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a b s t r a c t

This paper aims to propose a new framework for structure-preserving deformation, which is interactive,
stable, and easy to use. The deformation is characterized by a nonlinear optimization problem that retains
features and structures while allowing user-input external forces. The proposed framework consists
of four major steps: feature analysis, ghost construction, energy optimization, and reconstruction. We
employ a local structure-tensor-based feature analysis to acquire prior knowledge of the features and
structures, which can be properly enforced throughout the deformation process. A ghost refers to a
hierarchical feature subspace of the shape. It is constructed to control the original shape deformation
in a user-transparent fashion, and speed up our algorithm while best accommodating the deformation.
A feature-aware reconstruction is devised to rapidly map the deformation in the subspace back to the
original space. Our user interaction is natural and friendly; far fewer point constraints and click-and-
drag operations are necessary to achieve the flexible shape deformation goal. Various experiments are
conducted to demonstrate the ease of manipulation and high performance of our method.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The key challenge of mesh deformation is how to retain the
shape functionality and visual appearance while being versa-
tile, robust, and easy to use and supporting a wide spectrum of
shape variation. Local features and global structures are two main
characters of any shape. The former aims to measure local geo-
metric saliency quantitatively, while the latter seeks to qualita-
tively depicts partial or global shape patterns, such as piecewise
patches separated by curve network, long branches/bifurcations,
or topological holes. Structure-preserving deformation especially
focuses more on the global structure. An efficient click-and-drag
interface that can proactively engage the user’s intention and ex-
perience on how models deform always has a strong appeal to
professional users and general public. This work aims to tackle
these challenges, aswe intend to seek as-good-as-possible approx-
imations with lowest possible computational cost, and maximize
the utility of simple click-and-drag interface.

Many existing deformation technologies typically try to pre-
serve low-level differential properties of the edited surface that
represent local details. The first-order or second-order properties
of a surface [1–3], such as curvature, length, area, and local coordi-
nates, are employed to preserve the surface details by constructing
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a quadratic energy. Nonetheless, they generally lack the global per-
ception of structures, and are cumbersome to directly work with
when the functional constraints are very few.More functional con-
straints, such as feature curves or control regions [4–6], are needed
to achieve the deformation goal while preserving the features and
structures. Another drawback of these methods is that directly
solving the optimization problem is costly; it is heavily dependent
on the size of the underlying models.

Instead of handling the surface directly, the ambient space that
surrounds the mesh is used to implicitly edit the surface [7–9].
The ambient space is usually constructed by a cage or skeleton,
which in turn is manipulated by the deformation scheme. The
advantage of thismode is that the size of the optimization problem
is reduced; this mostly depends on the ambient space rather than
the resolution of the original mesh. However, certain limitations
still prevail, including (but not just limited to) not being able
to accommodate structure editing, lack of feature and structure
awareness, complex and non-unique cage construction. Our idea
is to reduce the complexity of the optimization problem by using
a low-dimensional hierarchical feature subspace which maintains
the features and structures of original space.

In this paper, we explore a feature-guided surface deformation,
which can well preserve shape structure with very simple position
constraints. By employing feature analysis based on a local
structure tensor, we can learn the shape structure and geometric
features of the original mesh, which are relevant throughout the
shape editing session. Then, a feature subspace, called ghost, is
constructed to simplify the deformation complexity and speed up
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Fig. 1. The functional pipeline of our new method.

the convergence. Finally, an efficient feature-aware reconstruction
is applied to map the deformation back to the original mesh. Our
interface is simple: only the click-and-drag is needed. To the best
of our knowledge, our interface enforces the simplest constraint
during shape deformation while retaining feature-preserving and
structure-preserving properties. Fig. 1 illustrates the pipeline of
our approach. Note that the ghost is transparent from an ordinary
user’s perspective, andmanipulation of the ghost can be abstracted
as a black-box for general users.

2. Deformation modeling

In this section, we first describe the feature analysis method
(prior to shape deformation), and then we formulate the deforma-
tion as a nonlinear optimization problem subject to constraints.

2.1. Tensor-based feature analysis

Given a 2D manifold M , let (V , E, F) be vertex set V , edge set
E, and face set F that comprise an irregular triangular mesh of M .
We introduce a feature analysis process based on local structure
tensor.

Structure tensors are usually used to detect the local features
of a mesh because of their informativeness [10,11]. Compared
with a traditional feature analysis metric, such as a curvature or
a normal, the tensor is more robust, and it contains both geometry
information and direction information, which can help distinguish
weak features fromnoise. Also, they canbe easily extended to high-
dimensional feature analysis. Specifically, a normal voting tensor
T(vi) of a vertex vi can be expressed as

T(vi) =


tj∈Nt (vi)

µjntjn
T
tj , (1)

where tj is a triangle,Nt(vi)denotes the set of neighboring triangles
of vi, ntj is the normal of tj, and µj is the weight coefficient. Since
we prefer a scaling- and stretching-invariant tensor, the weight
works well with a constant value 1 in our approach. Note that the
structure tensors of the originalmesh are only computed once, and
they can be reused in later processing.

According to the eigen-analysis of the structure tensor in Eq. (1)
and the neighboring relationship, we extract and analyze features
of the original mesh by generalizing the multi-type feature classi-
fication proposed in [10,11]. We treat the eigenvector correspond-
ing to the smallest eigenvalue as the diffusion direction which is
used to define ‘‘neighboring vertex coincidence’’ (NVC) in [11]. We
could utilize these attributes to detect both prominent and weak
features, and classify the vertices into different types of feature. For
each vertex of the mesh, λ1 > λ2 > λ3 ≥ 0 are eigenvalues of the
corresponding structure tensor, then the analysis is documented
as
– Planar: if λ1 is dominant, and λ2 and λ3 are close to 0.
– Corner: if λ1, λ2 and λ3 are approximately equal.
– Sharp: if λ1 and λ2 are dominant, λ3 is close to 0, and the NVC
is satisfied.

– Weak: if λ1 is dominant, λ2 is weak, λ3 is close to 0, and the NVC
is satisfied.

The vertices of the mesh are then classified into different types,
including planar vertices, corner vertices, sharp feature vertices,
and weak feature vertices. The different types of vertex are treated
differently in later processing, which will help our framework ac-
quire the information of features and structures. To better adapt
open meshes, boundary vertices are also treated as features, and
the corresponding diffusion direction is along the boundary curve.

2.2. Energy formulation

Structure energies. The structure tensor formulated in Eq. (1)
contains ample information; it can well depict the local geome-
try. Moreover, it has the direction information, which implies the
structure characteristic. We exploit the structure tensor to pre-
serve the features and structures of amodel via a quadratic energy.
The tensor is a positive semi-definite tensor of second order; con-
sequently, it can be diagonalized by the eigenvalues (λ1 > λ2 >
λ3 ≥ 0). We reformulate it by a spectral representation

T(vi) = λ1e1eT1 +λ2(e1eT1 + e2eT2)

+λ3(e1eT1 + e2eT2 + e3eT3), (2)

where ei is the corresponding eigenvector of λi, i = 1, 2, 3,λ1 =

λ1 − λ2,λ2 = λ2 − λ3, andλ3 = λ3. Specifically, e1eT1 describes a
stick, e1eT1+e2eT2 describes a plate, and e1eT1+e2eT2+e3eT3 describes
a ball. Therefore, the local shapes can be well depicted by these
structural attributes with proper parametersλi, i = 1, 2, 3. These
parameters can be viewed as a representation of local shapes; we
call them structure parameters (SPs).

Given a discrete formulation of the SPs {λi(v), i = 1, 2, 3}, we
strive to comply with the prescribed structures in a least-squares
sense, and the structure energy Es is defined as

Es =


vi∈V

3
j=1

ωi(λ′

j(vi) −λj(vi))
2, (3)

whereλj(vi) is the j-th SP of vertex vi,λ′

j(vi) is the unknown SP, and
ωi is the weight, with default 1 for planar vertices, 2 for feature
vertices (sharp and weak), and 3 for corner vertices. Although
an SP alone does not uniquely define a surface, it is a powerful
tool for preserving the structure when editing models. For some
structure-stretching deformations, such as extending a cylinder
while keeping the diameter unchanged, this is hard to achievewith
very few point constraints. To accelerate the convergence speed
and better maintain the structure, face normals can be considered
as an optional assistant for this kind of deformation. The face
normal energy is defined as

Efn =


fi∈F

(nf ′i
− nfi)

2, (4)

where fi is the face of original mesh, and nfi is the corresponding
normalized face normal. In other deformations, such as rotation
and bending, the face normal energy should be assigned a small
weight.

Metric energies. The metric terms Earea and Econ are used to
quantify the deviation from original area and angle [2,3].

Earea =


fi∈F

1
Afi

(Af ′i
− Afi)

2, (5)

Econ =


fi∈F

3
j=1


Afi

3∥efi,j∥2

∥ef ′i ,j∥
2

Af ′i

+
φ2

fi

12Afi

∥hf ′i ,j
∥
2

Af ′i


, (6)
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where Afi is the face area, efi,j is the edge adjacent to the face, φfi is
the circumference of the face, and hf ′i ,j

is the vector perpendicular
to the edge and pointing to the center of the inscribed circle of f ′

i .
They measure the areal and conformal distortion, respectively. As
mentioned in [2], a weighted sum of the two energies provides
more flexibility to control the deformation semantics. We use
the metric energies to maintain good mesh quality during energy
optimization.

Total energy. The total surface energy on amesh is computed by
a weighted sum of the above energies:
ET = ksEs + kfnEfn + kareaEarea + kconEcon, (7)
where ks, kfn, karea, and kcon are the scalar weights. A dominant
structure weight leads to the strict structure preservation, while
uniform scaling and parallel stretching are allowed. A strong face
normal term yields great support to the structure preservation
for uniform scaling and parallel stretching operations. A dominant
area weight leads to a constrained deformation with fairly strong
distortion of angles and curvatures, while a dominant conformal
term leads to a uniform scaling. Users can adjust the scalar weights
according to the specific application and the properties of the
original structure; this enables versatile surface editing and shape
design.

2.3. Deformation constraints

A preferred deformation can be obtained by combining the
above surface energies and some necessary deformation con-
straints. Since our framework depicts the features and structures,
we would like to achieve the desired results using more intuitive
operations and as few constraints as possible. As a solution, a sim-
ple click-and-drag interface is utilized, which will be illustrated
later. We formulate the constraints using the least-squares energy

Ec =


vi∈C

∥v′

i −vi∥
2, (8)

wherevi ∈ C is the point-handle constraint, and v′

i is the corre-
sponding vertex of unknown mesh.

For local structure editing, specific shape constraints of the
particular parts are often required rather than simple position
constraints. This type of deformation can be achieved by simply
specifying a few local reference vertices as shape constraints. For
each special local structure, the local constraints can be formulated
as

Elc =


vi∈Cl

∥(v′

i − c ′) − α(vi − c)∥2, (9)

wherevi ∈ Cl is the constraint for the local structure of original
mesh, c is the barycenter of constraints in Cl, α is the scaling
rate with default value 1, andv′

i and c ′ are the constraint and its
corresponding barycenter of unknown mesh, respectively.

2.4. Optimization

The vertex positions of the deformed mesh are computed by
minimizing the energies comprising the constraints and the ener-
gies introduced in the previous section, such that

{v∗

1 , . . . , v
∗

n} = argmin
v′
i ,...,v

′
n


i

kiEi, (10)

where ki and Ei are the weights and the corresponding differ-
ent energies. This nonlinear least squares problem is solved by a
Gauss–Newton solver [12],which enables superlinear convergence
without the need for computing second-order derivatives.

3. Structure-preserving deformation

Solving the optimization problem directly on original meshes is
expensive. It is challenging to achieve an interactive rate, even for
Algorithm 1: Ghost construction.
input : Original meshM , parameters.
output: Ghost G.
Initialize: G = M;
while at least one vertex can be removed or under the specified
iterations do

set vertices of G unlabeled;
for each vertex v of G do

if v is labeled or a corner vertex then
continue;

else if v is a planar vertex then
find connected edge with the least weight;
if satisfy collapse condition then

update G;
end

else if v is a sharp or weak feature vertex then
if homologous is required then

find the connected consistent feature edge
with the least weight;
if satisfy collapse condition then

update G;
end

end
end

end
end

models with only thousands of vertices. To reduce the complexity
of this problem, we restrict the optimization to a ghost, which is a
feature- and structure-aware subset of the original mesh. After the
optimization, an efficient feature-aware reconstruction is utilized
to obtain the deformed mesh in original space.

3.1. Hierarchical ghost construction

A ghost is a feature subspace of a mesh, which is constructed
to approximate the original mesh space, while preserving the es-
sential structures. The ghost can be built using model simplifica-
tion. For our specific problem, we require the ghost to be a subset
of the original mesh, to have the same structure and topology, to
be hierarchical for different types of deformation, and at the same
time to have no long and skinny triangles (area close to 0). There
are numerous methods for mesh simplification [13,14]; however,
to the best of our knowledge, there is no method that is immedi-
ately available that satisfies all the above requirements. We tackle
this challenge by exploring a hierarchical simplification algorithm
driven by our feature analysis.

Our simplification is based on edge collapses, which selec-
tively decimate the vertices in a hierarchical way. The main ad-
vantage of our method is that different types of vertex are treated
differently according to the previous knowledge of features and
structures. The hierarchical simplification includes homologous
(feature vertices and non-feature vertices are harmoniously pro-
cessed) and non-homologous (feature vertices and non-feature
vertices are handled separately) simplifications. Users can choose
the ghost to be homologous or non-homologous according to the
type of model. For rigid manufactured models, stretching or scal-
ing are themost common operations, and a non-homologous ghost
is adequate to meet such conditions. For more general models,
the ghost must have adequate constituents to express the partic-
ulars when rotation occurs; hence a homologous ghost is needed.
More details are documented inAlgorithm1. Somenotation should
be explained here. The edge weight is set to its length in our ex-
periments. The collapse condition includes the following. (1) For
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Fig. 2. Structure-preserving deformation for mechanical models (anchor and coupling). (a)–(c) The stretching deformations. (d)–(f) The multi-scale structure-preserving
deformations.
each related face of the detected edge, the new area is larger than
a threshold (we set it as 0.1*(the average area of all the related
faces)). (2) For each related face, the dot product of the new normal
and the old one is larger than a threshold (we set it as 0.98 here).
The collapse condition guarantees the quality and the geometric
accuracy of ghost. The edge is called a consistent feature edge if
and only if the neighboring vertex is a non-planar vertex, and, at
the same time, the NVC condition is satisfied. The update process
includes collapsing the detected edge, deleting the current vertex,
labeling the neighboring vertices, and adjusting the connectivity.

3.2. Feature-aware reconstruction

After the deformation optimization (expressed in Eq. (10)) is
solved on the ghost, a reconstruction is necessary tomap the defor-
mation back to the original mesh. The reconstruction must be fea-
ture aware in order to better preserve the features and structures,
and at the same time the efficiency has to be considered. In this
section, we will develop a linear reconstruction system to combat
this problem effectively.

Taking all factors into consideration, we choose the normal-
controlled coordinates (NCCs) proposed in [15] to achieve the re-
construction for several reasons, including they are always parallel
to the correspondingnormals, theywell encode local geometric de-
tails, and they can express the reconstruction as a linear problem.
From the construction of the ghost, we know it is a subset of the
original mesh, which means that each vertex on the ghost corre-
sponds to a vertex on the original mesh. Therefore it is technically
feasible to estimate vertex normals of the deformedmesh from the
deformed ghost. Then the target NCCs can be updatedwith the new
normals according to the parallel property. Hence, the deformed
mesh can be constructed via linear reconstruction
N
I


V′

=


δ
S


, (11)

where V′ is the matrix of unknown vertices, N is a sparse matrix
constructed by theNCCparameters, δ consists of the updatedNCCs,
and S is the corresponding constraint matrix that comprises the
vertices of ghost. To better satisfy the feature-aware requirement,
we further modify the NCCs of prominent feature vertices. When a
vertex is a feature, only its non-planar neighboring vertices are in-
volved in the computation. If there are fewer than three neighbors,
we simply record the NCCs as the differences between the current
vertex and the centroids of its neighboring vertices.

4. Experimental results and discussion

We now demonstrate the performance of our method by con-
ducting experiments in various aspects. All the experiments docu-
mented in this paper were conducted on a computer with 1.6 GHz
Intel Core (TM, 4Core/8Threads) i7 CPUwith 4GRAM.Most compu-
tation expenses of our approach, such as the tensor computation,
feature analysis, ghost construction, and Cholesky decomposition
of the reconstruction matrix, can be done in the preprocessing
stage, and only the back-substitution procedure for recomputation
is needed. The ghost is invisible from the user’s perspective, but the
corresponding vertices on the originalmesh are highlighted as can-
didates for direct control, and the user only needs to operate on the
original mesh.

Structure-preserving deformation. Fig. 2(a)–(c) illustrate the
structure-preserving deformation for mechanical models. For this
kind of model, stretching and scaling are the most common oper-
ations. The user simply selects a certain number of candidates as
handles (red balls) that can help drive or maintain the structure-
preserving deformation. Fig. 2(d)–(e) show a greedy multi-scale
structure-preserving deformation. In this example, the uniform
stretching and scaling occurs when the user drags the handles
along the horizontal direction (e). Also, the user controls deforma-
tion scaling of the particular structure by simply adding some con-
trol handles at the reference positions (f).

Our deformation framework can also handle general scanned
models. For this type ofmodel, features are not clearly discrimitive,
and deformations usually contain scaling, stretching, and rotation.
Therefore, appropriately increasing constraint handles can settle
this issue. For example, the necessary constraints for key positions
of deformation should be selected if the deformation is complex.
Fig. 3 shows the structure-preserving deformation for general
models.

Comparison with related work. We compare our method with
two excellent related deformation schemes proposed in [2,3].
Our method can be viewed as an extended improvement of the
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Fig. 3. General structure-preserving deformations. The original bumpy plane and
dinosaur models (left). A couple of constraints are selected to control the complex
shape deformation (right).

algorithm in [2], and we focus more on the structure-preserving
aspect, the ease of operation, and the improved efficiency. Our
method can significantly improve the computational efficiency by
transferring the optimization problem into a feature subspace. The
method in [3] also uses a subspace to improve the efficiency;
however, their calculations are more complex. Moreover, since
there is no prior knowledge of the structures, they need more
region constraints to control their energy optimization. Fig. 4
shows the comparisons between our method and the methods
in [2,3]. Table 1 lists the time statistics in our approach: (from left to
right) vertex number of the original meshes (Data), vertex number
Table 1
Statistics and performance time (s) of selected models.

Data (# V) Ghost Solve Recon. Prep.

Fandisk (6k) 0.1k 0.001 0.024 36
Coupling (12k) 1k 0.009 0.059 78
Bumpy plane (12k) 1.5k 0.014 0.061 82
Dinosaur (32k) 2k 0.018 0.207 216
Vase (100k) 1k 0.009 0.648 771

of the ghosts (Ghost), the time (in seconds) for one iteration (Solve),
the reconstruction (Recon.), and the preprocess (Prep.).

Local structure-preserving deformation. Local structure editing is
also supported in our framework. For this type of deformation,
the user only needs to pick a few constraints around the special
structures, then use the local structure constraints defined in Eq.
(9). Fig. 5 shows the car models in which the size of the front
window (top) and the wheels (bottom) are well kept when editing
the global shapes. We also support more versatile editing by
directly prescribing the scaling rate of local structures.

5. Conclusion

In this paper, we have articulated a novel method for structure-
preserving deformation with a simple user interface. The central
idea is the unification of shape analysis and deformation towards
acquiring high-level knowledge about the shape to be edited.
The feature and structure information is fully utilized for ghost
Fig. 4. A comparison of the results produced by related methods. (a) The deformation in [2], whose constraints are feature lines colored in red. (b) The deformation in [3],
whose constraints are specified regions colored in blue. (c) Our method, which produces a comparable result to (a) and (b), while using the simplest and fewest constraints
highlighted by the red balls. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Local structure-preserving deformation. Left: the original car models. Right: the deformed car models with front window and wheels unchanged. The yellow balls
are local structure (shape) constraints, and the red balls are the handle (position) constraints. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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construction, surface energy modeling, and deformation re-
construction. Our deformation framework also supports local
structure-preserving editing with a greedy constraint. It enhances
existing approaches for structure manipulation and leads to versa-
tile surface deformations for shape design.

For immediate future work, we are planning to extend our
method to handle diverse types of geometric, material, and scien-
tific data. Moreover, automatic definition of potential constraint
points and new structural design deserve further investigation,
since they could significantly broaden the range of application of
our method.
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