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Structure-Sensitive Saliency Detection
via Multilevel Rank Analysis in
Intrinsic Feature Space

Chenglizhao Chen, Shuai Li, Hong Qin, Senior Member, IEEE, and Aimin Hao

Abstract—This paper advocates a novel multiscale,
structure-sensitive saliency detection method, which can
distinguish multilevel, reliable saliency from various natural
pictures in a robust and versatile way. One key challenge
for saliency detection is to guarantee the entire salient object
being characterized differently from nonsalient background.
To tackle this, our strategy is to design a structure-aware
descriptor based on the intrinsic biharmonic distance metric.
One benefit of introducing this descriptor is its ability to
simultaneously integrate local and global structure information,
which is extremely valuable for separating the salient object
from nonsalient background in a multiscale sense. Upon devising
such powerful shape descriptor, the remaining challenge is
to capture the saliency to make sure that salient subparts
actually stand out among all possible candidates. Toward this
goal, we conduct multilevel low-rank and sparse analysis in
the intrinsic feature space spanned by the shape descriptors
defined on over-segmented super-pixels. Since the low-rank
property emphasizes much more on stronger similarities among
super-pixels, we naturally obtain a scale space along the rank
dimension in this way. Multiscale saliency can be obtained by
simply computing differences among the low-rank components
across the rank scale. We conduct extensive experiments on
some public benchmarks, and make comprehensive, quantitative
evaluation between our method and existing state-of-the-art
techniques. All the results demonstrate the superiority of our
method in accuracy, reliability, robustness, and versatility.

Index Terms— Structure-sensitive descriptor, multi-level
low-rank decomposition, salient object detection, visual saliency.

I. INTRODUCTION AND MOTIVATION
ALIENCY can be considered as certain state/attribute
of a region that can be utilized to clearly distinguish

itself from its vicinity. It has become a standard out-of-the-
box toolkit in many low-level computational vision tasks
such as image resizing [7], [8], image retrieval [9], [10],
image stylization [11], [12], object detection [13]-[15], etc.
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From the point of view of human visual system, saliency
means the most distinctive object that could be easily captured
by our human vision system from the scene. The human
visual system usually judges the image importance by focusing
attention either on distinctive, unpredictable, rare, and surprise
regions, or on distinctive texture patterns. Humans can
routinely and effortlessly perceive saliency out of the abundant
inter-twined information. Specially, earlier research about the
visual system and human brain conducted by Dale Purves [16]
has indicated: (1) Only parts of human cerebral cortex neuron
cells will become active once the vision system capturing
some distinctive objects; (2) A particular group of neuron
cells, called Orientation Selective Neuron Cell, will become
more active when the object captured by the vision system has
direction-specific closed boundary. Therefore, highly-effective
saliency detection algorithms should resort to meaningful and
powerful feature metrics to facilitate uniqueness measurement
and warrant sufficiently discriminative power. Accordingly,
saliency detection methods can be roughly classified into two
categories: local-level contrast based methods and global-level
uniqueness based methods.

For the local-level contrast based methods, the
commonly-used feature attributes include color, gradient,
edge, contour, frequency spectra/coefficient, and even their
combinations [17]-[21]. These methods usually employ rarity
statistics [22]-[24], mutation degree analysis [25], [26], and
prior knowledge learning [4], [20] to further boost the saliency
detection. However, due to their overly-emphasized local
significance or global rarity, the saliency detection quality of
such methods tends to solely depend on the original image
contents. In principle, they still suffer from the following
problems: (1) Naive rarity statistics on local-level attributes
gives rise to much tiny false-positive saliency with messy
distribution; (2) The mutation degree analysis within local
regions tends to over-emphasize the object boundaries, while
leaving the inner regions of the object being undetected; and
(3) Prior knowledge based learning/regression significantly
depends on the quality and scale of the training samples as
well as the sophisticated tuning of the underlying classifier
parameters.

In contrast, as for the global-level uniqueness based
methods, their central ideas are to first describe the
sub-part by considering the attributes in a relatively larger
neighboring region with histogram-like statistics, and then
determine the saliency region by globally comparing the local
statistics. Despite the improved success of such methods,
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Saliency detection result comparison among different methods. (a) The source images SRC, (b) The ground truth GT, (c) Our method, (d) Hierarchical
saliency detection method HS13 [1], (e) Mid-level cues based method MC13 [2], (f) Saliency filter method SF12 [3], (g) Low-rank matrix recovery based
method LK12 [4], (h) Contour based method CB11 [5], and (i) Region contrast method RC11 [6].

Fig. 1.

certain difficulties still prevail for texture-pattern saliency
detection [27], [28], since the repeated patterns of such
sub-parts in a global scope will greatly deteriorate their rarity
and uniqueness measurement.

To ameliorate, with the ever-improving capability to glob-
ally analyze the linear correlation of the image sub-regions,
in most recent years the low-rank decomposition [28], [29]
has been employed for saliency detection and achieved
great success with growing interest. Generally speaking,
low-rank decomposition based saliency detection methods [4]
usually employ learning based feature transformation to
reduce the correlations between feature representations of
non-salient background. The principle behind it is that, there
may exist strong correlation among the feature representations
of non-salient background, thus feature representations
of salient objects can be easily regarded as the sparse
part [23], [28] by applying the low-rank decomposition.

However, as shown in Fig. 1f, directly using low-rank
decomposition in color space or other accompanying attribute
space of images still encounters some difficulties for the task
of meaningful and reliable saliency detection. On the one
hand, they can not distinguish the sub-parts that locally have
similar structures but globally distinct topological relationship
from the real salient candidates, since such sub-parts may
have completely linear correlations in the aforementioned
attribute space. On the other hand, it is hard to separate the
spurious small salient parts from noise, since noise is usually
independent of small-scale salient parts and thus will be left
out as sparse components during the low-rank decomposition.

Based on the above rationales, we summarize the technical
challenges existed in most of the state-of-the-art methods as
follows. First, it lacks of an intrinsic and informative attribute
descriptor to serve as the structural feature carrier for saliency
measurement. A new descriptor is required to simultaneously
encode the local structural feature and global topological
information for the cross-scale / cross-range uniqueness and
rarity measurement. Meanwhile, it should have robust and
local-transform / isometric-deformation invariant character-
istics for similar texture pattern recognition and denoising
capability. Second, more intelligent and more versatile global

relationship analysis model deserves to be further explored
for the robust saliency detection that has scale-aware semantic
meanings. Third, considering the topology-free property of the
image contents and the extra computational cost caused by the
less-significant features, a more efficient image-content-driven
geometrical analysis method with explicit physical meanings
is urgently needed.

To tackle the aforementioned challenges, we focus on
scale-aware, structure-sensitive, robust, and versatile saliency
detection (see Fig. lc) by introducing multi-level low-rank
decomposition analysis in the intrinsic feature space. And
the intrinsic feature representation is expected to possess the
following attributes: (1) Salient objects should have totally
different feature representation compared with non-salient
background; (2) Non-salient background should have
similar feature representation (to be easily regarded as the
low-rank part); (3) Inner regions of salient objects should
have distinctive feature representation (to be easily regarded
as the sparse part). Towards this goal, we first over-segment
image into regular super-pixels to remove trivial details, while
the original image topology is well maintained. Then, based
on the topology of super-pixels, we define a physics-based
diffusion metric in 2D image space, and design a new feature
representation based on iso-line shape measurement for each
super-pixel. Since this metric is structure-sensitive, the feature
representation of the object’s inner-regions can be easily
distinguished from the background surroundings. Specifically,
the contributions of our work can be summarized as follows:

« We formulate a physics-based anisotropic geometrical
analysis model to automatically represent objects and
their surroundings respectively in a total different way.
Meanwhile, this model also naturally integrates both local
and global information in a multi-scale manner which
provides the possibility to capture the saliency in a
multi-level solution.

« We propose a novel scale-aware saliency detection
method by integrating the intrinsic super-pixel descriptor
into a newly designed framework via multi-level low-lank
decomposition. As a result, we are able to capture the
top-down saliency based on the transformation of
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similarity level in our intrinsic feature space spanning
from local to global scales.

II. RELATED WORK
A. Local-Level Contrast Based Method

The central idea of the local-level contrast based methods
originates from the definition of saliency: being significantly
distinctive from non-salient surroundings. To distinguish the
salient sub-parts from the less-dramatic background, local
comparisons are always helpful. For example, Itti et al. [18]
proposed to perform image saliency detection by using
mutation degree analysis for center-surrounding operators,
Einhauser et al. [30] proposed to perform image saliency
detection by considering the luminance contrast, and other
similar methods include pixel color comparison based
method [17], local structural feature based method [26],
and biological feature based local-contrast approach [31].
Although specific local features concentrate on different
saliency aspects in such methods, purely performing contrast
comparison over local features may lead to false-positive
sub-parts, since some scattered tiny sub-parts may be easily
deemed as saliency due to their high contrast. To alleviate,
Goferman et al. [32] proposed to incorporate global constraints
and semantic priors into local contrast analysis. Similarly,
instead of semantic priors, Perazzi et al. [3] integrated the
local contrast with the global distribution as the saliency
criterion. Nevertheless, both methods produce side effects,
which further deteriorate the discriminative power of the
intrinsically unreliable features and thus lead to the missing
of certain significant saliency. Jiang et al. [5] proposed to use
the local contrast as clue for the computation of the globally
optimal object contour. However, since their optimal object
contour heavily depends on the result of local contrast based
saliency detection, incorrect saliency from local contrast
comparison or the existence of multiple salient objects
definitely deteriorates their performance.

B. Global-Level Uniqueness Based Method

Taking the global uniqueness as a major consideration,
researchers have started to pay more attention to the detection
of the most distinctive sub-objects in a global scope [6], [33].
For example, Hou et al. [34] proposed to conduct saliency
measurement by taking into account the log-spectrum
deviation of the image patch within one or more images,
while Sun et al. [23], [35] resorted to the uniform sparse
coding representation of the color related attributes. Similarly,
Xie et al. [2] integrated the smoothing constraints into the
framework of sparse coding, and mid-level cues originating
from varying super-pixel size are also taken into consideration.
However, the key-point based convex hull is indispensable
to drive their integration framework to capture the saliency,
and poor performance occurs when detected key-points differs
from the true saliency. Besides, Yan et al. [28] measured the
global uniqueness by further extending sparse coding based
models to low-rank matrix recovery based ones. However,
such methods usually fail to detect the relatively small-scale
salient elements and the repetitive texture-pattern saliency,
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because the descriptions of the similar salient sub-parts in
uniform feature space still have strong linear correlation.
Then, Shen et al. [4] alleviated the problem of repeatable
feature description by additionally introducing a learning
based linear transform. Although such improvement does
lead to better results, it never fundamentally solves the prior
problem, because the introduced linear transform may damage
the feature discrimination. Hence, it outputs faulty saliency
detection results and blurs the boundaries of the salient
object, wherein the flaws in these details inevitably result in
new difficulties for downstream applications. Most recently,
Yang et al. [36] proposed to construct multi-scale saliency
space by exploring the uniqueness of four boundary nodes of
the constructed image graph. Similar to [36]. Yan et al. [1] pro-
posed to detect multi-scale saliency via integrating local and
global uniqueness clues based on super-pixels with varying
size. In addition, Li et al. [37] proposed a multi-scale saliency
detection method by defining sparse representation and PCA
based reconstructing errors as saliency measurements, together
with a possible integration of pixel-level error propagation
based refinement and Bayesian framework based measure-
ment, in such a way they can obtain robust saliency detection
results.

C. Brief Summary

Although most of the state-of-the-art saliency detection
methods are competitive, they are rather operating in isolation,
and they are not very well integrated. As a result, they are
still struggling to make trade-off between the three major
indicators: local mutation, global uniqueness, and the rarity
scope. Our observation is that, both additional specific
constraints and scale-free mathematical models are difficult
to simultaneously conform to the definition of saliency, which
will inevitably produce unpredictable side effects. Therefore,
strongly inspired by the above observations, this paper
focuses on the comprehensive exploration and integration of
intrinsic multi-scale feature descriptor (in Section III) with
the multi-level low-rank analysis model (in Section IV) for
robust scale-aware salient object detection.

III. STRUCTURE-SENSITIVE DESCRIPTOR

Consider the insights revealed by Dale Purves [16], the
saliency detection should follow the sparse mechanism of
human vision system as much as possible by designing
specific feature representation to make the salient object
automatically distinctive from the scene background. This
requires the feature descriptor should have following
advantages: (1) It should be affine transformation invariant
and isometric deformation invariant, which is expected to
suppress the saliency value of tiny object with multiple
occurrences; (2) It should very well integrate both local and
global information, which is expected to facilitate the
saliency scope determination; (3) It should be robust to
noisy corruption; and (4) It should be easy to enable parallel
computation. However, because of the messy color distribution
and the unpredictable global shape correlation of the objects
embedded in the natural image, the commonly-used color-
based feature is hard to achieve the distinctive representation,
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Fig. 2. Pipeline of our bi-harmonic distance metric computation. (a) Original image, (b) Super-pixel segmentation, (c) Delaunay triangulation, (d) Manifold

mesh construction, (e) Bi-harmonic distance field.

especially for the statistics-based features derived from single
image. Therefore, we propose to use mid-level super-pixels
to eliminate some tiny color differences inside an object.
To robustly measure the global shape correlation, motivated
by the heat diffusion based metric definition in our prior
works [38], [39], we further define super-pixel bi-harmonic
distance field to depict the topology of super-pixels. In this
section, we will focus on the details of our structure-sensitive
descriptor defined in local-information and global-correlation
integrated intrinsic feature space.

A. Bi-Harmonic Distance Metrics on Manifold
Spanned by Super-Pixels

The bi-harmonic distance metric [40] has achieved great
success in geometry processing, because it has many built-in
advantages, such as the natural integration of local and global
information, being structure-sensitive and parameter-free.
Specifically, the feature representation based on this intrinsic
metric exhibits high discriminative power, which has great
potential to facilitate the salient object separation from its
non-salient background. However, it remains difficult to
directly define this powerful intrinsic distance metric over the
2D images due to the following reasons: (1) 2D images com-
prising regular pixels are both topology-free and boundary-free
without any intuitive geometric meaning. This unavoidably
hinders the rigorous and reliable Laplacian differential analysis
required in the definition of bi-harmonic distance based on
heat diffusion; (2) It is impractical to directly employ the
pixel as a basic unit towards meaningful differential analysis,
since the pixel-level Laplacian matrix does not support
multi-scale functionality that is highly demanded in any novel
shape descriptors. Strongly motivated by the need of novel
suitable descriptors for salient object detection, we elaborate
our new intrinsic shape descriptor on a manifold space enabled
by the construction of super-pixels.

As shown in Fig. 2, in the interest of maintaining global
topology information (which is essential for bi-harmonic
metric measurement), while omitting unnecessary details
(it may be noted that, trivial details occasionally influence
the global topology), we first decompose the 2D image
into over-completely segmented super-pixels (the number
of super-pixel is 900), and then convert the super-pixels to

a 2D manifold embedded in 3D space. In order to guarantee
the regularity of the succeedingly constructed manifold,
here we employ the SLIC method [41] to conduct relatively
uniform segmentation for super-pixels (The reasons and
details are detailed in Section VI-A).

Meanwhile, to respect the anisotropic property exhibited in
original color space of the image, we inherit the anisotropy
by taking the average intensity (/;) of each super-pixel as
its third dimensional coordinate in 3D space. Therefore, with
each super-pixel’s geometric center serving as a 3D vertex,
the manifold mesh corresponding to each image can be
constructed by Delaunay triangulation (Fig. 2(c)), wherein
the 3D coordinate of each vertex is represented as (x, y, ).
With the vertex set of the manifold mesh (Fig. 2(d)) denoted
by P = {p1, p2,..., pn}, we now define the bi-harmonic
distance metric via discrete Laplacian-matrix L = A~'M
based anisotropic heat diffusion [42], [43], where A is a
diagonal matrix and A;; is proportional to the average area
of the triangles sharing vertex p;. And M is formulated as
> cmij ifi=j
—m;; if p; and p; are adjacent )
0 otherwise,

Mij =

where m;; = cota;j + cot f;;, a;; and f;; are the opposite
angles of two adjacent triangles sharing edge p;p;. To better
respect the color image, we use |r; —7;|+|gi —g;|+|bi—bj| to
calculate the distance of the color component that is embedded
in the edge length, where (r, g, b) denotes the average color
value of the super-pixel p.

So far, we can formulate the bi-harmonic distance between
super-pixel p; and p; as

K N N2
DG, )2 = Z (ox (@) /12451{(])) ’ @)
k=1 k

where ¢ (i) and i,% respectively denote the k-th eigenvector
and eigenvalue among K adopted smallest eigenvalues.

Therefore, we can compute a corresponding bi-harmonic
distance field for each super-pixel. Take the super-pixel located
at the image center as an anchor vertex, Fig. 2(e) demon-
strates the bi-harmonic distance distribution, wherein the color
ranging from red to blue means that the bi-harmonic distance
goes from the near to the distant.
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Fig. 3.

The 2D (top row) and 3D (bottom row) illustration of bi-harmonic iso-line shape context based descriptor. (a) Original image and its corresponding

manifold mesh, (b-c) The iso-lines with non-salient super-pixels as anchor points, (d-f) The iso-lines with salient super-pixels as anchor points.

The biggest advantage of introducing bi-harmonic distance
metric into 2D image space is its characteristic of being
structure-sensitive, which can be easily observed in Fig. 2(e)
where the major bi-harmonic distance distribution is located
inside the object, and large gap exists along the object
boundaries.

B. Iso-Line Shape Context Based Descriptor

Given the bi-harmonic distance field corresponding to a
specific super-pixel, it encodes both the local geometrical
structure and the global topological relationships with
other super-pixels in an elegant way. However, the obtained
bi-harmonic distance field is super-pixel-wise and discrete, it
needs to be further exploited for the saliency-centered feature
representation. In fact, the local-to-global principal diffusion
tendency encoded in bi-harmonic distance metric can be
represented by considering scope-increasing sub-groups of
key super-pixels that possess identical bi-harmonic distance
values, and the iso-line contour shape of such sub-group
of super-pixels can sufficiently represent the bi-harmonic
diffusion patterns at different scales (from local to global).
Therefore, to fully respect the aforementioned insights noted
by Dale Purves [16], as shown in Fig. 3, we propose a
bi-harmonic iso-line shape context based descriptor, whose
central idea is to compute and integrate the probability distri-
bution of the iso-lines ranging from inner-ring to outer-ring.

First, to obtain a bi-harmonic iso-line over the triangular
mesh, we interpolate the bi-harmonic distance values accord-
ing to the distance values of the triangular vertices w.r.t. a
specific iso-value, and gather the interpolated points for further
filtering in a triangle-wise fashion. Since different iso-lines
should not cut across each other, the following interpolated
points should be eliminated: (1) If there exist more than two
points (belonging to different triangle edges respectively)
which have equal distance values (or similar values), and
please refer to Section V for more details; (2) Those points
which can not match any other points with equal distance

Fig. 4.

Illustration of iso-line shape context computation. (a) The source
image SRC, (b) The bi-harmonic iso-line distribution of a given initial start
vertex. For each iso-line, e.g., the one marked in black color, the Euclidean
distances of arbitrary iso-points pair (tiny purple cycles) are computed for
further histogram analysis.

values. After this filtering process, the remaining points are
used to construct different iso-lines according to their distance
level (see details of the formulation in Section V).

Next, for each iso-line, we compute the Euclidean
distance for each iso-point pair (see Fig. 4), and further
compute probability distribution statistics for such normalized
Euclidean distances. Therefore, the distribution shape of each
iso-line can be represented in the form of histogram. Finally,
we form the super-pixel-specific descriptor by concatenating
the histograms of multiple normalized iso-lines into a high
dimensional vector. Since the most outer-ring (far away from
the start vertex) of iso-lines are not reliable due to the
image boundary effects, we empirically take the 15 inner-ring
iso-lines over total 30 ones into account in our implementation
(details of parameter selection can be found in Section VI-A).

It should be noted that our descriptor has many unique
advantages as follows. (1) Our descriptor has multi-scale
discriminative power because of the natural integration of
local (the inner-ring iso-lines) and global (the outer-ring
iso-lines) information. In other words, either from the global
perspective or from the local perspective, the descriptions of
the super-pixels inside the salient object (Fig. 3(d-f)) are totally
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different from those non-salient regions (Fig. 3(b-c)). Directly
benefitting from this property, the overlapping representation
in traditional feature space is perfectly avoided. (2) With
the help of the local structure-aware characteristics, element
description for sub-parts belonging to the identical object
exhibit obvious differences (see inner iso-lines in Fig. 3(d-f)).
Therefore, regions inside the salient object can be easily
regarded as sparse parts by applying low-rank decomposition
on the entire description matrix (see details in Section IV).
(3) Our descriptor is rotation and scale invariant because of
the utility of the normalized probability distribution statistics,
and this property contributes tremendously in suppressing
duplicated non-salient patterns. These attractive advantages
collectively facilitate the robust scale-aware saliency detection,
which will be discussed in details in the following sections.

IV. SCALE-AWARE SALIENT OBJECT DETECTION

Based on our structure sensitive descriptor, we primarily
concentrate on the scale-aware saliency detection by exploiting
the powerful capability of low-rank decomposition in this
section.

A. Saliency Capture Based on Low-Rank Decomposition

Since saliency detection aims to detect the most distinctive
things from their surroundings, our purpose is to measure
the rareness of each super-pixel according to its cross-scope
bi-harmonic iso-line shapes. Consider the sparsity-related
insight noted by Dale Purves [16], we employ low-rank
decomposition over the feature matrix F' to obtain its low-rank
component and sparse component, and then use the sparse
matrix S as the saliency indicator, because the low-rank
component means commonly-occurring object while the
sparse component represents the rare/distinctive object in
some sense.

Since each super-pixel is represented as a high-dimensional
descriptor f;, we can reorganize the 2D image in the form
of descriptor matrix as F = [f1, f>, ..., fa] (see F Matrix
in Fig. 6). From the viewpoint of the matrix decomposition,
the matrix F can be divided into a low-rank component and a
sparse component according F = L+ S, and L and S respec-
tively corresponds to the correlated elements and independent
elements. The traditional low-rank decomposition is usually
defined as

(L*,§*) =arg min(rank(L) + 4]Sllo)- 3)

However, this problem is NP-hard, but this problem can be
approximated by the nuclear norm ||L||« and Li-norm [|S][;
by the following formulation:

(L*, %) ZGVgTig(IILII*JrlIISIIl)- “)

And there are several mature methods that can be utilized
to solve the aforementioned problem, such as the bilateral
random projection (BRP) based method [44], [45] and the
robust principal component analysis (RPCA) [46]. As shown
in the middle row of Fig. 5, for salient super-pixels,
the diffusion patterns of inner-ring iso-lines exhibit strong

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 8, AUGUST 2015

Fig. 5.
Top row: T1 is the source image, T2 is the illustration of the Sparse Matrix
entries’ values, and T3 is the illustration of the propagated values of the
Sparse Matrix. Middle row (M1-M6) demonstrates the bi-harmonic diffusion
patterns of salient super-pixels. The bottom row (B1-B12) demonstrates the
bi-harmonic diffusion patterns of non-salient background.

Illustration of the effect of Sparse Matrix in saliency detection.

anisotropic property. In contrast, as shown in the bottom row of
Fig. 5, the diffusion patterns of both inner-ring and outer-ring
iso-lines exhibit strong correlation, wherein (B1) is similar to
(B2), (B2) is similar to (B3), (B3) is similar to (B4), and so on.
Therefore, when considering the rareness attribute of salient
object, sparse matrix S obtained from Eq. (4) can very well
indicate the saliency level of its corresponding super pixel.
More residuals in matrix S mean higher saliency value, and
vice versa. Thus, we employe the Li-norm of each column in
matrix S for the saliency assignment of each super-pixel, and
please refer to the sub-figure (T2) in the top row of Fig. 5 for
details. Furthermore, we conduct sparsity propagation in the
neighborhood via the following equation:

1
S; :Ezsj X ;.
jeD

)

Here D = % x min(W, H) controls the propagating distance,
W, H respectively represents the width and height of the input
source image, Z = > ;. p @), ®j = exp(—y x (|Ri — Rj| +
|G; — Gj|+|Bi — Bjl)), Ri, Gi, B; denote the average color
of the i-th super-pixel, and we empirically set y = 4. The
propagated values of the sparse matrix are illustrated in the
sub-figure (T3) in the top row of Fig. 5.

Being represented by our novel descriptor, super-pixels
at the very center of salient object (i.e., the minority with
uniqueness topology position) tend to have highest anisotropic
strength. The overall anisotropic distribution has the following
property (see Fig. 3 and Fig. 5):

(6)

where Ajnner—s indicates the anisotropic strength of the most
centering super-pixels of salient object, A,y ser—s indicates the

Ainner—S > Aouter—S > Anon—s,
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Fig. 6. Pipeline of multi-level low-rank decomposition based saliency detection. We first use our novel descriptor to represent the source image SRC (Feature
computation). Then, we apply the Low-rank decomposition to get the Sparse Matrix at different rank level, and seek the Difference among these Sparse
Matrices to obtain Residual Matrices. Finally, the Final Result is computed based on the Average of all residual matrices.

anisotropic strength of the rest super-pixels inside the salient
object but near the object boundaries, and A,,,—s represents
the non-salient background. The anisotropic strength of our
intrinsic feature space gradually declines from inner regions
to boundary regions of the salient object, and finally becomes
isotropic for non-salient background. Obviously, this elegant
property guarantees that the most inner regions of salient
object can be easily identified as the sparse parts by low-rank
decomposition and have high precision rate. However, due
to various sizes and structures of salient objects, there
should exist no magic rank level to fully recover the
entire salient object, and poor recall rate occasionally arises
if directly applying the low-rank decomposition as the
saliency criterion (Fig. 9¢). Therefore, we propose multi-level
low-rank decomposition to overcome this limitation, which
will be discussed in the next section.

B. Multi-Level Low-Rank Components and Their Operations

As mentioned in Section III, apart from the highly discrim-
inative power for salient object and non-salient background,
another advantage of our descriptor is its simultaneously
integration of both local and global information. From the
perspective of single super-pixel inside the salient object,
its anisotropic strength also exhibits a sharp change from
local anisotropy (determined by topology position) to global
isotropy (sharing the identical contour of the salient object
with the others). Although non-salient super-pixels also enjoy
anisotropic strength change, considering that non-salient back-
ground is boundary-free and salient object has closed contour,
the anisotropic strength changing rate of salient super-pixels
is much higher than that of non-salient background. With
respect to this characteristic, we apply the “extent” rank
strategy, called multi-level low-rank decomposition, instead of
the traditional “slice” rank strategy [4], [28]. Hence, we can
capture the saliency based on anisotropic strength changing
rate.

Traditional methods tend to solve the aforementioned
low-rank decomposition problem by minimizing the sum of
the kernel norm and the Lj-norm without the explicit control
on the rank level. In sharp contrast, we define our multi-level
low-rank decomposition model as:

F=L+S4+G, strank(L)<r,card(S)<c, (1)
where G is the error matrix. To solve this problem
approximately, we use the following formulation to settle the
low-rank decomposition problem:

min||F — L — S||%,
L.S ®)
s.t. rank(L) <r, card(S) <c,

where || - ||F is the Frobenius norm, the rank constraint r
and the cardinality constraint ¢ are used to explicitly control
the low-rank degree and the sparse degree respectively. The
optimization problem of Eq. (7) can be solved by employing
the one-fix-another-solved strategy iteratively as follows:

L, = argmin [|[F — L — Sz—1||%

rank(L)<r (9)
S; = argmin ||F — L, — S||%v ’

card(S)<k

where the lower rank constraint r intrinsically emphasizes
the stronger similarities among super-pixels, meanwhile,
the sparse constraint k provides a flexible way to control the
uniqueness degree of the saliency to be detected in the global
setting. Since the motivation of our multi-level low-rank
decomposition is to explore the saliency in the perspective of
the changing rate of anisotropic strength, we naturally obtain a
scale space along the rank dimension by gradually varying the
rank constraint  and setting sparse constraint k with a hard
threshold to alleviate the complexity. As for computation, we
employ the GoDec method [45] to efficiently accelerate this
optimization process.
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(@)

Demonstration of the performance improvement benefitting from
our local and global features tightly coupled with the multi-level low-rank
analysis framework. (a) Original image, (b) Saliency map resulted from the
RPCA based low-rank method [4], (c) Different-level saliency map resulted
from the BRP based low-rank method, (d) Saliency map resulted from our
method.

(b) (d)

Fig. 7.

After the low-rank decomposition, we use the following
equation to assign saliency value for each super-pixel:

D
S; =157 i), (10)
j=1
where S indicates the saliency value of the i-th super-pixel at
rank level r, D is the feature dimension, and S” is the sparse
matrix with rank level r. Then, the residual sparse matrices at
different rank level can be computed by:

Y

where Z is the normalization factor, S;' and S;* are saliency
value of the i-th super-pixel at rank level r1 and r; respectively.
It is apparent that, the residuals of sparse matrices under
different rank level r (see Fig. 7¢) natural indicate the changing
rate of anisotropic strength, and we utilize the average of
multiple residual matrices for robust scale-aware saliency (S)
detection with the following formulation:

(r1,r2) _
RUD = |sn — s/ Z,

Np
Sf=1/Np- > RP, (12)

p=1
where Sy is the final saliency map, Np is the total number of
residual sparse matrices, and R” is the p-th residual sparse
matrix. Fig. 6 intuitively shows the pipeline of our scale-
aware saliency detection based on our multi-level low-rank
decomposition.

In our implementation, we set 12000 as the hard sparse
threshold k, and define the variable rank constraint r to
be between 5 to 15 (see Fig. 9b). Therefore, 10 residual
matrices are obtained for multi-scale saliency measurement.
Fig. 7 demonstrates the superiority of our multi-level low-rank
decomposition (Fig. 7d) over the traditional solution (Fig. 7b).

V. CUDA IMPLEMENTATION

Since our structure-sensitive descriptor enables parallel
computation, we have fully implemented it on CUDA.
We first invoke one CUDA thread for each super-pixel
(see Fig. 8), of which we interpolate nodes for triangle
edges (Step.l in Algorithm 1), formulate iso-line points
(Step.2 in Algorithm 1), and finally describe the context of
iso-line shapes (Step.3 in Algorithm 1). Then, the feature
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-
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Step 1
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Parallel computation
for our descriptor

Super-pixel topology

Fig. 8. Demonstration of using CUDA to parallelly compute our descriptor,
and super-pixels are denoted by red points.

Algorithm 1 Kernel Function

Input: T = {t,ta,...,tn }, Where N is the total super
pixel number, and ¢; = {(V,, Ba), (Vs, Bg), (Vy, By)}
represents triangle whose nodes V is initialized

by bi-harmonic value B

Initialization: L., = 30, Lint = 1/Lpum, & = Lint /1000
Output: f;

Step 1. Interpolate nodes for triangle edges
Jor each edge [V,,,V,,] in triangle t;
1:  interpolate k nodes &,
where k = |||Vin, Vall3/Lint | »
€ = {(Ub b1)7 (U2a b2)a [ (vkv bk)}:
v € (Vin, Vo) and b € (B, Bp);
20 ti{end+1} =¢;
end for

Step 2. Formulate iso-line points
Jor each nodes(V, B) in t;
if A. (B,, — By,)<e, and
B. Vi € edgelVa, Vg, Vi € edge[Va, V],
but 8 #~, and
C. no Vy exists, where
(Bg— Bm) <eor (By—By,) <cg;

then

3: id=[(B+¢€)/Lint|;

4: ISOM{@TLd—F 2} = [‘/'m»‘/'rJ;
end if

end for

Step 3. Describe the context of iso-line shape

for each 150;_1.15

5: compute Lo distance of arbitrary iso-point pairs,
and obtaining distance pool P{i};

6:  H = histogram analysis for P{i};

7. fi{end+1} = H;

end for

matrix F = {f1, f2,..., fn} is obtained by collecting the
outputs of each graphic processing unit (GPU). Details
of CUDA kernel function is documented in the following
algorithm.

The first step of our CUDA kernel function is to
interpolate bi-harmonic values for the triangle edges, and these
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Fig. 9. (a) Average Precision-Recall performance comparison of different super-pixel methods over Achanta dataset (1000 images) [19], (b) Precision-recall

curves using different extents of rank level for multi-level low-rank decomposition on Achanta dataset [19] and SED1 dataset [47], (c) Precision-recall curves
of our method combined with different saliency detection solutions on Achanta dataset [19] and SED1 datasets [47]. The method of using traditional feature
is proposed in [28], (d) Saliency detection results and their comparisons over noise-corrupted images. Results from HS13 [1], MC13 [2], SF12 [3], LK12 [4],
CB11 [5], RC11 [6], HC11 [6], LCO06 [33], FT09 [19], and SRO7 [34] are documented here.
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Fig. 10. Quantitative analysis for the parameters’ selection, including the
interval number used in histogram analysis, the regularity level of super-pixel
decomposition, and the iso-line number to represent the bi-harmonic diffusion
pattern. The color from blue to red indicates the value of F-measure changes
from low to high.

newly interpolated points will facilitate the construction of
bi-harmonic iso-lines. The second step is to eliminate the
points which are not belonging to any iso-line, and then
formulate iso-lines. Given a specific iso-line, the final step is
designed to represent the bi-harmonic diffusion context based
on Euclidean distance of arbitrary bi-harmonic point pairs.

VI. EXPERIMENTAL RESULTS AND EVALUATION
A. Parameter Selection

In principle, there are four parameters influencing the
performance of our salient object detection framework: (1) The
regularity of super-pixels (Section III-A); (2) The interval
number used in histogram analysis (Section III-B); (3) The
number of actually used iso-lines (Section III-B); and (4) The
rank level range for multi-level low-rank decomposition
(Section IV-B). As the first three parameters simultaneously
affect the performance of using low-rank decomposition for
saliency estimation, we comprehensively test their effects
as a whole on the overall performance in order to obtain
the optimal solution at the beginning, and later deal with
the optimal extent of rank level for multi-level low rank
decomposition.

1) The Regularity of Super-Pixels: To better analyze the
influence of irregular super-pixel segmentation, we have

Fig. 11.  Demonstration of the saliency maps produced with different-
regularity super-pixel configurations, wherein the sub-figure (T1) is the input
image, (T2) is the ground truth, (T3) is the saliency map produced by our
method via SLIC segmentation [41], while (T4-T6) are the results produced
by our method via mean-shift clustering based super-pixel segmentation [48],
with low/moderate/high regularity respectively.

conducted extensive experiments based on SLIC [41] and
mean-shift clustering for super-pixel segmentation [48], and
the quantitative comparison results can be found in Fig. 9a.
According to our analysis, we adopt a relatively-uniform
super-pixel segmentation strategy, because our diffusion
geometry based descriptor is heavily dependent on the
underlying manifold mesh quality of the original 2D image.
And the irregular manifold mesh also has negative impact on
the low-rank hypothesis of non-salient background. Yet, the
SLIC decomposition with high-regularity strength can also
make the contours of salient objects obscure and deteriorate
the distinguishing power of our structure-sensitive descriptor.
Extensive testing results shown in Fig. 10 suggest that setting
the optimal SLIC super-pixel regularity level to be 0.01
can make the best tradeoff. It is apparent that, the SLIC
based uniform super-pixel segmentation gives rise to better
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More saliency detection results and their comparisons among our method, ground truth (GT), and current state-of-the-art methods, including

HS13 [1], MC13 [2], SF12 [3], LK12 [4], CB11 [5], RC11 [6], HC11 [6], FT09 [19].

performance (with 900 super-pixels), which outperforms
mean-shift based super-pixel segmentation because of the
relative regularity of SLIC. And the average performance
testing over Achanta dataset indicates that the performance
will deteriorate when the super-pixel’s regularity decreases
(it may be noted that, in Fig. 9a, high regularity case
has almost 900 super-pixels, moderate regularity case has

almost 700 super-pixels, and low regularity case has almost
500 super-pixels). Correspondingly, Fig. 11 demonstrates
the different saliency maps produced by our method with
different-regularity super-pixel configurations.

2) The Number of Actually Used Iso-Lines: Based on
our observation, dense iso-lines can precisely represent the
bi-harmonic diffusion pattern, but too many iso-lines will
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Precision-recall curves for dynamic thresholding of saliency maps. Different options of our method are compared with HS13 [1], MC13 [2],

SF12 [3], LK12 [4], CB11 [5], RC11 [6], HC11 [6], LCO06 [33], FT09 [19], and SR07 [34]. (a) Precision-recall comparisons of different methods based
on Achanta dataset [19], (b) Precision-recall comparisons of different methods based on MSRA dataset [20], (c) Precision-recall comparisons of different
methods based on SED1 dataset [47], (d) Precision-recall comparisons of different methods based on SED2 dataset [47].
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Fig. 14. Average precision, recall and F-measure comparison of different methods on (a) Achanta dataset [19], (b) MSRA dataset [20], (c) SED1 dataset [47],
and (d) SED2 dataset [47]. The results of our method are compared with HS13 [1], MC13 [2], SF12 [3], LK12 [4], CB11 [5], RC11 [6], HC11 [6], LCO06 [33],

FT09 [19], and SRO7 [34].

inevitably increase the computational burden. Therefore, we
choose to compute total 30 bi-harmonic iso-lines in our
implementation. Since iso-lines near the image boundaries
tend to offer meaningless diffusion patterns, only the inner-ring
iso-lines are used to represent the bi-harmonic diffusion
pattern, and results in Fig. 10 suggest 15 as the optimal choice.

3) The Interval Number for Histogram Analysis: Obviously,
for histogram analysis, large interval number leads to strong
discriminative power, which can increase the probability
of treating non-salient background as sparse part by the
low-rank decomposition. Furthermore, large interval number
also increases the feature dimension which heavily affects the
computational cost. However, small interval number deterio-
rates the discriminative power. According to our test results
in Fig. 10, we select 40 as the optimal interval number for
histogram analysis.

4) The Rank Level Range for Multi-Level Low-Rank
Decomposition: After the above three parameters are deter-
mined, Fig. 9b demonstrates the precision-recall curves using
different rank level range, and the results suggest that better
results tend to arise with the rank level range [5, 15]. There-
fore, we formulate our multi-level low-rank decomposition as
follows:

14

Sr = Z [Si 41— Srl,
r=5

13)

where subscript r indicates the specific rank level, and
Sy denotes the final sparse matrix after multi-level low-rank
decomposition.

With all parameters being selected, Fig. 9c demonstrates the
overall performance of our method combining with different

components. From Fig. 9c, it is obvious that both our novel
descriptor and multi-level low-rank decomposition can remark-
ably improve the performance of salient object detection.
As shown in Fig. 12, our method can produce less false-alarm
and intact saliency.

B. Comparison With Other Methods

In this paper, we evaluate the performance of our method on
four public available datasets recommended by recent bench-
mark [49], including the Achanta [19], MSRA [20], SEDI,
and SED2 [47]. The Achanta dataset contains 1000 images,
wherein each image has only one salient object with
ground truth accurately marked. The MSRA dataset con-
tains 5000 images with rectangle ground truth labeled by
nine different users. Similar to the Achanta dataset, the
SED1 dataset also contains 100 images with one salient object
in each image, while the surroundings of the salient object are
more complex than those in the Achanta dadaset. Also with
complex surroundings, the SED2 dataset contains 100 images
with two salient objects in each image.

We conduct extensive experiments and make quantitative
comparison with ten current state-of-the-art methods, includ-
ing spectral residual method (SRO7) [34], frequency tuned
method (FT09) [19], low level contrast method (LC06) [33],
histogram contrast method (HCI11) [6], region contrast
method (RC11) [6], contour based method (CB11) [5],
low-rank matrix recovery based method (LK12) [4],
saliency filter method (SF12) [3], mid-level clue based
method (MC13) [2] and hierarchical saliency detection
method (HS13) [1] to verify and validate our method.

We adopt the precision-recall indicator to conduct
evaluation. To facilitate the precision-recall computation, in the
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Saliency detection results and their comparisons over noise-corrupted images. The numbers (colored in yellow) in the first column images indicate

the noise pixel number. SRC is the source image, and HS13 [1], MC13 [2], SF12 [3], LK12 [4], RC11 [6], HC11 [6], LCO06 [33], and FT09 [19] are shown
here. Specifically, we do not demonstrate the result of CB11 [5] here, because it is very sensitive to noise, and it becomes unavailable with no saliency value

assigned when existing more than 100 noise pixels.

first set of experiments, all the images are further segmented
according to the saliency maps of different methods with
the same threshold T € [0, 1], wherein pixels with saliency
value larger than T are labeled as foreground. If the obtained
foreground pixel is consistent with that in the ground truth
mask, it is deemed as real saliency. Specifically, since the
ground truth of MSRA dataset are represented with bounding
boxes, we follow the validation setting adopted by [49]: given
the computed saliency map, find a bounding box that can cover
at least 95% saliency pixels, and then calculate the precision-
recall scores based on these bounding boxes.

The final precision-recall curves are obtained using the
average computation results by varying 7 from 0 to 1.
As the recall rate is inversely proportional to the precision,
the tendency of the trade-off between precision and recall
can truly reflect the performance. Precision-recall curves
in Fig. 13a, Fig. 13b and Fig. 13c quantitatively indicate
that our method is much better than other methods in terms
of both precision and recall criteria. For multiple salient
object detection, methods including HS13, CB11, MC13,
SF12, and LK12 have good precision-recall curves on single
salient object datasets (Fig. 13a), while their performance
tends to deteriorate rapidly in the SED2 dataset (Fig. 13d).
In contrast, our method’s performance remains to be good.
Actually, because of the existence of multiple salient objects,
the low-rank hypothesis become invalid occasionally. This
might have a negative impact on the claimed advantage of
our method (see details in Section VI-C).

In the second set of experiments, we first adopt the
public implementation [4] to over-segment all the images.

Then, for each segment, we label it as foreground if its
average saliency score is greater than the adaptive threshold
T = 2x (the average saliency of all the segments).
Fig. 14a, Fig. 14b, Fig. 14c and Fig. 14d document the
statistics of all the methods in terms of average precision,
recall, and F-measure, where F = ((f>+1)P*R)/(f>P + R)
(P = Average Precision, R = Average Recall) and 2 = 0.3.
It shows that our method apparently outperforms other
state-of-the-art methods. Specifically, even though both our
method and that in [4] employ low-rank decomposition for
saliency detection, our method can achieve better results.

Besides, Fig. 15 shows the performance comparison with
noise-corrupted images, and Fig. 9d demonstrates the variation
tendency of average F-measure over varying noise number.
Since the relevant feature description in other methods is
sensitive to noise, their performance tends to deteriorate
rapidly when increasing the noise level. In sharp contrast,
it still has little negative impact on our method even for
large-scale noises, which demonstrates the superiority of our
method in robustness.

C. Limitation

Because our method is based on the assumption that a
salient object should have distinctive diffusion pattern from
non-salient background, but in practice, this assumption may
not always be true. For images containing multiple salient
objects (see Fig. 16a), both salient objects (region A and C
in Fig. 16d) tend to have similar diffusion pattern. Therefore,
salient objects are no longer regarded as the low-rank part
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TABLE I
AVERAGE TIME CONSUMPTION OF SINGLE IMAGE IN ACHANTA DATASET [19]
Method Ours HS [1] | LKI2 [4] | MC13 [2] | SF12 [3] | CB12 [5] | RCI11 [6] | HC11 [6] | LCO6 [33] | FT09 [19] | SRO7 [34]
Time (s) 3.76 0.475 6.83 52.9 0.235 0.592 0.225 0.039 0.024 0.018 0.089
Code Matlab C++ Matlab Matlab C++ Matlab C++ C++ C++ C++ Matlab

(@)

Fig. 16. Limitations of our method. (a) The source image is containing two
salient objects, (b) The ground truth with each salient object marked with red
and blue color respectively, (c) The saliency map computed by our method,
(d) The visual explanation why our method fails in such a case.

by the low-rank decomposition process, and non-salient back-
ground (region B in Fig. 16d) is assigned with high saliency
value (Fig. 16c). One way to overcome this limitation is to
incorporate high-level semantic knowledge which can auto-
matically assign higher saliency value to the meaningful
buildings than to the background sky in this example, and
this research issue deserves our future investigation.

Another limitation of our method is that, our method tends
to be time-consuming in general. Table I documents the
average time cost of each method. All of these methods are run
on a computer with Quad Core i7-3770 3.4 GHz, 8GB RAM
and NVIDIA GeForce GTX 660 Ti. In fact, the high accuracy
is actually somehow less desirable in the interest of efficiency,
and the computation of our novel descriptor is the major bottle
neck in terms of time consumption (costing about 2.5 seconds).
For single 500500 image, let us consider our CUDA based
parallel implementation as an example, our method costs about
3.7 seconds to complete the entire computation, which is still
much less than the low-rank decomposition based saliency
detection method [4].

VII. CONCLUSION

In this paper, we have presented a novel and versatile
method to address a suite of research challenges in multi-scale,
structure-sensitive saliency detection of natural images. The
critical novel technical elements include: the bi-harmonic
distance metric based intrinsic shape descriptor, multi-level
low-rank decomposition based optimization model, and their
elegant integration for the natural trade-off among local
mutation, global uniqueness, and rarity scope towards a brand
new saliency measurement, all of which contribute to physics-
based vision, shape representation, image optimization, and
pattern recognition. Our comprehensive experiments and
extensive comparisons with other state-of-the-art methods
have demonstrated our method’s obvious advantages in terms
of accuracy, reliability, robustness, and versatility.

Our ongoing research efforts are concentrated on extending
our key ideas to handle feature driven non-rigid registration,

image co-segmentation, self-learning based image annotation,
and image retrieval.
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