Homework \#1
 (Due: Oct 4)

Task 1. [20 Points] Recurrence(Recurrence(Recurrence(Recurrence(Recurrence(...)))))
Use the Master Theorem to solve the following recurrences.
(a) [5 Points] For $a>1$ and $b>0$,

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1) & \text { if } n \leq b \\
a T(n-b)+n & \text { otherwise }
\end{array}\right.
$$

(b) [5 Points] For $a \geq 1, b>1$ and $n=2^{k}$ for some integer $k \geq 0$,

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1) & \text { if } n \leq 2, \\
a T\left(n^{\frac{1}{b}}\right)+1 & \text { otherwise } .
\end{array}\right.
$$

(c) [5 Points] The following recurrences arise during the analysis of the span (i.e., critical pathlength) of a multithreaded implementation of Floyd-Warshall's APSP (All-Pairs Shortest Paths) algorithm. Solve for $T_{A}(n)$.

$$
\begin{gathered}
T_{A}(n)=\left\{\begin{array}{l}
\Theta(1) \\
2\left(T_{A}\left(\frac{n}{2}\right)+\max \left\{T_{B}\left(\frac{n}{2}\right), T_{C}\left(\frac{n}{2}\right)\right\}+T_{D}\left(\frac{n}{2}\right)\right)+\Theta(1) \\
T_{B}(n)=\left\{\begin{array}{l}
\text { if } n \leq 1, \\
\text { otherwise. }
\end{array}\right. \\
2\left(T_{B}\left(\frac{n}{2}\right)+T_{D}\left(\frac{n}{2}\right)\right)+\Theta(1) \quad \text { if } n \leq 1, \\
\text { otherwise. }
\end{array}\right. \\
T_{C}(n)= \begin{cases}\Theta(1) & \text { if } n \leq 1, \\
2\left(T_{C}\left(\frac{n}{2}\right)+T_{D}\left(\frac{n}{2}\right)\right)+\Theta(1) & \text { otherwise. }\end{cases} \\
T_{D}(n)= \begin{cases}\Theta(1) & \text { if } n \leq 1, \\
2 T_{D}\left(\frac{n}{2}\right)+\Theta(1) & \text { otherwise. }\end{cases}
\end{gathered}
$$

(d) [5 Points] For $a \geq 1, b>1, n=b^{k}$ for some integer $k \geq 0$, and a nonnegative function $f(n)$ defined on exact powers of b,

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1) & \text { if } n \leq 1 \\
f(n)+\sum_{i=1}^{k}\left(\frac{a}{2}\right)^{i} T\left(\frac{n}{b^{i}}\right) & \text { otherwise }
\end{array}\right.
$$

Figure 1: Concentric magnetic rings.

Task 2. [25 Points] Futile Attraction

Consider two magnetic rings \widehat{M} and \widetilde{M} of the same size, each divided into $n \geq 1$ segments with each segment subtending exactly $\frac{2 \pi}{n}$ radians at the center of the ring (see Figure 1). In each ring the segments are numbered from 0 to $n-1$ in such a way that segment $k \in[0, n)$ is always adjacent to segments $((k+1) \bmod n)$ and $((n+k-1) \bmod n)$. For each $i \in[0, n)$, the center of the top surface of the i-th segment of \widehat{M} contains a point magnetic charge of magnitude \hat{q}_{i} amp-meter. Similarly, the center of the bottom surface of segment $j \in[0, n)$ of \widetilde{M} contains a point magnetic charge of magnitude \tilde{q}_{j} amp-meter.

We know that if two point magnetic charges of magnitude \hat{q}_{i} and \tilde{q}_{j} are placed at a distance r (in meters) in a medium of permeability μ (in newton $/ \mathrm{amp}^{2}$), then the magnetic force (in newtons) between them is given by:

$$
f_{i, j}=\mu \frac{\hat{q}_{i} \tilde{q}_{j}}{4 \pi r^{2}} .
$$

A positive value of $f_{i, j}$ indicates repulsion, and a negative value means attraction.
When \widetilde{M} is placed directly above \widehat{M} at a very small distance $r>0$ with each segment $i \in[0, n)$ of \widehat{M} perfectly aligned with segment $((i+k) \bmod n)$ of \widetilde{M}, the total force acting between the two rings is approximated as:

$$
F_{k}=\sum_{i=0}^{n-1} f_{i,(i+k) \bmod n}
$$

Give an efficient algorithm to determine a value of k that results in the maximum attraction between the two rings, i.e., $F_{k}=\min _{l=0}^{n-1}\left\{F_{l}\right\}$.

Task 3. [25 Points] More than this - there is nothing... (Bryan Ferry / Norah Jones)
Consider an $n \times n(n \geq 1)$ matrix $\mathcal{M}_{n, \vec{\alpha}, \vec{\beta}}$, where for $\vec{\alpha}=\left\langle\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right\rangle, \vec{\beta}=\left\langle\beta_{0}, \beta_{1}, \ldots, \beta_{n-1}\right\rangle$ and $i, j \in[0, n)$, the entry in the i-th row and the j-th column of the matrix is given by

$$
\mathcal{M}_{n, \alpha, \beta}[i, j]=\alpha_{(i+j) \bmod n}+\beta_{(n-1+i-j)} \bmod n
$$

For example, for $n=4$, we have:

$$
\mathcal{M}_{4, \vec{\alpha}, \vec{\beta}}=\left[\begin{array}{cccc}
\alpha_{0}+\beta_{3} & \alpha_{1}+\beta_{2} & \alpha_{2}+\beta_{1} & \alpha_{3}+\beta_{0} \\
\alpha_{1}+\beta_{0} & \alpha_{2}+\beta_{3} & \alpha_{3}+\beta_{2} & \alpha_{0}+\beta_{1} \\
\alpha_{2}+\beta_{1} & \alpha_{3}+\beta_{0} & \alpha_{0}+\beta_{3} & \alpha_{1}+\beta_{2} \\
\alpha_{3}+\beta_{2} & \alpha_{0}+\beta_{1} & \alpha_{1}+\beta_{0} & \alpha_{2}+\beta_{3}
\end{array}\right]
$$

Show that though an $n \times n$ matrix has n^{2} entries, the product of two matrices as described above can be computed in $o\left(n^{2}\right)$ time. More specifically, prove that the number of distinct numbers you need in order to completely represent the n^{2} entries of $\mathcal{M}_{n, \vec{a}, \vec{b}} \times \mathcal{M}_{n, \vec{c}, \vec{d}}$ is not more than $4 n$ (each entry of the product must be computable in constant time from those numbers), and the complexity of computing those numbers is not more than $\mathcal{O}(n \log n)$.

Task 4. [10 Points] The Fat Fourier Transform (FFT)

Recall that the discrete Fourier transform (DFT) of a vector X of n complex numbers is given by another complex vector Y of the same length, where $Y[i]=\sum_{0 \leq j<n} X[j] \cdot \omega_{n}^{-i j}$ for $0 \leq i<n$, and $\omega_{n}=e^{2 \pi \sqrt{-1} / n}$.
Figure 2 shows one implementation of the DFT computation above. If $n=\mathcal{O}(1)$, we compute DFT using direct formula. Otherwise, for any factorization $n=n_{1} n_{2}$, we observe that

$$
Y\left[i_{1}+i_{2} n_{1}\right]=\sum_{j_{2}=0}^{n_{2}-1}\left[\left(\sum_{j_{1}=0}^{n_{1}-1} X\left[j_{1} n_{2}+j_{2}\right] \omega_{n_{1}}^{-i_{1} j_{1}}\right) \omega_{n}^{-i_{1} j_{2}}\right] \omega_{n_{2}}^{-i_{2} j_{2}} .
$$

Observe that both the inner and outer summations in the equation above are DFT's. The FFT routine in Figure 2 implements this equation by first computing n_{2} transforms of size n_{1} each (the inner sum), multiplying the results by twiddle factors (i.e., $\omega_{n}^{-i_{1} j_{2}}$), and finally computing n_{1} transforms of size n_{2} each (the outer sum).
Analyze the running time of the FFT implementation given in Figure 2 on an input of size $n=2^{k}$ for some integer $k \geq 0$.

$\operatorname{FFT}(X, n)$

(Input is a vector of length $n=2^{k}$ for some integer $k \geq 0$. Output is the in-place FFT of X.)

1. Base Case: If n is a small constant then compute FFT using the direct formula and return.
2. Divide-and-Conquer:
(a) Divide: Let $n_{1}=2^{\left\lceil\frac{k}{2}\right\rceil}$ and $n_{2}=2^{\left\lfloor\frac{k}{2}\right\rfloor}$. Observe that $n_{2} \in\left\{n_{1}, 2 n_{1}\right\}$.
(b) Transpose: Treat X as a row-major $n_{1} \times n_{2}$ matrix. Transpose X in-place.
(c) Conquer: for $i \leftarrow 0$ to $n_{2}-1$ do $\operatorname{FFT}\left(X\left[i \times n_{1}, i \times n_{1}+n_{1}-1\right], n_{1}\right)$
(d) Multiply: Multiply each entry of X by the appropriate twiddle factor.
(e) Transpose: Treat X as a row-major $n_{2} \times n_{1}$ matrix. Transpose X in-place.
(f) Conquer: for $i \leftarrow 0$ to $n_{1}-1$ do $\operatorname{FFT}\left(X\left[i \times n_{2}, i \times n_{2}+n_{2}-1\right], n_{2}\right)$
(g) Transpose: Treat X as a row-major $n_{1} \times n_{2}$ matrix. Transpose X in-place.
(h) return X

Figure 2: A divide-and-conquer algorithm for computing FFT.

