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ABSTRACT

Constructing a good graph to represent data structures is
critical for many important machine learning tasks such as
clustering and classification. Recently, a nonparameteric
graph construction method called £1-graph is proposed with
claimed advantages on sparsity, robustness to data noise
and datum-adaptive neighborhood. However, it suffers a
lot from the loss of locality and the instability of perfor-
mance. In this paper, we propose a Locality-Preserving £1-
graph (LOP-£,), which preserves higher local-connections
and at the same time maintains sparsity. Besides, compared
with £1-graph and the succeeding regularization-based tech-
niques, our LOP-£; requires less amount of running time in
the scalability test. We evaluate the effectiveness of LOP-L;
by applying it to clustering application, which confirms that
the proposed algorithm outperforms related methods.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Clustering

General Terms
theory
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1. INTRODUCTION

Among many techniques used in the machine learning so-
ciety, graph-based mining mainly tries to accommodate the
so-called cluster-assumption, which says that samples on
the same structure or manifold tend to have large weight
of connections in-between. But most of the time there is
no explicit model for the underlying manifolds, hence most
methods approximate it by the construction of an undi-
rected/directed graph from the observed data samples. There-
fore, correctly constructing a good graph that can best cap-
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ture essential data structure is critical for all graph-based
methods [16].

Ideally, a good graph should reveal the intrinsic relation-
ship between data samples on manifold, and also preserve
the strong local connectivity inside neighborhood (called as
locality in the following paper). Traditional methods (such
as k-nearest neighbors (kNN) [7], e-neighborhood [7] and
Gabriel graph (GG) [2]) mainly rely on pair-wise Euclidean
distances to construct the locally-connected graph. The ob-
tained graphs oftentimes fail to capture local structures and
cannot capture global structures of the manifold [16]. Be-
sides, these methods either cannot provide datum-adaptive
neighborhoods because of using fixed global parameters [2],
or are sensitive to the parameter setting or local noise espe-
cially on high-dimensional datasets [8].

Recently, Cheng et al. [1] proposed to construct an £i-
graph via sparse coding [12] by solving an £; optimization
problem. Li-graph is derived by encoding each datum as a
sparse representation of the other samples (treated as basis
or dictionary pool), and automatically selecting the most
informative neighbors for each datum. The nice properties of
L1-graph include: 1) sparsity, which leads to fast subsequent
analysis and low requirement for storage [12], 2) datum-
adaptive neighborhoods and 3) robustness to data noise as
claimed in [1].

However, the constructing of classic £1-graph suffers from
the loss in the locality of the samples to be encoded, which
is a fundamental drawback from sparse coding [6]. Usually,
the number of samples is much greater than the number
of manifold dimensions, which means that the basis pool is
“overcomplete” during the construction of L£;-graph. Sam-
ples may be encoded with many basis (samples) with weak
correlations with the object samples under such “overcom-
plete” basis pool. Thus, it results in the inaccuracy of £1-
graph, and therefore impedes the quality of the consequent
analysis tasks. As an illustration, Fig.1(e) shows that under
classic Li-graph construction, the code of a sample point p
(red cross in Fig.1(b)) involves many basis (samples) that
do not belong to the same cluster with p. Such instabil-
ity may hinder the robustness of the £i-graph based data
mining applications, as shown in Fig.1(f). To address this
issue, we propose a Locality-Preserving £1-graph (LOP-L4)
to learn more discriminative sparse code and preserve the
locality and the similarity of samples in the sparse coding
process, and therefore the robustness of the data analysis
result is enhanced. Our contributions are as follows:

1. LOP-L, preserves locality in an datum-adaptive neigh-

borhood, and at the same time maintains sparsity from
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Figure 1: Illustration of LOP-L; effectiveness compared with Gaussian (similarity) graph and classic £;. The
labels of sample in the original dataset (Fig.1(b)) are showed in Fig.1(a), and in this example we only focus on
the coding of point p (the 150-th sample, marked as red cross in Fig.1(b)). Coding (similarity) of p on Gaussian
graph (Fig.1(c)) is built upon Euclidean space, which leads to manifold non-awareness (Fig.1(d)). Classic
L1 graph coding (Fig.1(e)) results in the loss of locality and therefore instable clustering result (Fig.1(f)).
Comparatively, our LOP-£; coding on p (Fig.1(g)) shows strongly locality-preserving characteristic and has
the best performance in clustering, as shown in Fig.1(h).

classic L.

2. The computation of LOP-L; is more scalable than
classic £1 graph and the succeeding regularization-
based techniques.

3. We confirm the effectiveness of LOP-L; in the ap-
plication of clustering.

2. RELATED WORK

Li-graph is an informative graph construction method
proposed by Cheng et al. [1]. It represents the relations of
one datum to other data samples by using the coefficient of
its sparse coding. The original £;-graph construction algo-
rithm is a nonparametric method based on the minimization
of a £1 norm-based object function. The details of £1-graph
construction are documented in Algorithm 1.

The advantages of L£i-graph are summarized as follows:
(1) robustness to data noise; (2) sparsity for efficiency; and
(3) datum-adaptive neighborhood. Because of these virtues,
L1-graph has been applied to many graph based learning ap-
plications [1], for example, subspace learning [1], image clas-
sification [16] and semi-supervised learning [13] etc. How-
ever, classic £1-graph [1] is a purely numerical solution with-
out physical or geometric interpretation of the data set [3].
Therefore, to better exploit the structure information of
data, many research works have been proposed by adding
a new regularization term in addition to the original Lasso
penalty, for example, the elastic net regularization [3]. OS-
CAR regularization [3] and graph-Laplacian [14].

Another research focus of £i-graph is to reduce its high
computational cost. For each datum, the £;-graph need to
solve an £; minimization problem within a large basis pool
which is very slow. To reduce the running time, Zhou et
al. [15] proposed a kNN Fused Lasso graph by using the

Algorithm 1: £;-Graph
Input

: Data samples X = [x1,22, - ,2n], where
z; € R™
Output: Adjacency matrix W of £; graph.
1 Normalize the data sample z; with ||z;]|2 = 1;
2 for z; € X do

Solve: rréinHaiHl, st. z; = Bloy;
4 where
Bi = [3:17 s Ti—1, Lid 1, 73:N7[} € RmX(m+N_1)
and «; € ]R"”N*l;
5 end
6 fori=1:N do
7 for j=1: N do
8 if ¢ > j then
o | Wiy = ai(4)
10 else if i < j then
11 ‘ Wij = al(] — 1)
12 else
13 | W(i,j)=0
14 end
15 end
16 end

k-nearest neighbors idea in kernel feature space. With a
similar goal, Fang et al. [3] proposed an algorithm which
firstly transfers the data into a reproducing kernel Hilbert
space and then projects to a lower dimensional subspace. By
these projections, the dimension of the dataset is reduced
and the computational time decreased.

In our research we evaluate the performance of different
graph constructions in terms of clustering. Specifically we
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integrate the constructed graph into the framework of spec-
tral clustering, due to its popularity and its ability to dis-
cover embedding data structure.

Spectral clustering, as shown in Algorithm 2, starts with
local information encoded in a weighted graph on input data,
and clusters according to the global eigenvectors of the corre-
sponding (normalized) affinity matrix. Particularly, to sat-
isfy the input of spectral clustering algorithm, we transform
the adjacency matrix of £;-graph into a symmetry matrix
with the first step in Algorithm 2.

Algorithm 2: SpectralClustering

Input : Adjacency matrix W of £i-graph; K is the
number of clusters;

Output: Cluster assignments.

Symmetrize the graph similarity matrix by setting the
matrix W = (W +W7T)/2;

Set the graph Laplacian matrix L = D71/2WD71/2,
where D = [d;;] is a diagonal matrix with di; = }°, Wij;
Find ¢1,c2,- -, ¢k, the eigenvectors of L corresponding
to the K largest eigenvalues, and form the matrix

C = [e1,c2,- - ,ck]| by stacking the eigenvectors in
columns;
a Treat each row of C as a point in R, and cluster them

into K clusters via the k-means method,;
Finally, assign z; to the cluster j if the ith row of the
matrix C is assigned to the cluster j;

3. ALGORITHM

The construction of classic £1 graph [1] is a global opti-
mization which is short of local-structure awareness. More-
over, it has a high time complexity, since for each datum it
needs to solve a £i-minimization problem:

(1)

For each sample x;, the global optimization aims at select-
ing as few basis functions as possible from a large basis pool,
which consists of all the other samples (basis), to linearly re-
construct z;, meanwhile keeping the reconstruction error as
small as possible. Due to an overcomplete or sufficient ba-
sis pool, similar samples can be encoded as totally different
sparse codes, which may bring about the loss of locality in-
formation of the samples to be encoded. To preserve such
locality information, many researches add one or several reg-
ularization terms to the object Eq. 1 as in [5] [15] and etc.
However, there is a lack of generality for these methods and
the regularization-based approaches are, as widely known,
very time consuming.

Here, we propose a much more general and concise ap-
proach, called Locality-Preserving £,-Graph (LOP-L;), by
limiting the basis pool in a local neighborhood basis of the
object sample. Our algorithm only uses the k£ nearest neigh-
borhoods of the object sample as the basis pool, and the
definition of the object function minimization is as follows:

min ||y, stz = B'o.
o

DEFINITION 1. The minimizing object function of LOP-
L1 is defined as:

min [laillr, st @ = Mo, (2)
where T'* = [¢4, xb, - | 2}] is the k-nearest neighbors of x;
in the data set, with the constraint that all the elements in
«; are nonnegative.
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The weights of edges in the LOP-£; graph are obtained by
seeking a nonnegative low-rank and sparse matrix that rep-
resents each data sample as a linear combination of its con-
strained neighborhood. The constructed graph can capture
both the global mixture of subspaces structure (by the cod-
ing process) and the locally linear structure (by the sparse-
ness brought by the constrained neighborhood) of the data,
hence is both generative and discriminative. Furthermore,
by introducing such a locality preserving constraint to the
sparse coding process, the similarity of sparse codes between
similar local samples can be preserved. Therefore, the ro-
bustness of the subsequent data analysis task (e.g. spectral
clustering) is enhanced. Limiting the size of basis pool also
leads to a benefit of reducing the running time of £;-graph
construction.

The details of our proposed LOP-L; is described in Algo-
rithm 3. It is worth to point out that our proposed LOP-£;
doesn’t prevent users to add specific regularization terms
during the optimization for a special application.

Algorithm 3: LOP-£;-Graph
Input

: Data samples X = [z1, 22, - ,znN], where
x; € R™; Parameter ¢ for scaling k-nearest
neighborhood, where k = ¢ * m (check Section
5.1 for more details).

Output: Adjacency matrix W of £1 graph.

1 Normalize the data sample z; with ||z;]|2 = 1;

2 for z; € X do

3 Find k-nearest neighbors of z;:T% = [2},--- , z}];

4 | Let B'=[I",I];

5 Solve: néinHaiHh sit. x; = Blag;

6 end

7 fori=1:N do

8 for j=1: N do

/* get the sparse code for each z; x/
9 if x; €T then
/* pos(x;) is the position of z; in nb’
*/

10 W (i, j) = ai(pos(z;))
11 else
12 | W(i,j)=0
13 end
14 end
15 end

In our implementation, we select one gradient-project-
based method called truncated Newton interior-point method
(TNIPM) [9] as the £1 minimization solver, which has O(N*?)
empirical complexity where N is the number of samples.
The L£1-minimization object function we used is:

®3)

where A is the Lasso penalty parameter. We choose A = 1
in our experiments as many methods also choose.
Analysis of Time Complexity. Here we analyze the
time efficiency of LOP-£1 by comparing its running time
with classic £i-graph. L£i-graph with TNIPM solver has
O(N*?) [10] empirical complexity. Our LOP-£L; algorithm
reduces the size of basis pool from N to k = t *x m, so the
empirical complexity will be O(Nk'?). To demonstrate the

argmin | Az — bl + Alz]1,



time reduction, we test the CPU time of LOP-£; and (clas-
sic) £1 over a series of random data sets which have 50
attributes and sample size from 10! to 10*. The result is
presented in Fig.2, which shows our proposed LOP-£; has
much better scalability.

CPU time of L1-graph and LOP-L1-graph,log-log scale

——L1-graph
| |—=LOP-L1-graph

10° L

size of data

Figure 2: Scalability comparison between LOP-L;-
graph and classic £i-graph.

4. ALGORITHM ANALYSIS AND CONNEC-

TIONS

We now justify the LOP-£ utility by briefly document-
ing its theoretic connections with a few existing methods,
which also lays a solid foundation for LOP-L;’s attractive
properties in practical use.

LOP-L; vs Classic kNN-Graph. Compared with our
proposed LOP-L£4, the classic kNN graph [7] can be gener-
ated very fast, but they achieve this with a sacrifice on the
quality. Classic kNN-graph-based methods can be easily af-
fected by noises, especially those samples which are not in
the same structure while being very close in the misleading
high-dimensional Euclidean space. The fundamental differ-
ence between classic KNN graph and our proposed LOP-L;
is that the former is highly dependent on the pre-specified
sample-sample similarity measure used to identify the neigh-
bors, whereas the later generates an advanced similarity ma-
trix W by solving the optimization problem of Equation 3.
In this way, W can potentially encode rich and subtle re-
lations across instances that may not be easily captured by
conventional similarity metrics. This is validated by the
experimental results in Section 5 that show the LOP-L;
substantially outperforms classic kNN graph in clustering
application.

LOP-L£; vs Classic £;-Graph. Our proposed LOP-
L1 is built upon classic £1, but has unique theoretical con-
tributions and huge improvement on performance. As we
mentioned earlier, the coding process of £; suffers from the
“overcomplete” basis pool. The optimization of £ is solved
by a straightforward numerical solution: every time the £1-
minimization picks up the basis randomly from a group of
“highly similar data samples” [17]. However, if the sample di-
mension is high, the similarity evaluation on Euclidean space
would be highly misleading, which is a well-known problem.
Therefore, together with a large-size basis pool, the basis £1
picks up are not guaranteed to be in the same manifold with
the object sample. In our proposed LOP-L1, we restrain the
coding process from picking up those samples outside certain
neighborhood. In other words, the samples/basis are locally
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coded, and LOP-£; brings a dramatic improvement of per-
formance and stability on the subsequent analysis step. We
will further confirm this in the Experiment Section 5.

LOP-L; vs Regularization-based £;-Graph. Specif-
ically, the idea of our LOP-L; is close to the kNN Fused
Lasso graph proposed by Zhou et al. [15]. However, our al-
gorithm is different at: (1) there is no regularization term
in our £1 minimization; (2) we process the data samples at
original data space instead of at kernel feature space. Gen-
erally speaking, our LOP-£, is designed in a more concise
and efficient way compared with the regularization-based
techniques such as [5] [15].

LOP-£; vs Recommender Systems and Collabora-
tive Filtering. Similar to the linear coding used in our
proposed LOP-L4, Paterek [11] introduced a recommender
system that linearly models each item for rating prediction,
in which the rating of a user u; on an item vy is calculated
as the aggregation of the ratings of u; on all similar items
(given by kNN graph). Intuitively, in our LOP-£; we can
treat W(i,j) as a rating of sample z; to sample x;, which
is derived by a subset of x;’s nearest neighbors, and predic-
tion of W (%, j) is generated based on a weighted aggregate of
their ratings. In other words, LOP-L; realizes the concept of
collaborative filtering [11] within a constraint neighborhood
that brings locality-preserving property, of which advantages
in recommender systems has been analyzed and confirmed
in [4].

S. EXPERIMENTS

5.1 Experiment Setup

Dataset. To demonstrate the performance of our pro-
posed LOP-L;, we evaluate our algorithm on seven UCI
benchmark datasets including three biological data sets (Breast
Tissue(BT), Iris, Soybean), two vision image data set (Ve-
hicle, Image,) and one chemistry data set (Wine) and one
physical data set (Glass), whose statistics are summarized
in Table 1. All these data sets have been popularly used
in spectral clustering analysis research. These diverse com-
bination of data sets are intended for our comprehensive
studies.

Name #samples | #attributes | #clusters
Iris 150 4 3
BT 106 9 6
Wine 178 13 3
Glass 214 9 6
Soybean 307 35 19
Vehicle 846 18 4
Image 2000 19 7

Table 1: Data Sets Statistics.

Baseline. To investigate the quality of the generated
LOP-L; graph, we compare its performance on spectral clus-
tering applications with £; graph. At the sample time, we
also select a full-scale Gaussian similarity graph (Gaussian-
graph), and a kNN Gaussian similarly graph (kNN-graph)
as our competitors to understand the quality of LOP-L£;
graph better. Since we have ground truth of labels for each
data, we evaluate the spectral clustering performance with
Normalized Mutual Information (NMI) and Accuracy (AC).
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Figure 3: The change of NMI values w.r.t different selection of parameter ¢t. Red dot in each subplot represent

the maximal NMI. These experiments confirm that

a basis neighborhood with certain size (with smaller t)

provides better (or at least similar) performance than the overcomplete basis pool (with the maximal ¢ in

each subplot).

Parameter Setting. Our algorithm has one parameter
named as basis pool scaling parameter t. It controls how
many neighborhoods should be selected to the basis pool for
each sample coding. We set t as a multiple value of attribute
(or features) size w.r.t the data set.

N

2§t§77
m

(4)

where N is the number of samples and m is the sample di-
mensions. The reason we scale kNN neighborhood with Eq.4
is that we want to make it more adaptive to different con-
text. In our experiments, we assign t = 2, 3,4 and report the
clustering performance results respectively. We will further
analyze our selection of ¢ in Section 5.3.

For Gaussian graph, the scaling parameter o is configured
as 0 = 0.1,0.5,1.0. For kNN graph, we assign value of k
as the size of basis pool of LOP-£; graph with different ¢
setting respectively. To obtain a fair comparison, we apply
the same spectral clustering in Algorithm 2 to measure their
performance.

5.2 Algorithm Performance Comparison

In this section, we evaluate our proposed LOP-L;-graph
algorithm and other three graph construction algorithms.
Table 2 and Table 3 document the comparison results (in
NMI and AC) of clustering performance.

LOP-L;-graph vs £i-Graph. LOP-L;-graph has bet-
ter average performance than £q-graph. LOP-£;-graph has
average NMI value 0.5032 and AC value 0.5852 while £;-
graph has average NMI value 0.4611 and AC value 0.5643.
For each specific data set, the clustering performance of £
graph beats average performance of LOP-L;-graph on Iris,
BT, Image but lose on others. Moreover, we observe that
the highest NMI value between them occurs at a specific ¢
value of LOP-L;-graph, for example, the highest NMI values
of Image data set is at ¢t = 2,3 of LOP-L;-graph.

LOP-L:-graph vs kNN-Graph. The average cluster-
ing performance of kKNN-graph is the lowest one among Spec-
tral Clustering with Gaussian similarity graph, £i-graph
and LOP-L;-graph. Comparing to LOP-L;-graph, kNN-

graph only have better performance (NMI: 0.4739, AC: 0.5346)
than LOP-£;-graph (NMI: 0.4328, AC: 0.5189) on BT data
set.

LOP-L;-graph vs Gaussian Similarity Graph. The
spectral clustering with Gaussian similarity graph (fully con-
nected graph) has lower average performance than LOP-£4-
graph in our experiments. However, for specific data set, the
maximum values of NMI and AC not always belong to LOP-
Li-graph. For example, the highest NMI value for Iris data
set is Gaussian similarity graph with ¢ = 0.1. The reason
is that the spectral clustering based on Gaussian similarity
graph is parameter sensitive. To obtain the best result, the
user has to tune the parameter o.

5.3 Analysis of Basis Pool Scaling

In our algorithm we argue that a constrained neighbor-
hood as basis pool is not only enough but also provide
locality property for the Li-graph construction. On the
other hand, one of the most serious problem for kNN-based
method is the over-sparsity where each sample only has a
small amount of connected neighbors, which often results
in that the derived graph is bias to some closely-connected
“cliques” and the subsequent analysis is therefore unreliable.

We confirm the effectiveness of our strategy by record-
ing the trend of NMI value with increasing size of ¢ (up to
the maximal ¢ w.r.t each dataset) in Fig. 3 across different
dataset. It once again confirms that we don’t need all re-
main samples as the basis pool to construct an informative
yet stable £; graph.

6. CONCLUSION

Classic L£1-graph exhibits good performance in many data
mining applications. However, due to the overcomplete ba-
sis and the following lack of coding focus, the locality and
the similarity among the samples to be encoded are lost. To
preserve locality, sparsity and good performance in a concise
and efficient way, we propose a Locality-Preserving £1-graph
(LOP-£1). By limiting the coding process in a local neigh-
borhood to preserve localization and coding stability, our
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Name Gaussian-graph kNN-graph Li-graph LOP-L;-graph
c0=01|0c=05|0c=10]| Avg. t=2 t=3 | t=4 Avg. t=2 t=3 t=4 Avg.
Iris 0.8640 | 0.5895 | 0.7384 | 0.7306 | 0.4831 | 0.5059 | 0.3139 | 0.4343 | 0.7523 | 0.5794 | 0.7608 | 0.7696 | 0.7033
BT 0.4933 | 0.4842 | 0.4691 | 0.4822 | 0.4731 | 0.5335 | 0.4150 | 0.4739 | 0.3660 | 0.3912 | 0.4536 | 0.4536 | 0.4328
Wine 0.4540 | 0.7042 | 0.6214 | 0.5932 | 0.6647 | 0.7471 | 0.7031 | 0.7050 | 0.6537 | 0.8358 | 0.8500 | 0.8500 | 0.8453
Glass 0.3535 | 0.2931 | 0.3289 | 0.3252 | 0.2584 | 0.3475 | 0.3114 | 0.3058 | 0.3416 | 0.3533 | 0.3575 | 0.2988 | 0.3369
Soybean | 0.6294 | 0.6814 | 0.6170 | 0.6426 | 0.6291 | 0.6120 | 0.5835 | 0.6082 | 0.7004 | 0.7265 | 0.7180 | 0.7267 | 0.7237
Vehicle 0.1248 | 0.0976 | 0.0958 | 0.1061 | 0.1101 | 0.0779 | 0.0667 | 0.0849 | 0.0726 | 0.1352 | 0.1019 | 0.1106 | 0.1159
Image 0.4800 | 0.4678 | 0.4740 | 0.4739 | 0.3256 | 0.4434 | 0.4548 | 0.4079 | 0.3410 | 0.3678 | 0.3678 | 0.3582 | 0.3646
Average 0.4791 0.4314 | 0.4611 0.5032
Table 2: NMI Comparison of LOP-L;-graph and other three graph construction methods.
Name Gaussian-graph kNN-graph L1-graph LOP-L;-graph
c0=01|0c=05|0c=10]| Avg. t=2 t=3 | t=4 Avg. t=2 t=3 t=4 Avg.
Iris 0.9600 | 0.7267 | 0.8600 | 0.8489 | 0.7533 | 0.6670 | 0.5800 | 0.6668 | 0.8867 | 0.6400 | 0.9933 | 0.9000 | 0.8111
BT 0.5472 0.4906 0.5189 | 0.5189 | 0.4717 | 0.6038 | 0.5283 | 0.5346 0.4434 0.4623 | 0.5472 | 0.5472 | 0.5189
Wine 0.6292 | 0.8876 | 0.8820 | 0.7996 | 0.8483 | 0.9101 | 0.9101 | 0.8895 | 0.8652 | 0.9551 | 0.9607 | 0.9607 | 0.9588
Glass 0.4112 | 0.3972 | 0.4299 | 0.4128 | 0.4299 | 0.5000 | 0.4860 | 0.4720 | 0.4579 | 0.4673 | 0.4907 | 0.4299 | 0.4626
Soybean | 0.5081 | 0.5668 | 0.4300 | 0.5016 | 0.5049 | 0.4853 | 0.5016 | 0.4973 | 0.5244 | 0.5700 | 0.5668 | 0.6059 | 0.5809
Vehicle 0.3818 0.3582 0.3605 | 0.3668 | 0.3806 | 0.3475 | 0.3381 | 0.3554 0.3771 0.3936 | 0.3593 | 0.3676 | 0.3735
Image 0.5467 | 0.5124 | 0.5076 | 0.5222 | 0.4600 | 0.4838 | 0.4781 | 0.4740 | 0.3952 | 0.3919 | 0.3919 | 0.3881 | 0.3906
Average 0.5673 0.5556 | 0.5643 0.5852

Table 3: Accuracy Comparison of LOP-£;-graph and other three graph construction methods.

proposed LOP-L£; alleviates the instability of sparse codes
and outperforms the existing works. We apply our proposed
method on clustering application and the experiment result
confirm the effectiveness of our proposed method.
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