
CSE548, AMS542: Analysis of Algorithms, Fall 2012 Date: Sep 23

Homework #1
( Due: Oct 4 )

Task 1. [ 20 Points ] Recurrence( Recurrence( Recurrence( Recurrence( Recurrence( ... ) ) ) ) )

Use the Master Theorem to solve the following recurrences.

(a) [ 5 Points ] For a > 1 and b > 0,

T (n) =

{
Θ (1) if n ≤ b,
aT (n− b) + n otherwise.

(b) [ 5 Points ] For a ≥ 1, b > 1 and n = 2k for some integer k ≥ 0,

T (n) =

{
Θ (1) if n ≤ 2,

aT (n
1
b ) + 1 otherwise.

(c) [ 5 Points ] The following recurrences arise during the analysis of the span (i.e., critical
pathlength) of a multithreaded implementation of Floyd-Warshall’s APSP (All-Pairs Shortest
Paths) algorithm. Solve for TA(n).

TA(n) =

{
Θ (1) if n ≤ 1,
2
(
TA(n2 ) + max{TB(n2 ), TC(n2 )}+ TD(n2 )

)
+ Θ (1) otherwise.

TB(n) =

{
Θ (1) if n ≤ 1,
2
(
TB(n2 ) + TD(n2 )

)
+ Θ (1) otherwise.

TC(n) =

{
Θ (1) if n ≤ 1,
2
(
TC(n2 ) + TD(n2 )

)
+ Θ (1) otherwise.

TD(n) =

{
Θ (1) if n ≤ 1,
2TD(n2 ) + Θ (1) otherwise.

(d) [ 5 Points ] For a ≥ 1, b > 1, n = bk for some integer k ≥ 0, and a nonnegative function
f(n) defined on exact powers of b,

T (n) =

{
Θ (1) if n ≤ 1,

f(n) +
∑k

i=1

(
a
2

)i
T
(
n
bi

)
otherwise.
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Figure 1: Concentric magnetic rings.

Task 2. [ 25 Points ] Futile Attraction

Consider two magnetic rings M̂ and M̃ of the same size, each divided into n ≥ 1 segments with
each segment subtending exactly 2π

n radians at the center of the ring (see Figure 1). In each ring
the segments are numbered from 0 to n−1 in such a way that segment k ∈ [0, n) is always adjacent
to segments ((k + 1) mod n) and ((n + k − 1) mod n). For each i ∈ [0, n), the center of the top

surface of the i-th segment of M̂ contains a point magnetic charge of magnitude q̂i amp-meter.
Similarly, the center of the bottom surface of segment j ∈ [0, n) of M̃ contains a point magnetic
charge of magnitude q̃j amp-meter.

We know that if two point magnetic charges of magnitude q̂i and q̃j are placed at a distance r (in
meters) in a medium of permeability µ (in newton/amp2), then the magnetic force (in newtons)
between them is given by:

fi,j = µ
q̂iq̃j
4πr2

.

A positive value of fi,j indicates repulsion, and a negative value means attraction.

When M̃ is placed directly above M̂ at a very small distance r > 0 with each segment i ∈ [0, n)

of M̂ perfectly aligned with segment ((i+ k) mod n) of M̃ , the total force acting between the two
rings is approximated as:

Fk =

n−1∑
i=0

fi,(i+k) mod n.

Give an efficient algorithm to determine a value of k that results in the maximum attraction between
the two rings, i.e., Fk = minn−1l=0 {Fl}.
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Task 3. [ 25 Points ] More than this - there is nothing... (Bryan Ferry / Norah Jones)

Consider an n× n (n ≥ 1) matrix M
n,~α,~β

, where for ~α = 〈α0, α1, . . . , αn−1〉, ~β = 〈β0, β1, . . . , βn−1〉
and i, j ∈ [0, n), the entry in the i-th row and the j-th column of the matrix is given by

Mn,α,β[i, j] = α(i+j) mod n + β(n−1+i−j) mod n.

For example, for n = 4, we have:

M
4,~α,~β

=


α0 + β3 α1 + β2 α2 + β1 α3 + β0
α1 + β0 α2 + β3 α3 + β2 α0 + β1
α2 + β1 α3 + β0 α0 + β3 α1 + β2
α3 + β2 α0 + β1 α1 + β0 α2 + β3


Show that though an n× n matrix has n2 entries, the product of two matrices as described above
can be computed in o

(
n2
)

time. More specifically, prove that the number of distinct numbers you
need in order to completely represent the n2 entries of M

n,~a,~b
×M

n,~c,~d
is not more than 4n (each

entry of the product must be computable in constant time from those numbers), and the complexity
of computing those numbers is not more than O (n log n).

Task 4. [ 10 Points ] The Fat Fourier Transform (FFT)

Recall that the discrete Fourier transform (DFT) of a vector X of n complex numbers is given by
another complex vector Y of the same length, where Y [i] =

∑
0≤j<nX[j] · ω−ijn for 0 ≤ i < n, and

ωn = e2π
√
−1/n.

Figure 2 shows one implementation of the DFT computation above. If n = O (1), we compute
DFT using direct formula. Otherwise, for any factorization n = n1n2, we observe that

Y [i1 + i2n1] =

n2−1∑
j2=0

n1−1∑
j1=0

X[j1n2 + j2]ω
−i1j1
n1

ω−i1j2n

ω−i2j2n2
.

Observe that both the inner and outer summations in the equation above are DFT’s. The FFT
routine in Figure 2 implements this equation by first computing n2 transforms of size n1 each
(the inner sum), multiplying the results by twiddle factors (i.e., ω−i1j2n ), and finally computing n1
transforms of size n2 each (the outer sum).

Analyze the running time of the FFT implementation given in Figure 2 on an input of size n = 2k

for some integer k ≥ 0.
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FFT( X, n )

(Input is a vector of length n = 2k for some integer k ≥ 0. Output is the in-place FFT of X.)

1. Base Case: If n is a small constant then compute FFT using the direct formula and return.

2. Divide-and-Conquer:

(a) Divide: Let n1 = 2d
k
2 e and n2 = 2b

k
2 c. Observe that n2 ∈ {n1, 2n1}.

(b) Transpose: Treat X as a row-major n1 × n2 matrix. Transpose X in-place.

(c) Conquer: for i← 0 to n2 − 1 do FFT( X[ i× n1, i× n1 + n1 − 1 ], n1 )

(d) Multiply: Multiply each entry of X by the appropriate twiddle factor.

(e) Transpose: Treat X as a row-major n2 × n1 matrix. Transpose X in-place.

(f) Conquer: for i← 0 to n1 − 1 do FFT( X[ i× n2, i× n2 + n2 − 1 ], n2 )

(g) Transpose: Treat X as a row-major n1 × n2 matrix. Transpose X in-place.

(h) return X

Figure 2: A divide-and-conquer algorithm for computing FFT.
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