
CSE548, AMS542: Analysis of Algorithms, Fall 2012 Date: December 6

In-Class Final Exam
( 11:35 AM – 12:50 PM : 75 Minutes )

• This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 30% of your grade, and the lower one 15%.

• There are four (4) questions, worth 75 points in total. Please answer all of them in the spaces
provided.

• There are 14 pages including four (4) blank pages. Please use the blank pages if you need
additional space for your answers.

• The exam is open slides. So you can consult the lecture slides during the exam. No additional
cheatsheets are allowed.

Good Luck!

Question Score Maximum

1. Binary Addition 25

2. Nuts and Bolts 15

3. Partial Sums 10

4. Sampling 25

Total 75

Name:

1



Question 1. [ 25 Points ] Binary Addition. Function Standard-Binary-Addition is the
standard grade school algorithm for adding two n-bit binary numbers, and Rec-Binary-Addition
is a recursive divide-and-conquer algorithm for the same task. In this problem we will try to
parallelize the two algorithms and analyze the resulting parallel algorithms.

Standard-Binary-Addition( xn . . . x1, yn . . . y1 )

(Inputs are two n-bit binary numbers X = xn . . . x1 and Y = yn . . . y1, where n ≥ 1. Output is an (n+ 1)-bit binary
number Z = zn+1 . . . z1, where Z is the sum of X and Y (i.e., Z = X + Y ).)

1. c← 0

2. for i← 1 to n do

3. s← xi + yi + c

4. zi ← s mod 2, c← s div 2

5. zn+1 ← c

6. return Z

Rec-Binary-Addition( xn . . . x1, yn . . . y1 )

(Inputs are two n-bit binary numbers X = xn . . . x1 and Y = yn . . . y1, where n ≥ 1 is assumed to be a power of 2.
Outputs are two (n+ 1)-bit binary numbers Zc = zcn+1 . . . z

c
1 and Z = zn+1 . . . z1, where Zc is the sum of X and Y

assuming an initial carry (i.e., Zc = X + Y + 1), and Z is the same sum without an initial carry (i.e., Z = X + Y ).)

1. if n = 1 then

2. if x1 = y1 = 0 then return 〈 01, 00 〉
3. elif x1 = y1 = 1 then return 〈 11, 10 〉
4. else return 〈 10, 01 〉
5. else

6. let Xh = xn . . . xn
2
+1 and Xl = xn

2
. . . x1 {split X at the midpoint}

7. let Yh = yn . . . yn
2
+1 and Yl = yn

2
. . . y1 {split Y at the midpoint}

8. 〈 Lc, L 〉 ← Rec-Binary-Addition ( Xl, Yl )
{
where Lc = lcn

2
+1l

c
n
2
. . . lc1 and L = ln

2
+1ln

2
. . . l1

}
9. 〈 Hc, H 〉 ← Rec-Binary-Addition ( Xh, Yh )

{
where Hc = hc

n
2
+1h

c
n
2
. . . hc

1 and H = hn
2
+1hn

2
. . . h1

}
10. if ln

2
+1 = 1 then Copy

(
Z, Hc, ln

2
. . . l1

) {(
carry from position n

2

)
⇒ Z = hc

n
2
+1h

c
n
2
. . . hc

1ln2 . . . l1
}

11. else Copy
(
Z, H, ln

2
. . . l1

) {(
no carry from position n

2

)
⇒ Z = hn

2
+1hn

2
. . . h1ln

2
. . . l1

}
12. if lcn

2
+1 = 1 then Copy

(
Zc, Hc, lcn

2
. . . lc1

) {(
carry from position n

2

)
⇒ Zc = hc

n
2
+1h

c
n
2
. . . hc

1l
c
n
2
. . . lc1

}
13. else Copy

(
Zc, H, lcn

2
. . . lc1

) {(
no carry from position n

2

)
⇒ Zc = hn

2
+1hn

2
. . . h1l

c
n
2
. . . lc1

}
14. return 〈 Zc, Z 〉

Copy( z2n+1 . . . z1, hn+1 . . . h1, ln . . . l1 )

1. for i← 1 to n do

2. zi ← li

3. zn+i ← hi

4. z2n+1 ← hn+1
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1(a) [ 3 Points ] Can you replace the for loop in lines 2–4 of Standard-Binary-Addition
with a parallel for loop (without changing anything else)? Justify your answer.

1(b) [ 6 Points ] Which parts of Rec-Binary-Addition can be executed in parallel? Justify
your answer.
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1(c) [ 10 Points ] Write down the recurrence relations for work and span for your parallel version
of Rec-Binary-Addition from part 1(b), and solve them. Assume that the span of a
parallel for loop with n iterations is Θ (log n) + k, where k is the maximum span of one
iteration.
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1(d) [ 4 Points ] Find the parallel running time (i.e., Tp) and the parallelism of the parallel
Rec-Binary-Addition from part 1(b).

1(e) [ 2 Points ] Is your parallel Rec-Binary-Addition work-optimal? Justify your answer.
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Use this page if you need additional space for your answers.
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Question 2. [ 15 Points ] Nuts and Bolts. Suppose you are given n nuts and n bolts. Each
nut has unique size and it matches exactly one bolt and vice versa. Your job is to find the matching
bolt for every nut in the set. When you solve this problem you can only compare a nut with a bolt
and conclude that either the nut exactly fits the bolt or it is too small for the bolt or it is too large.
You are not allowed to compare one nut with another nut or a bolt with another bolt.

2(a) [ 5 Points ] Suppose you have chosen a nut uniformly at random from the given set. Show
that in Θ (n) time you can find the matching bolt, and divide the remaining nuts and bolts
into two sets: one containing all nuts and bolts smaller than the chosen pair and the other
containing everything larger.
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2(b) [ 10 Points ] Prove that using the partition algorithm in part 2(a) you can solve the nuts
and bolts problem in O (n log n) time with high probability. You do not necessarily need to
prove the bound explicitly. You can simply argue that your algorithm is structurally exactly
similar to an algorithm you have already seen in the class, and so the bound proved for that
algorithm applies.
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Use this page if you need additional space for your answers.

9



Question 3. [ 10 Points ] Partial Sums. In the class we have shown that the partial semigroup
sums problem can be solved using Θ (nα(n)) space with O (α(n)) applications of the associative
operator per query. How do you reduce the space complexity to Θ (n) without changing the query
complexity asymptotically?
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Question 4. [ 25 Points ] Sampling. In this problem we will analyze the properties of two
different sampling of elements from an array.

4(a) [ 10 Points ] One can show that given an array A of n distinct numbers no deterministic
algorithm can find an element among the smallest n

k members of A using fewer than
(
k−1
k

)
n

comparisons. But consider the function given below that runs in Θ
(

log( k
k−1) n

)
time. Prove

that with high probability in n the element it returns is among the smallest n
k elements of A.

Top( A[ 1 : n ], k )

(Inputs are an array A[ 1 : n ] of n distinct numbers, and an integer k ∈ [1, n]. Output is
an element x of A.)

1. x← A[ Random( 1, n ) ] {choose a number from A uniformly at random}

2. for i← 1 to
⌈
log( k

k−1 )
n
⌉
do

3. y ← A[ Random( 1, n ) ] {choose a number from A uniformly at random}
4. if y < x then x← y {keep the smaller number}
5. return x
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4(b) [ 15 Points ] Consider the function given below, and prove that with high probability in n

no
⌈

2k
k−1

⌉
numbers in B[ 1 : m ] are equal.

Sample( A[ 1 : n ], k )

(Inputs are an array A[ 1 : n ] of n distinct numbers, and a real number k > 1. Output is

an array B[ 1 : m ] of m =
⌊
n

1
k

⌋
numbers sampled uniformly at random from A.)

1. array B[ 1 : m ]

2. for i← 1 to m do

3. j ← Random( 1, n ) {choose an integer uniformly at random from [ 1, n ]}
4. B[ i ]← A[ j ]

5. return B
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Use this page if you need additional space for your answers.
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Use this page if you need additional space for your answers.
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