Homework \#4
 (Due: Dec 4)

Task 1. [40 Points] Shush! Or you will be hashed into a really tiny hash table!
Please refresh your knowledge on hash tables (Section 11.2 of the textbook ${ }^{1}$) before you proceed. Suppose we hash m keys into a hash table of size n. We use hashing with chaining, and assume that each key is equally likely to be hashed into any of the n slots independent of the other keys. Let $L(n, m)$ denote the length of the longest chain in the table after inserting all m keys, and let $l(n, m)$ be the length of the shortest chain. Prove that each of the following bounds hold with high probability in n, where $\alpha>0$ and $\epsilon \in(0,1)$ are constants ${ }^{2}$.
(a) [8 Points] $L\left(n, \alpha n^{1-\epsilon}\right)=\mathcal{O}(1)$.
(b) [8 Points $] L(n, \alpha n)=\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$.
(c) [8 Points] $L(n, \alpha n \log n)=\mathcal{O}(\log n)$.
(d) [8 Points] $l(n, \alpha n \log n) \geq 1$.
(e) [8 Points $] L\left(n, \alpha n^{2}\right)=\mathcal{O}(n)$.

Task 2. [40 Points] "Well, I guess I've been chosen!"3 (Jerry Seinfeld in "Seinfeld")
Consider the randomized median finding algorithm given in Figure 1 which works by choosing a small number of input elements uniformly at random, and using them to possibly reduce the number of candidates for median. Show that parts $(a)-(e)$ hold w.h.p. in n.
(a) [8 Points] $n^{\frac{3}{4}}-o(\sqrt{n}) \leq|S| \leq n^{\frac{3}{4}}+o(\sqrt{n})$ (in Step 1).
(b) [8 Points] $r_{x}<\frac{n}{2}<r_{y}$ (in Step 5).
(c) [8 Points] $|Q|=\mathcal{O}\left(n^{\frac{3}{4}}\right)($ in Step 6).
[Hint: Let z be the median element of A, and let $L=\{q \in Q \mid q<z\}$ and $H=\{q \in$ $Q \mid q>z\}$. Show that w.h.p. in n neither $|L|>2|S|$ nor $|H|>2|S|$ holds.]
(d) [8 Points] RandMedian finds the median element of A.
(e) [8 Points] RandMedian runs in $\mathcal{O}(n)$ time.

[^0]
$\operatorname{RandMedian}(A, n)$

(Input is a set A of n elements from a totally ordered universe, where n is an odd positive integer. Output is the median element of A, i.e., the $\frac{1}{2}(n+1)$-th smallest element of A.)

1. choose each element of A with probability $n^{-\frac{1}{4}}$ independent of other elements, and collect them in a set S
2. sort the elements in S using an optimal sorting algorithm
3. find $x, y \in S$ such that $\operatorname{rank}_{(S)}(x)=\frac{1}{2}|S|-\sqrt{n}$ and $\operatorname{rank}_{(S)}(y)=\frac{1}{2}|S|+\sqrt{n}$
4. compute $r_{x}=\operatorname{rank}_{(A)}(x)$ and $r_{y}=\operatorname{rank}_{(A)}(y)$
5. if $r_{x}<\frac{n}{2}<r_{y}$ then
6. find $Q=\{z \in A \mid x<z<y\}$
7. sort the elements in Q using an optimal sorting algorithm.
8. find $z \in Q$ such that $\operatorname{rank}_{(Q)}(z)=\frac{1}{2}(n+1)-r_{x}$.
9. return z as the median element of A
10. return FAIL

Figure 1: A Monte Carlo algorithm for computing the median of a set.

[^0]: ${ }^{1}$ Chapter 11 (Hash Tables), Introduction to Algorithms (3rd Edition) by Cormen et al.
 ${ }_{3}^{2}$ you are free to choose a suitable positive value of α for each subtask, but task $1(a)$ must hold for all $\epsilon \in(0,1)$
 ${ }^{3}$ when the doctor finally calls him in after a long wait in a crowded waiting room

