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I. MOTIVATION

Intra-operative X-Ray is essential during some surgeries,

such as percutaneous coronary intervention. The 2D X-

Ray images have many shortcomings such as viewing angle

dependence, magnification factor, overlapping, and the blur-

ring between vessels, background, and other tissues/organs.

Great efforts have been carried out on 3D reconstruction of

coronary arteries to overcome the shortcomings of 2D im-

ages. Current 3D reconstruction methods mostly rely on the

registration between image pairs, which are generally hard

to enforce constraints such as consistency and continuity. To

overcome these shortcomings, we develop an efficient vessel

reconstruction system based on multiple X-Ray views. We

demonstrate our system in coronary artery reconstruction for

percutaneous coronary intervention surgery to help doctors

understand the spatial configuration of coronary arteries of

specific patient during operation.

II. METHOD

A. Data acquisition and preprocessing. For all proce-

dures, we use two types of data. One is the synthetic data

from our simulation system. Another one is the real data

from clinical angiogram. We select one image from each

view within mostly the same cardiac cycle and use them to

reconstruct the vessels. To overcome the shortcomings such

as the low image contrast, the low lumen with the wide

dynamic range of original angiograms, we apply multi-scale

retinex (MSR) enhancement proposed by Rahman [1] on

each image.

B. Vessel extraction. After obtaining the high-contrast

images pre-processed by MSR, we use the approach pro-

posed by [2]. It relies on a multi-scale Hessian matrix that

enhances the vascular structure. After processing the image,

we compute the connectivity of the entire image using a

cross template so that line segments whose length are smaller

than a typical value are regarded as noise, and the similar

thresholding process is applied to noisy points produced by

enhancement during MSR.

C. Centerline tracking. After getting the binary images

of vascular structure, we apply the centerline extraction

method using multi-stencils fast marching (MSFM). Our

method is based on Hassouna’s work [3] and by solving

the Eikonal equation at each point under several stencils

which cover eight neighbors in 2D space and selecting the
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one which satisfies the upwind condition the most, this way

we can achieve better accuracy.

D. 3D reconstruction of coronary arteries. In our

method, we treat the space between the image intensifier

and the optical center of the X-Ray machine as an Markov

Random Field. The 3D space is divided into 2D slices which

we call layer L = (l1, l2, ...ln) using a given depth incre-

ment. Each depth can be assigned with a label li. Meanwhile,

each skeleton point on reference view I1 corresponds to a

projected line from the source to the intensifier through all

the layers.

Therefore, for a given pixel p on I1, the pair (p, li)
uniquely identifies a point in 3D space. So, the goal of 3D

reconstruction is to optimally assign a label li to each p on

the centerline of the reference view I1. This problem can

be formulated as an energy minimization problem subject

to the constraint of connectivity and topological structures.

Our goal is to find the minimum energy and we use the

belief propagation (BP) [4] method to derive the solution.

In our method, we define Vp,q(fp, fq) as the Euclidean

distance between point p and q. We define Dp(fp) as the

color consistency which can be formulated as Dp(fp) =
1

(n−1)

∑n
i=2 Pi(x, y), where Pi(x, y) is the projection value

of point p on the i-th view, and we define it as

Pi(x, y) =

⎧⎨
⎩

Wh, p(x, y) ∈ Ii
Wl, N (p(x, y)) /∈ Ii
Wa, otherwise

, (1)

Wa =
1

N

N∑
i=1

Vi(x, y), (2)

where p(x, y) ∈ Ii means that p(x, y) is a valid centerline

point of Ii, Wh and Wl are two constants that control

the highest and lowest value, respectively. For a grey scale

image, N (p(x, y)) includes 8 neighbors of point p(x, y).
If p(x, y) can not be found in Ii, we will compute its 8

neighbors and obtain the average value as the value of point

p(x, y). If none of its neighbors is valid, it could be assigned

with Wl. Our algorithm includes two main steps, message

propagation and energy minimization computation. In the

message propagation, the color value of point p(x, y) ∈ I1
is updated as Vp = Vp−1 + αminDp,q(fp, fq) + (1 −
α)V (pmin) where α is a constant controlling the weight

its neighbors’ color consistency and distance consistency.

And Dp,q(fp, fq) denotes the distance from p(x, y) to its
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Figure 1: Reconstructed vessels from synthetic data.

Figure 2: Our system pipeline.

neighbors, V (pmin) denotes the value of the minimum

distance point.

In our energy minimization, different from typical BP,

the current energy of the i-th layer is defined as ei(pi) =
min[γD(pi, q)+ (1−γ)V (q)+ ei−1(q)] in which q denotes

the projected sample depth of N o(p(x, y)) which includes

all neighbors of pi except pi itself.

Finally, we compute the minimum sum of all the grouped

vessel skeletons’ cost, and obtain the optimal solution for

the entire vessel skeleton tree. The entire system pipeline is

illustrated in Fig. 2.

III. EXPERIMENTS

We test our reconstruction method on synthetic data and

real clinical data, respectively. Compared with real data, the

reconstruction of synthetic data is easy to assess because of

the vessel ground truth. The final reconstruction results of

synthetic data are shown in Fig. 1.

In the top row of Fig. 1, the yellow lines indicate the

reconstructed skeleton using our method. The green lines

indicate the ground truth obtained in our simulation plat-

form. The white box is the bounding box of the ground

truth. For the real data reconstruction results, the views and

reconstructed results can be found in Fig. 3.

IV. CONCLUSION

We have presented a novel method of reconstructing 3D

vessels from angiograms. The fundamental idea is to treat

Figure 3: Reconstructed vessels from real data.

the 3D space from the X-Ray machine optical center (receiv-

er) and the X-Ray machine intensifier (emitter) as slices. In

this way, we are able to transform the reconstruction problem

into an energy minimization problem. The experimental

results from both synthetic and real clinical data show our

method is useful and works well.
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