference system F IS. Consider

the last derivation step N + 1 where the sequent Σ was derived from some sequent

Σ′ of the form P,D′1,D
′
2 . . .D

′
k`n−t ∃ ψ. For the final step, we have an application

of some inference rule in F IS as follows:

Σ′ = P,D′1,D
′
2 . . .D

′
k−1,D

′
k`n−t ∃ ψ

Σ = P,D1,D2 . . .Dn`n−t ∃ b⊗ rest
(31)

The sequent Σ′ must have been derived in ≤ N steps, thus, by the inductive hypoth-

esis, we have that some sequent Υ′ of the form P,D′1,D
′′
2 . . .D

′
k−1,D

′
k` ∃ ψ can be

derived in the tabled inference system FTS . We will prove that some Υ of the form

P,D1,D
′′′
2 . . .D

′′′
m,Dn` ∃ b⊗ rest can be derived in the tabled inference system.

We now consider the different possibilities how Σ could have been derived from

Σ′, i.e., where (31) is Rule 1, 2 or 3 of F IS.

The cases of Rules 2 and 3 are trivial, since these rules are identical in F IS and in

FTS .

APPENDIX B. APPENDIX: TABLED T R SOUNDNESS AND COMPLETENESS 109

Suppose that (31) is rule F IS. Then there is a rule head← body in the program P

whose variables have been renamed apart from b⊗rest and head unifies with b with the

most general unifier σ. Thus, in the above sequent Σ′, we have that ψ = body⊗rest,
n = k and D1 = D′1, . . . ,Dn = D′k, Υ′ = P,D1,D

′′
2 . . .D

′′
n−1,Dn` ∃ body ⊗ rest and

Υ = P,D1,D
′′′
2 . . .D

′′′
m,Dn` ∃ b⊗ rest. We need to show that Υ is derivable in FTS .

Suppose the predicate symbol for the call b is tabled and there is no dominating

pair (c,D1) in the table space. Rule 1a of FTS is applicable and Υ can be derived

from Υ′. In addition, for all γ such that P,D1 . . .Di ` b σγ, the answer (b σγ,Di) is

added to the answer table for (b,D1).

Suppose the predicate symbol for the call b is tabled and there is a dominat-

ing pair (c,D1) in the table space. Since

there is a proof of P,D1,D2 . . .Dn−1,Dn`n−t(b ⊗ rest)σ, there must be a proof of

P,D1,D2 . . .Di−1,Di`n−tbσ and of Σ′′ = P,Di,Di+1 . . .Dn−1,Dn`n−trestσ. These

proofs have fewer than N + 1 steps, so, by induction, there is a proof in FTS of

P,D1,D2 . . .Dr,Di`bσ and a proof of Υ′′ = P,Di,D
′′
i+1 . . .D

′
m,Dn`restσ. There-

fore, there must be an answer (bσ,Di) in the answer table for (c,D1), by the definition

of Rule 1a. Therefore, we can apply Rule 1b to the sequent Υ′′ and derive Υ.

If b is non-tabled, then Rule 1c of FTS applies to Υ′ in exactly th same way as

Rule 1 of F IS applies to Σ′.

2

Appendix C

Tabled T R Termination

In this Appendix we prove termination of the inference system FT developed in

Section 3.1. A transaction may have: an infinite number of different answers on

various paths, a finite number of answer substitutions on infinitely many paths, or a

finite number of answers on a finite number of paths. The case of an infinite number

of answer substitutions appears due to function symbols and infinite recursive relation

derivations in a similar manner to the classical Horn logic programming. The case

of a finite number of answer substitutions on infinitely many paths occurs due to

infinitely many database transformations. If the number of databases generated by

the elementary updates in a program is finite, then there is a finite number of pairs of

path extremities (InitialState, F inalState). If the program has no function symbols

with arity greater than 0, then the proof for a serial-Horn goal always terminates

due to the fact that there is a finite number of tabled calls and a finite number of

databases, resulting in a finite number of answer substitutions and final database

states. We have that for any tabled atomic subgoal b a dominating call c will be

solved with the Inference Rule 1a., all the other subsequent calls being fed with

results obtained for this dominant goal. Naturally, from the Inference Rule 1b, it can

be inferred that for all goals rest, if b ⊗ rest is the current goal in some database

D with b’s predicate symbol declared as tabled and a dominating pair (c,D) in the

table space, then the inference rule 1.b is applied taking an answer for (c,D).

Theorem 3.3 (Termination): Let P be a program with no function symbols with

110

APPENDIX C. TABLED T R TERMINATION 111

arity greater than 0, that is, it allows only constants (i.e., 0-ary function symbols).

Let us further assume that all recursive predicates in P are marked as tabled. Then,

for any definite serial-Horn goal φ, the tabled proof theory finds one or more proofs

of P,D ---`(∃)φ and terminates.

Proof: The inference Rules 1b, 2 and 3 cannot be applied an infinite number of

times because they reduce the size of the transaction formula, resulting that either

the Rule 1c or the Rule 1a are applied infinitely many times. The Rule 1c applies only

to non-tabled predicates that are non-recursive (all recursive predicates are tabled by

the theorem hypothesis). The Rule 1a is applicable only for dominating goals, but

since there are no function symbols, the number of different dominating goals is finite.

It follows that all inference rules are applied finitely many times.

2

Note that we can compute upper bounds for the derivation trees defined in Section

3.1.1. The tabled-T R derivation tree for any definite serial-Horn goal φ in a database

D corresponds to the proofs of P,D --- |= (∃)φ because for every application of the

inference rules a new child node and an arc are created (construction correspondence

from the proof theory to the tabled derivation trees). Since there are no function

symbols there are a finite number of queries and a finite number of elementary updates

because each ground fluent can be queried, inserted or deleted and there is only a

finite number of fluents. If m is an upper bound on the arity of fluent predicates and

there are a finite number of C constants in the system, then there can be at most Cm

different tuples for each fluent. Let F be this number of ground fluents in the system

that can be constructed from the initial database and the transaction base. We can

have at most 2F different database states, because this is the set of all subsets of F ,

including the empty set and F itself.

Following a similar reasoning as above (C is the finite number of constants in the

system, m is an upper bound on the arity of tabled predicates), there can be at most

Cm different ground calls to tabled predicates. For each ground call, there can be

2m non-ground calls because every argument position can be taken by a variable. As

a consequence, under such conditions, there will be a limited number T of variant

calls to tabled predicates (it is less than 2m ∗ Cm for each tabled predicate symbol).

Additionally, we can also see that the elementary updates are also limited to 2 ∗ F

APPENDIX C. TABLED T R TERMINATION 112

because each fluent can only be inserted or deleted. We can see that there can be

a finite number of sequents (T ∗ 2F) in the proof for any serial goal. This is also

the finite number of producer tabled left-most variant subgoals, and, from the non-

repeating property for tabled derivation trees, we can also see that the number of

nodes in the tree for these producer subgoals is finite.

The number of entries in the answer table for each of the producer subgoals are

also finite because there is a finite number of substitutions and a finite number of

databases. As a consequence, the number of arcs originating in dominated sequents

in the derivation tree is also finite.

We can also see that the elementary updates are also limited to 2 ∗ F because

each fluent can only be inserted or deleted and there is a finite number of fluents.

Finally, we have a finite number of dominated goals because if R is the number of

rules in the program and B is the maximal number of literals in the bodies of all

the clauses in the program, then each node in the tree has a serial goal with at most

R ∗ B ∗ D atoms (each rule can be applied for each database, with the maximum

number of body literals). This gives us the limit on the depth of each branch in the

tree. The result that the number of nodes in the tree is finite follows from the fact

that we have a finite depth for each branch and a finite number of nodes (in effect, a

finite branching factor for each node).

Appendix D

Unique Least Model for not -free

T R Programs

In this appendix, we prove that any not -free T R program has a unique least partial

model (see Section 4.1).

Theorem 4.4 (Unique Least Partial Model for serial not -free T R pro-

grams) If P is a not -free T R program, then P has a least Herbrand model, denoted

LPM(P).

Proof: Let P+ denote the positive program obtained from P by replacing all body

literals of the form uπ, where π is a path, with tπ. (We will call such literals u -

literals and t - literals, respectively.) Similarly, let denote P− the positive program

obtained by deleting the rules whose body includes u - literals. (This is equivalent to

replacing all u - literals with a propositional constant f that is false on any paths).

Note that both P+ and P− have unique minimal Herbrand models, since they do not

have the special literals uπ and thus are simply serial-Horn clauses; these minimal

models are 2 - valued, as shown in [BK95].

Let M+ be the least model of P+ and M− be the least model of P−. As noted

above, both of these models are 2 - valued. Clearly, P− is a subprogram of P+, so M+

is also a model of P−. Since M− is the least model of P−, it follows that M− �M+.

113

APPENDIX D. UNIQUE LEAST MODEL FOR NOT -FREE T R PROGRAMS 114

Thus, for any path π and any not -free literal L

M−(π)(L) ≤M+(π)(L) and M+(π)(notL) ≤M−(π)(notL) (32)

This means that all not -free literals that are true in M−(π) are also true in M+(π)

and all not - literals that are true in M+(π) are also true in M−(π).

We construct the least model M of P as a path structure such that, for any path

π, M(π) is the classical Herbrand structure where

− M(π)(L) = t iff M−(π)(L) = t

M(π)(notL) = f iff M−(π)(notL) = f

− M(π)(L) = f iff M+(π)(L) = f

M(π)(notL) = t iff M+(π)(notL) = t

− otherwise, M(π)(L) = M(π)(notL) = u

(33)

for any ground not -free literal L. We will now prove that M is LPM(P), the unique

minimal model of P.

By (32), M is well - defined, since it is not possible that M−(π)(L) =

t and M+(π)(L) = f or that M−(π)(notL) = f and M+(π)(notL) = t.

Next, we show that M is a partial model of P. Suppose C is a rule in P of the

form H : −B1 ⊗ ... ⊗ Bn, such that none of the Bis is a u - literal. By definition,

C belongs both to P− and P+. If, for some path π, M(π)(B1 ⊗ ... ⊗ Bn) = t,

then M−(π)(B1 ⊗ ... ⊗ Bn) = t, by the construction of M in (33). Since M− is a

model of C, the head H of C must be true in M−(π) hence also in M(π). Thus,

M(π) makes C true. If M(π)(B1 ⊗ ... ⊗ Bn) = f then M(π) satisfies C trivially. If

M(π)(B1 ⊗ ...⊗Bn) = u, it means that, for some split π = π1 ◦ ... ◦ πn, M(πi)(Bi) is

either u or t. By (33), this implies M+(πi)(L) = t, and since M+ is also a model of

C it follows that H must be true in M+(π). The definition of M then implies that

H must have the truth value u or t in M(π), so M(π) satisfies C once again.

Next, suppose that C is a clause H : −B1 ⊗ ...⊗Bn in P \P−, and suppose π is

a path with a split π = π1 ◦ ... ◦ πn such that none of the M(πi)(Bi) = f . Note that

since C is not in P−, at least one of the Bis must be uπi for some subpath πi. So,

it must be the case that M(B1 ⊗ ...⊗ Bn) = u (it cannot be t because of uπi and it

APPENDIX D. UNIQUE LEAST MODEL FOR NOT -FREE T R PROGRAMS 115

cannot be f because of the assumption that none of the M(πi)(Bi)s is f). This implies

(again by (33)) that none of the M+(πi)(Bi)s equals f . Therefore M(πi)(Bi) = t for

all body literals in the corresponding clause C+ in P+ (one that is obtained from C

by changing each uπi to tπi). Therefore, H (which is the head of both C and C+)

must be true in M+(π). So M(π)(H) is either t or u. Thus, M(π) models every rule

in P \P− either and, therefore, M is a model of P.

To prove minimality and uniqueness of M, let N be a model of P. We will show

that M � N, which would imply that M is the least model. We need to establish

the following properties:

Property D.1: M(π)(L) ≤ N(π)(L)

Property D.2: N(π)(notL) ≤M(π)(notL)

The proof of these relies on the following claims, which will be proved at the end:

Claim D.1: If M−(π)(L) = t then N(π)(L) = t.

Claim D.2: If M−(π)(notL) = f then N(π)(notL) = f .

Claim D.3: If M+(π)(L) = t then N(π)(L) ≥ u.

Claim D.4: If M+(π)(notL) = f then N(π)(notL) ≤ u.

To establish Property D.1, suppose that M(π)(L) = t. By (33), this means that

M−(π)(L) = t and, by Claim D.1, N(π)(L) = t. If M(π)(L) = u then, by (33), this

implies M+(π)(L) = t and, by Claim D.3, N(π)(L) ≥ u = M(π)(L). This proved

Property D.1.

For Property D.2, suppose M(π)(notL) = u. By the definition of M, this implies

M+(π)(notL) = f and, by Claim D.4, N(π)(notL) ≤ u = M(π)(notL). Similarly,

if M(π)(notL) = f , then M−(π)(notL) = f and, by Claim D.2, N(π)(notL) = f .

It remains to prove claims D.1–D.4. Claims D.1 and D.2 follow directly from the

fact that N is be a model of P− for which M− is the least model, so M− � N. Claim

D.3 can be easily proved by induction on the number of inference rules that need to

be used in order to prove that L is true on π with respect to the program P+. Claim

D.4 follows from Claim D.3: If M+(π)(notL) = f then M+(π)(L) = t. By Claim

D.3, N(π)(L) ≥ u, which implies that N(π)(notL) ≤ u. 2

Appendix E

T RDA Fixpoint and Well-founded

Model

In this appendix, we prove that any T RDA program has a unique well-founded model.

For convenient reference, we reproduce the Definition 4.25 from Section 4.1 below.

Definition 4.25 (T RDA Quotient): Let P be a set of T RDA rules and I a path

structure for P. The T RDA quotient of P by I, written as
P

I
, is defined through

the following sequence of steps:

1. First, each occurrence of every not - literal of the form notL in P is replaced

by tπ for every path π such that I(π)(notL) = t and with uπ for every path π

such that I(π)(notL) = u.

2. For each labeled rule of the form @r L :-Body obtained in the previous step,

replace it with the rules of the form:

L :- t〈Dt〉 ⊗ Body

L :- u〈Du〉 ⊗ Body

for each database state Dt such that

I(〈Dt〉)(not (3 $defeated(handle(r, L)))) = t

116

APPENDIX E. T RDA FIXPOINT AND WELL-FOUNDED MODEL 117

and each database state Du such that

I(〈Du〉)(not (3 $defeated(handle(r, L)))) = u

3. Remove the labels from the remaining rules.

The resulting set of rules is the quotient
P

I
. 2

Note that, the T RDA quotient of a T RDA transaction base P with respect to

an argumentation theory AT (denoted (P,AT)) for any path structure I,
P ∪ AT

I
, is

a negation-free T R program, so, by Theorem 4.4, it has a unique least Herbrand

model, LPM(
P ∪ AT

I
).

We will now give the definition for the immediate consequence operator Γ. We will

use the set representation of Herbrand models: I+ = {L | L ∈ I is a not -free literal},
I− = {L | L ∈ I is a not -literal} and I = I+ ∪ I−.

Definition 4.26 (T RDA immediate consequence operator):

The incremental consequence operator, Γ, for a T RDA transaction base P with re-

spect to the argumentation theory AT takes as input a path structure I and generates

a new path structure as follows:

Γ(I) =def LPM

(
P ∪ AT

I

)
Suppose I∅ is the path structure that maps each path π to the empty Herbrand in-

terpretation in which all propositions are undefined (i.e., for every path π and every

literal L, we have I∅(π)(L) = u.

The ordinal powers of the immediate consequence operator Γ are defined inductively

as follows:

• Γ↑0(I∅) = I∅;

• Γ↑α(I∅) = Γ(Γ↑α−1(I∅)), for α a successor ordinal;

• Γ↑α(I∅)(π) = ∪β<αΓ↑β(I∅)(π), for every path π and α a limit ordinal.

2

The following lemma states a basic result about the immediate consequence op-

erator Γ.

APPENDIX E. T RDA FIXPOINT AND WELL-FOUNDED MODEL 118

Lemma E.1 (Γ is monotonic) The operator Γ is monotonic with respect to the

information order relation ≤ when P and AT are fixed, i.e.

Γ(I) ≤ Γ(I ′) if I ≤ I ′ .

Proof:

The proof relies on the following claim.

Claim E.1: if I and I ′ are two Herbrand path structures, I ≤ I ′, D is a database

state and Γ↑n(I)(〈D〉)(not (3 $defeated(handle(r, B)))) = v with v ∈ {f , t}, then

Γ↑n(I ′)(〈D〉)(not (3 $defeated(handle(r, B)))) = v.

Proof of Claim E.1:

By hypothesis, Γ↑n(I)(〈D〉)(3 $defeated(handle(r, B))) =∼ v. If v = t, then

Γ↑n(I)(ρ)($defeated(handle(r, B)) = f =∼ v for every path ρ that starts at D,

and, by induction hypothesis, Γ↑n(I ′)(ρ)($defeated(handle(r, B)) = f =∼ v. If

v = f , then Γ↑n(I)(ρ)($defeated(handle(r, B)) = t for some path ρ that starts at

D, and, by induction hypothesis, Γ↑n(I ′)(ρ)($defeated(handle(r, B)) = t =∼ v.

In both cases, by Definition 4.21, Γ↑n(I ′)(〈D〉)(3 $defeated(handle(r, B))) =∼ v.

Hence, Γ↑n(I ′)(〈D〉)(not (3 $defeated(handle(r, B)))) = v. Q.E.D.

Continuing with the proof of Lemma E.1, let I and I ′ be two Herbrand path struc-

tures, where I ≤ I ′. Thus, for any path π, I(π)+ ⊆ I ′(π)+ and I(π)− ⊆ I ′(π)−.

In order to show that Γ(I) ≤ Γ(I ′), we will prove that Γ↑n(I) ≤ Γ↑n(I ′), for all n.

This is true for n = 0 (since I ≤ I ′).

Suppose Γ↑n(I) ≤ Γ↑n(I ′) holds true for some n, and Γ↑n+1(I)(π)(A) = t for

some literal A. There must be a clause @r B : − L1 ⊗ . . . ⊗ Lm in P and a

ground substitution θ such that A = Bθ, Γ↑n(I)(π)(L1θ ⊗ . . . ⊗ Lmθ) = t and

Γ↑n(I)(〈D0〉)(not (3 $defeated(handle(r, B θ)))) = t, where D0 is the initial

database of π. By Definition 4.21, there exists a split π = 〈D0〉 ◦ π1 ◦ . . . ◦ πm,

such that Γ↑n(I)(πi)(Liθ) = t for each 1 ≤ i ≤ m. In
P ∪ AT

I
, we have rules of the

form B : − t〈Dt〉 ⊗ L′1 ⊗ . . .⊗ L′m and B : − u〈Du〉 ⊗ L′1 ⊗ . . . ⊗ L′m , where the

literals L′i (1 ≤ i ≤ m) denote the results of Step 1 transformation, i.e., L′i is either

Li, if Li is a not -free literal, or tρ or uρ, for some path ρ where the Step 1 conditions

in Definition 4.25 are satisfied. By the induction hypothesis, if Γ↑n(I)(πi)(Liθ) = t,

then Γ↑n(I ′)(πi)(Liθ) = t. For every Liθ not -free literal, we have L′iθ = Liθ, so

APPENDIX E. T RDA FIXPOINT AND WELL-FOUNDED MODEL 119

Γ↑n(I ′)(πi)(L
′
iθ) = t. If Liθ is a not -literal, then from Γ↑n(I)(πi)(Liθ) = t follows

that L′iθ = tπi and, by Definition 4.21, Γ↑n(I ′)(πi)(L
′
iθ) = Γ↑n(I ′)(πi)(tπi) = t. Since

π can be split into π1 ◦ . . . ◦ πm, it follows that Γ↑n(I ′)(π)(L′1θ ⊗ . . .⊗ L′mθ) = t. By

Claim E.1, Γ↑n(I ′)(〈D0〉)(not (3 $defeated(handle(r, B θ)))) = t. It follows that

Γ↑n+1(I ′)(π)(Bθ) = Γ↑n+1(I ′)(π)(A) = t.

Suppose Γ↑n+1(I)(π)(A) = f for some literal A. For any clause @r B : − L1⊗. . .⊗
Lm in P such that A = Bθ for some substitution θ, Γ↑n(I)(π)(L1θ⊗ . . .⊗Lmθ) = f or

Γ↑n(I)(〈D0〉)(not (3 $defeated(handle(r, B θ)))) = f (and the rule is not present

in the quotient
P ∪ AT

I
). By Definition 4.21, for any split π = 〈D0〉 ◦ π1 ◦ . . . ◦ πm,

we have Γ↑n(I)(πi)(Liθ) = f for some 1 ≤ i ≤ m. By induction hypothesis, if

Γ↑n(I)(πi)(Liθ) = f , then Γ↑n(I ′)(πi)(Liθ) = f . If Liθ is a not -free literal, then

L′i = Li and Γ↑n(I ′)(πi)(L
′
iθ) = f . Hence, Γ↑n(I ′)(π)(L′1 ⊗ . . . ⊗ L′m) = f . If Liθ is a

not -literal, then the corresponding rule is not present in the quotient. On the other

hand, by Claim E.1, Γ↑n(I ′)(〈D0〉)(not (3 $defeated(handle(r, B θ)))) = f and the

rule is not present in the quotient corresponding to I ′. In all cases, it follows that

Γ↑n+1(I ′)(π)(A) = f . 2

Since Γ is monotonic, the sequence {Γ↑n(I∅)} has a limit which is the unique least

fixed point of Γ. It is computable via transfinite induction [Mos74, Llo84].

Definition 4.27 (Well-founded model): The well - founded model of a

T RDA transaction base P with respect to the argumentation theory AT, written as

WFM(P,AT), is defined as the limit of the sequence {Γ↑n(I∅)}. 2

We will show that WFM(P,AT) is a model of (P,AT) by using the following

lemma. This lemma states that the application of the immediate consequence opera-

tor Γ on models of the program (P,AT) results in smaller models with respect to the

truth order �. The reciprocal direction is also true.

Lemma E.2 : N is a model of (P,AT) iff Γ(N) � N.

Proof:

The proof relies on the following claim.

APPENDIX E. T RDA FIXPOINT AND WELL-FOUNDED MODEL 120

Claim E.2: if a rule of the form:

B : − L′0 ⊗ L′1 ⊗ . . .⊗ L′m. (34)

in
P ∪ AT

N
was obtained using the quotient Definition 4.25 from a rule of the form:

@r B : − L1 ⊗ . . .⊗ Lm (35)

in (P,AT), then min(N(π)(L′1), . . . ,N(π)(L′m)) = min(N(π)(L1), . . . ,N(π)(Lm))

and N(〈D0〉)(L′0) = N(〈D0〉)(not (3 $defeated(handle(r, L)))), for any path π =

〈D0〉 ◦ π1 ◦ . . . ◦ πm.

Proof of Claim E.2:

If Li is a not -free literal, then L′i = Li, so N(ρ)(L′i) = N(ρ)(Li) for every path ρ. If

Li is a not -literal notCi, then:

• if N(ρ)(notCi) = t, then L′i = tρ. Hence, N(ρ)(L′i) = N(ρ)(tρ) = t,

• if N(ρ)(notCi) = u, then L′i = uρ. Hence, N(ρ)(L′i) = N(ρ)(uρ) = u,

• if N(ρ)(notCi) = f , then the rule in
P ∪ AT

N
is not created,

for any path ρ. Hence, in all the above cases, when the rule (34) exists, we have

that N(ρ)(L′i) = N(ρ)(Li). Therefore, min(N(π)(L′1), . . . , N(π) (L′m)) = min(N(π)

(L1), . . . , N(π)(Lm)).

By the quotient Definition 4.25, the literal L′0 in the Rule (34) must be either the

propositional constant t〈D0〉, if N(〈D0〉)(not (3 $defeated(handle(r, L)))) = t, or

the propositional constant u〈D0〉, if N(〈D0〉)(not (3 $defeated(handle(r, L)))) = u.

However, the propositional constant t〈D0〉 is true only on the path 〈D0〉, otherwise it is

false, while the propositional constant u〈D0〉 is undefined only on the path 〈D0〉, oth-

erwise it is false. Hence, N(〈D0〉)(L′0) = N(〈D0〉)(not (3 $defeated(handle(r, L)))).

Q.E.D.

We continue with the proof of Lemma E.2.

(⇒):

In order to show that Γ(N) � N, we have to prove that Γ(N)(π)(A) ≤ N(π)(A)

for all paths π and all literals A.

APPENDIX E. T RDA FIXPOINT AND WELL-FOUNDED MODEL 121

Since the path structure Γ(N) is the least partial model of the program
P ∪ AT

N
,

it follows that:

• Γ(N) satisfies every rule in
P ∪ AT

N
, i.e., for every clause in

P ∪ AT

N
of the form

(34) we have:

Γ(N)(π)(B) ≥ Γ(N)(π)(L′0 ⊗ L′1 ⊗ . . .⊗ L′m) (36)

for every path π;

• Γ(N) is minimum model, i.e., for any other model M ′ of
P ∪ AT

N
, we have:

Γ(N) � M ′ (37)

By Definition 4.25, each rule of
P ∪ AT

N
must correspond to a rule in (P,AT) of

the form (35) where the L′i literals (1 ≤ i ≤ m) are the results of Step 1 transforma-

tion, i.e., L′i is either Li, if Li is a not -free literal, or tρ or uρ for some path ρ, if Li

is a not -literal. By hypothesis, N models every rule in (P,AT):

N(π)(B) ≥ min(N(π)(L1 ⊗ . . .⊗ Lm), N(〈D0〉)(not 3 $defeated(handle(r, B)))).

(38)

where D0 is the initial database in the path π.

Consider a split π = 〈D0〉 ◦ π1 ◦ . . . ◦ πm. By Definition 4.21, N(π)(L1⊗ . . .⊗
Lm) = min(N(π1)

(L1), . . . , N(πm) (Lm)). Hence, N(π)(B) ≥ min(N(π1)(L1), . . . ,N(πm)(Lm)).

We also have N(π)(L′0⊗ L′1⊗ . . . ⊗ L′m) = min(N(〈D0〉)(L′0), N(π1)(L
′
1), . . . ,

N(πm)(L′m)). Hence, by Claim E.2, N(π)(L′0⊗ L′1⊗ . . . ⊗L′m) = min(N(〈D0〉)
(not 3 $defeated(handle(r, B)))), N(π1)(L1), . . . , N(πm)(Lm)). Hence, N(π)(L′0⊗
L′1⊗ . . . ⊗ L′m) = min(N(〈D0〉) (not 3 $defeated(handle(r, B)))) ,N(π)(L1⊗
. . . ⊗ Lm)). By (38), N(π)(B) ≥ N(π)(L′0 ⊗ L′1 ⊗ . . . ⊗ L′m). Therefore, N models

every rule (34). It follows that N is a model of
P ∪ AT

N
, and, by (37), that Γ(N) � N.

(⇐):

In order to show that N is a model of (P,AT) we have to prove that N models

APPENDIX E. T RDA FIXPOINT AND WELL-FOUNDED MODEL 122

every rule in (P,AT).

By hypothesis, N ≥ LPM(
P ∪ AT

N
). Hence, N is a model of the program

P ∪ AT

N
. Therefore, for every rule B : − L′0 ⊗ L′1 ⊗ . . . ⊗ L′m and path π, we

have N(π)(B) ≥ N(π)(L′0 ⊗ L′1 ⊗ . . . ⊗ Lm). Consider a split π = 〈D0〉◦ π1◦ . . . ◦
πm. By Definition 4.21, N(π)(L′0⊗L′1⊗ . . .⊗Lm) = min(N(〈D0〉) (L′0), N(π1) (L′1),

. . . , N(πm) (L′m)).

By Claim E.2, N(〈D0〉) (L′0) = N(〈D0〉) (not (3 $defeated(handle(r, L)))) and

min(N(π)(L1), . . . ,N(π)(Lm)) = min(N(π)(L′1), . . . ,N(π)(L′m)). Hence, N(π)(L1⊗
. . .⊗ Lm) = min(N(π1) (L′1), . . . , N(πm) (L′m)). Therefore, N(π)(B) ≥ min (N(π)

(L1 ⊗ . . . ⊗ Lm), N(〈D0〉) (not3 $defeated(handle(r, B)))). It follows that N

models every rule in (P,AT). Hence N is a model of (P,AT). 2

The following corollary states that WFM(P,AT) is a model of the program P

with respect to the argumentation theory AT.

Corollary E.3 : WFM(P,AT) is a model of (P,AT).

Proof: By Definition 4.27, Γ(WFM(P,AT)) = WFM(P,AT). Hence, by Lemma

E.2, it follows that WFM(P,AT) is a model. 2

The next theorem states that our constructive computation of the least model of

the program (P,AT) is correct.

Theorem 4.5 (Correctness of the Constructive T RDA Least Model)

WFM(P,AT) is the least model of (P,AT).

Proof:

By Corollary E.3, WFM(P,AT) is a model of (P,AT). We will show by contra-

diction that WFM(P,AT) is the least model. Suppose that N is a model of (P,AT)

such that N � WFM(P,AT). Hence, N(π)(A) � WFM(P,AT)(π)(A) for every

path π and literal A. We will show that we must have that WFM(P,AT) � N, i.e.,

WFM(P,AT)(π)+ ⊆ N(π)+ and N(π)− ⊆ WFM(P,AT)(π)−.

The set inclusion for positive literals can be shown using the monotonicity of the

immediate consequence operator Γ since I∅(π)+ ⊆ N(π)+: Γ↑1(I∅)(π)+ ⊆ Γ(N)(π)+

APPENDIX E. T RDA FIXPOINT AND WELL-FOUNDED MODEL 123

after one step, and, Γ↑α(I∅)(π)+ ⊆ Γ↑α(N)(π)+, after α steps (where α is a limit

ordinal), for any path π. By Lemma E.2, we also have: Γ(N) � N, Γ↑2(N) �
Γ(N), and Γ↑α(N) � Γ↑α−1(N) after applying Γ a number of α times. Therefore,

Γ↑α(I∅)(π)+ ⊆ N(π)+, for any path π. Hence, WFM(P,AT)(π)+ ⊆ N(π)+.

We will now prove by contradiction that N(π)− ⊆ WFM(P,AT)(π)−. Suppose

N(π)(A) = f and WFM(P,AT)(π)(A) > f , for some path π and a literal A.

For any clause @r B : − L1 ⊗ . . . ⊗ Lm in (P,AT), ground substitution θ such

that A = Bθ, and any split π = 〈D0〉 ◦ π1 ◦ . . . ◦ πm, either N(πi)(Liθ) = f or

N(〈D0〉)(not (3 $defeated(handle(r, B θ)))) = f for some i (where i ≤ m). If

Liθ is a not -literal not C, then N(πi)(C) = t, and thus, WFM(P,AT)(πi)(C) = t,

by the first part of this proof. Therefore, WFM(P,AT)(πi)(Liθ) = f . If Liθ is

an atom, then N(πi)(Liθ) = f . We will use the following property to show that

WFM(P,AT)(πi)(Liθ) must also be false.

Property E.1: a set S of atom/path pairs is N-unsupported (analogous to un-

founded sets in [VRS91]) if for every pair L/π in S, N(π)(L) = f and for every

rule in (P,AT) that has L in the head, @r′ L : − L′1 ⊗ . . . ⊗ L′k , has a split of

π = 〈D0〉 ◦ π′1 ◦ . . . ◦ π′k, so that for some body atom L′i, the corresponding pair L′i/π
′
i

also belongs to S. It can be shown by induction that in every iteration of Γ all the

pairs L/π in S are such that Γ↑n(π)(L) = f .

By Property E.1, if Liθ is an atom, then WFM(P,AT)(πi)(Liθ) = f . Therefore,

WFM(P,AT)(π)(L1θ⊗. . .⊗Lmθ) = f . Hence, WFM(P,AT)(π)(Bθ) = f . However,

this is impossible since we started the proof by assuming WFM(P,AT)(π)(A) > f .

2

Appendix F

T RDA Reduction to Transaction

Logic

In this appendix, we prove that the well-founded model of any T RDA program is

identical with the well-founded model of a T R program obtained via a transformation

of the original T RDA program. Suppose a T RDA program (P,AT) where P is a set

of labeled T RDA rules and AT is an argumentation theory.

Theorem 4.6 (T RDA Reduction)

WFM(P,AT) coincides with the well - founded model of the T R program P′∪AT,

where P′ is obtained from P by changing every defeasible rule

@r L :- Body (39)

in P to the plain rule

L :- not (3 $defeated(handle(r, L)))⊗ Body (40)

and removing all the remaining tags.

Proof:

We will prove that the programs resulted after each quotient operation in the

transfinite sequence during the computation of the well-founded model are the same

124

APPENDIX F. T RDA REDUCTION TO TRANSACTION LOGIC 125

for both the original T RDA program P and the transformed program P′.

We split the first step of the Definition 4.25 into two steps:

Step 1a. Each occurrence of every not -literal of the form notL in the bodies

of the rules of P, except the $defeated/1 literals, is replaced by tπ for every path π

such that I(π)(notL) = t and with uπ for every path π such that I(π)(notL) = u.

This step applies identically both to 39 and to 40.

Step 1b. The literals in 40 of the form not (3 $defeated(handle(r, L))) are

replaced by tπ for every path π such that I(π)(not3 $defeated(handle(r, L))) = t

and with uπ for every path π such that I(π)(not3 $defeated(handle(r, L))) = u.

Step 1b is precisely what Step 2 does to 39 except that instead of replacing the literals

not (3 $defeated(handle(r, L))) (which 39 does not have) Step 2 simply adds the

appropriate tπ and uπ.

2

