
CSE 548: Analysis of Algorithms

Lectures 11, 12 & 13

( Binomial Heaps )

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2012



Mergeable Heap Operations

MAKE-HEAP( � ): return a new heap containing only element �
INSERT( �, � ): insert element � into heap �
MINIMUM( � ): return a pointer to an element in � containing 

the smallest key

EXTRACT-MIN( � ): delete an element with the smallest key from � and return a pointer to that element

UNION( ��, �� ): return a new heap containing all elements of 

heaps �� and �	, and destroy the input heaps

More mergeable heap operations:

DECREASE-KEY( �,�, 
 ): change the key of element � of heap � to � assuming � � the current key of �
DELETE( �,� ): delete element � from heap �



Mergeable Heap Operations

Heap 

Operation

Binary Heap

( worst-case )

Binomial Heap

( amortized )

MAKE-HEAP Θ 1 Θ 1
INSERT Ο log � Θ 1
MINIMUM Θ 1 Θ 1
EXTRACT-MIN Ο log � Ο log �
UNION Θ � Θ 1
DECREASE-KEY Ο log � �
DELETE Ο log � �



Binomial Trees

A binomial tree �� is an ordered tree defined recursively as follows. 

− �� consists of a single node

− For � � 0, �� consists of two ����’s that are linked together 

so that the root of one is the left child of the root of the other



Binomial Trees

Some useful properties of �� are as follows.

1. it has exactly 2� nodes

2. its height is �
3. there are exactly 

�� nodes 

at depth � � 0,1,2,… , �
4. the root has degree �
5. if the children of the root 

are numbered from left to 

right by � � 1, � � 2,… , 0, 

then child � is the root of a ��



����
����

��

Binomial Trees

Prove: �� has exactly 
�� nodes at depth � � 0,1,2,… , �.

��,� � ����,�
��,� � ����,� � ����,�
��,	 � ����,	 � ����,�
��, � ����,	

Proof: Suppose �� has ��,� nodes at depth �.
��,� � !0																												 �#	� $ 0	%&	� � �,1																												 �#	� � � � 0,								����,� � ����,��� %'()&*��).												

�� ��,� � 1



Binomial Trees

��,� � !0																												 �#	� $ 0	%&	� � �,1																												 �#	� � � � 0,									����,� � ����,��� %'()&*��).													
Generating function:  ,� - � ��,� � ��,�- � ��,	-	 �	…� ��,�-�

⇒ ��,�� /� 0 � 0 01 ����,� � ����,��� � � � � � 0

,�2� - �3 ��,�-��
�4� �3 ����,�-��

�4� �3 ����,���-��
�4� � /� � 013 /� � 01-��

�4�
																																											� 3 ����,�-����

�4� � -3 ����,�-����
�4� � � � 0

																																											� ,��� - � -,��� - � � � 0 � 1 � - ,��� - � /� � 01
⇒ ,� - � 51																										 �#	� � 0,				1 � - ,��� - %'()&*��).

						� 1 � - �
Equating the coefficient of -� from both sides:  ��,� � ��



Binomial Heaps

A binomial heap � is a set of binomial trees that satisfies the 

following properties:



Binomial Heaps

A binomial heap � is a set of binomial trees that satisfies the 

following properties:

1. each node has a key

2. each binomial tree in � obeys the min-heap property

3. for any integer � 0 0, there is at most one binomial tree 

in � whose root node has degree �

2512

18

1 106

8 14 29

11 17 38

27

min �



Rank of Binomial Trees

The rank of a binomial tree node �, denoted &9�� � , is the 

number of children of �.

The figure on the right shows the rank

of each node in � .

Observe that &9�� &%%' �� � �.

Rank of a binomial tree is the rank of

its root. Hence,

&9�� �� � &9�� &%%' �� � �

� 
3

2 1
0
1 0 0

0



A Basic Operation: Linking Two Binomial Trees

Given two binomial trees of the same rank, say, two ��’s, we link 

them in constant time by making 

the root of one tree the left child 

of the root of the other, and thus 

producing a ��;�.

If the trees are part of a binomial

min-heap, we always make the root

with the smaller key the parent,

and the one with the larger key

the child. 

Ties are broken arbitrarily.

��;�

��

6

14 29

38

��

8

11 17

27



min � � ��<
�

1711

27

8 12

min ��

6

29 25

1 18

14

38

min �	

��

��

�����	

�����	 <���

�����	� 

Binomial Heap Operations: UNION( ��, ��)



12

18

18

12

min �

�

1711

27

8

min ��

6

29 25

1

14

38

min �	

��

��

�����	

�����	 <���

�����	� 

Binomial Heap Operations: UNION( ��, ��)



12

18

18

12

min �

�

1711

27

8

min ��

6

29 25

1

14

38

min �	

��

��

�����	

�����	

<���
�����	� 

Binomial Heap Operations: UNION( ��, ��)



18

12

25

1

12

18

min �

�

1711

27

8

min ��

6

2914

38

min �	

��

��

�����	

�����	

<���
1

2512

18

�����	� 

Binomial Heap Operations: UNION( ��, ��)



25

1

12

18

min �

�

1711

27

8

min ��

6

2914

38

min �	

��

��

�����	

�����	 <���

1

2512

18

�����	� 

Binomial Heap Operations: UNION( ��, ��)



25

1

12

18

min �

�

1711

27

8

min ��

6

2914

38

min �	

��

��

�����	

�����	 <���

1

2512

18

6

2914

381711

27

8

�����	� 

Binomial Heap Operations: UNION( ��, ��)



25

1

12

18

min �

� � =>?@> ��, ��

1711

27

8

min ��

6

2914

38

min �	

��

��

�����	

�����	

�����	� 
1

2512

18

6

2914

381711

27

8

Binomial Heap Operations: UNION( ��, ��)



Binomial Heap Operations: UNION( ��, ��)
UNION ��, �	 works in exactly the same way as binary addition.

Let �� be the number of nodes in �� A� � 1,2B.
Then the largest binomial tree in ��
is a ��C , where �� � log	 �� .

Thus �� 	can be treated as a �� � 1
bit binary number ��, where bit D is 1
if �� contains a �E , and 0 otherwise.

If � � F��%� ��, �	 , then � can 

be viewed as a � � log	 � bit 

binary number � � �� � �	,

where � � �� � �	.



UNION ��, �	 works in exactly the same way as binary addition.

Initially, � does not contain any binomial trees.

Melding starts from �� ( LSB ) and 

continues up to �� ( MSB ).

At each location D ∈ /0, �1, one 

encounters at most three ( 3 ) �E ’s: 

− at most 1 from �� ( input ), 

− at most 1 from �	 ( input ), and 

− if D � 0, at most 1 from � ( carry )

Binomial Heap Operations: UNION( ��, ��)



UNION ��, �	 works in exactly the same way as binary addition.

When the number of �E ’s at location D ∈ /0, �1 is:

− 0: location D of � is set to ��<
− 1: location D of � points to that �E
− 2: the two �E ’s are linked to produce

a �E;� which is stored as a carry 

at location D � 1 of �, and 

location D is set to ��<
− 3: two �E ’s are linked to produce

a �E;� which is stored as a 

carry at location D � 1 of �, and the 3rd �E is 

stored at location D

Binomial Heap Operations: UNION( ��, ��)



UNION ��, �	 works in exactly the same way as binary addition.

Worst case cost of UNION ��, �	 	is clearly Θ log � , where � is 

the total number of nodes in �� and �	.

Observe that this operation fills out� � 1 locations of �, where � � log	 � .

It does only Θ 1 work for each

location.

Hence, total cost is Θ � � Θ log � .

Binomial Heap Operations: UNION( ��, ��)



One can improve the performance of UNION ��, �	 as follows. 

W.l.o.g., suppose �	 is at least as large as ��, i.e., �	 0 ��.

We also assume that �		has enough 

space to store at least up to ��, where, � � log	 �� � �	 .

Then instead of melding �� and �	
to a new heap �, we can meld them

in-place at �	.

After melding till ��H, we stop once 

the carry stops propagating.

The cost is Ω �� , but Ο �	 .

Worst-case cost is still Ο � � Ο log � .

Binomial Heap Operations: UNION( ��, ��)



Step 1: �′ ← MAKE-HEAP 	�	
Takes Θ 1 time.

Step 2: � ← UNION 	�, �′	
( in-place at � )

Takes Ο log � time, where� is the number of nodes in �. 

Thus the worst-case cost of 

INSERT 	�, �	 is Ο log � , where� is the number of items already

in the heap.

Binomial Heap Operations: INSERT( �, � )

1711

27

8 12

min �

������	

8

17 12

5

11

27

min �

������	

5

�′��

min �′



min �

�����	� 
8

1711

272512

18

10 38

14 29

�

Step 4: UNION 	�, �K and update the min pointer

Binomial Heap Operations: EXTRACT-MIN( � )

min � ������	� 
10

2512

18

6

2914

381711

27

8

6

Step 1:

remove  

minimum 

element

8

17 38

14 29

11

27

min �′ � ��<

�′�����	

Step 3: remove the root of the binomial 

Tree with the minimum element, and form

a new binomial heap from the children of 

the removed root

2512

18

10

min � � ��<

������	

Step 2: remove the binomial tree with 

the smallest root from the input heap



Binomial Heap Operations: EXTRACT-MIN( � )

min � ������	� 
10

2512

18

6

2914

381711

27

8

6

Step 1:

remove  

minimum 

element

Θ 1

Thus, the worst-case cost of 

EXTRACT-MIN 	�	 is Ο log �
min �

�����	� 
8

1711

272512

18

10 38

14 29

�

Step 4: UNION 	�, �K and update the min pointer

8

17 38

14 29

11

27

min �′ � ��<

�′�����	

Step 3: remove the root of the binomial 

Tree with the minimum element, and form

a new binomial heap from the children of 

the removed root

Ο log �
Ο log �

2512

18

10

min � � ��<

������	

Step 2: remove the binomial tree with 

the smallest root from the input heap

Θ 1



Binomial Heap Operations

Heap 

Operation
Worst-case

MAKE-HEAP Θ 1
INSERT Ο log �
MINIMUM Θ 1
EXTRACT-MIN Ο log �
UNION Ο log �



Amortized Analysis ( Accounting Method )

We maintain a credit account for every tree in the heap, and 

always maintain the following invariant:

L M&)N�' �E � 1OP∈Q
MAKE-HEAP( � ):

actual cost, M� � 1 ( for creating the singleton heap )

extra charge, R� � 1 ( for storing in the credit account 

of the new tree )

amortized cost, M̂� � M� � R� � 2 � Θ 1



We maintain a credit account for every tree in the heap, and 

always maintain the following invariant:

L M&)N�' �E � 1OP∈Q
LINK( T
A�B, T
A�B	):

actual cost, M� � 1 ( for linking the two trees )

We use M&)N�' ��A�B pay for this actual work.

Let ��;� be the newly created tree. We restore the credit invariant 

by transferring M&)N�' ��A	B to M&)N�' ��;� . 

Hence, amortized cost, M̂� � M� � R� � 1 � 1 � 0

Amortized Analysis ( Accounting Method )



We maintain a credit account for every tree in the heap, and 

always maintain the following invariant:

L M&)N�' �E � 1OP∈Q
INSERT( �, �	):
Amortized cost of MAKE-HEAP 	�	 is � 2
Then UNION 	�,�K	 is simply a sequence of free LINK operations 

with only a constant amount of additional work that do not create 

any new trees. Thus the credit invariant is maintained, and the 

amortized cost of this step is � 1.

Hence, amortized cost of INSERT, M̂� � 2 � 1 � 3 � Θ 1

Amortized Analysis ( Accounting Method )



We maintain a credit account for every tree in the heap, and 

always maintain the following invariant:

L M&)N�' �E � 1OP∈Q
UNION( ��, ��	):
UNION 	��, �		 includes a sequence of free LINK operations that 

maintain the credit invariant.

But it also includes Ο log � other operations that are not free 

( e.g., consider melding a heap with � � 2� elements with one 

containing � � 1 elements ). These operations do not create new 

trees (and so do not violate the credit invariant), and each cost Θ 1 .

Hence, amortized cost of UNION, M̂� � Ο log �

Amortized Analysis ( Accounting Method )



We maintain a credit account for every tree in the heap, and 

always maintain the following invariant:

L M&)N�' �E � 1OP∈Q
EXTRACT-MIN( �	):
Steps 1 & 2: The Θ 1 actual cost is paid for by the credit released 

by the deleted tree.

Step 3: Exposes Ο log � new trees, and we charge 1 unit of extra 

credit for storing in the credit account of each such tree. 

Step 4: Performs a UNION that has Ο log � amortized cost.

Hence, amortized cost of EXTRACT-MIN, M̂� � Ο log �

Amortized Analysis ( Accounting Method )



Potential Function, Φ V� � M W ( #trees in the data structure after the �-th operation ),

where M is a constant.

Amortized Analysis ( Potential Method )

Clearly, Φ V� � 0 ( no trees in the data structure initially )

and for all � � 0, Φ V� 0 0 ( #trees cannot be negative )

MAKE-HEAP( � ):

actual cost, M� � 1 ( for creating the singleton heap )

potential change, Δ� � Φ V� �Φ V��� � M
( as #trees increases by 1 )

amortized cost, M̂� � M� � Δ� � 1 � M � Θ 1



Amortized Analysis ( Potential Method )

INSERT( �, �	): 
The number of trees increases by 1 initially. 

Then the operation scans � � 0 ( say ) locations of the array 

of tree pointers. Observe that we use tree linking A� � 1B times each 

of which reduces the number of trees by 1.

actual cost, M� � 1 � �
potential change, Δ� � Φ V� �Φ V��� � MA1 � � � 1 B									� M � M � � 1
amortized cost, M̂� � M� � Δ� � 2 � M � AM � 1BA� � 1B
For M 0 1, we have, M̂� � 2 � M � Θ 1

Potential Function, Φ V� � M W ( #trees in the data structure after the �-th operation ),

where M is a constant.



Amortized Analysis ( Potential Method )

UNION( ��, ��	): 
Suppose the operation scans � � 0 locations of the array of 

tree pointers, and uses the link operation < times. Observe that � � < 0 0. Each link reduces the number of trees by 1.

actual cost, M� � �
potential change, Δ� � Φ V� �Φ V��� � �M W <
amortized cost, M̂� � M� � Δ� � � � M W <
Since � � Ο log � and < � Ο log � , we have,M̂� � Ο log � for any M.

Potential Function, Φ V� � M W ( #trees in the data structure after the �-th operation ),

where M is a constant.



Amortized Analysis ( Potential Method )

EXTRACT-MIN( �	): 
Let   in Step 1: & � rank of the tree with the smallest key 

and  in Step 4: � � #locations of pointer array scanned during UNION< � #link operations during UNION' � #trees in the heap after the UNION

Then actual cost, M� � 1	 	step	1	 � 1	 	step	2	 � &	 	step	3	�	�	 	step	4: union	 � '	A	step	4: updateb�� ptr	B� 2 � � � ' � &

Potential Function, Φ V� � M W ( #trees in the data structure after the �-th operation ),

where M is a constant.



Amortized Analysis ( Potential Method )

EXTRACT-MIN( �	): 
Let   in Step 1: & � rank of the tree with the smallest key 

and  in Step 4: � � #locations of pointer array scanned during UNION< � #link operations during UNION' � #trees in the heap after the UNION

potential change, Δ� � Φ V� �Φ V���� M W & � 1 			A	removingb�� element in	step	1	removes	1	tree	but	creates	&	new	ones	B�M W <																																			A	linkings	in	step	4	reduces	#trees	by	<	B

Potential Function, Φ V� � M W ( #trees in the data structure after the �-th operation ),

where M is a constant.



Amortized Analysis ( Potential Method )

EXTRACT-MIN( �	): 
Let   in Step 1: & � rank of the tree with the smallest key 

and  in Step 4: � � #locations of pointer array scanned during UNION< � #link operations during UNION' � #trees in the heap after the UNION

actual cost, M� � 2 � � � ' � &
potential change, Δ� � Φ V� �Φ V��� � M W & � < � 1

Then amortized cost, M̂� � M� � Δ� � 2 � � � ' � & � M W & � < � 1
Since � � Ο log � , < � Ο log � , ' � Ο log � & & � Ο log � ,

we have,  M̂� � Ο log � for any M.

Potential Function, Φ V� � M W ( #trees in the data structure after the �-th operation ),

where M is a constant.



Binomial Heap Operations

Heap 

Operation
Worst-case Amortized

MAKE-HEAP Θ 1 Θ 1
INSERT Ο log � Θ 1
MINIMUM Θ 1 Θ 1
EXTRACT-MIN Ο log � Ο log �
UNION Ο log � Ο log �



Binomial Heaps with Lazy Union 

We maintain pointers to the trees in a doubly linked circular list 

( instead of an array ), but do not maintain a b�� pointer. 



Binomial Heap Operations with Lazy Union 

MAKE-HEAP( �	): Create a singleton heap as before. Hence,              

amortized cost � Θ 1 .

UNION( ��, ��	): Simply concatenate the two root lists into one, 

and update the min pointer. Clearly, amortized cost � Θ 1 .

We maintain the following invariant: L M&)N�' �E � 2OP∈Q

INSERT( �, �	): This is MAKE-HEAP followed by a UNION. Hence, 

amortized cost � Θ 1 .

LINK( T
A�B, T
A�B	): The two input trees have 4 units of saved credits 

of which 1 unit will be used to pay for the actual cost of linking, and 

2 units will be saved as credit for the newly created tree. So, linking 

is still free,  and it has 1 unused credit that can be used to pay for 

additional work if necessary.



Binomial Heap Operations with Lazy Union 

EXTRACT-MIN( �	): Unlike in the array version, in this case we may 

have several trees of the same rank.

We create an array of length log	 � � 1 with each location 

containing a ��< pointer. We use this array to transform the linked list 

version to array version. 

We go through the list of trees of �, inserting them one by one into 

the array, and linking and carrying if necessary so that finally we 

have at most one tree of each rank. We also create a min pointer.

We now perform EXTRACT-MIN as in the array case. 

Finally, we collect the nonempty trees from the array into a doubly 

linked list, and return.

We maintain the following invariant: L M&)N�' �E � 2OP∈Q



Binomial Heap Operations with Lazy Union 

EXTRACT-MIN( �	): We only need to show that converting from linked 

list version to array version takes Ο log � amortized time.

Suppose we start with ' trees, and perform < links. So, we spend 

Ο ' � < time overall.

As each link decreases the number of trees by 1, after < links we end 

up with ' � < trees. Since at that point we have at most one tree of 

each rank, we have ' � < � log	 � � 1.

Thus ' � < � 2< � ' � < � Ο < � log � .

The Ο < part can be paid for by the < extra credits from < links.

We only charge the Ο log � part to EXTRACT-MIN.

We maintain the following invariant: L M&)N�' �E � 2OP∈Q



As before,   clearly, Φ V� � 0
and for all � � 0, Φ V� 0 0

Binomial Heap Operations with Lazy Union 

We use exactly the same potential function as in the previous version, 

Φ V� � M W ( #trees in the data structure after the �-th operation ),

where M is a constant.

MAKE-HEAP( � ):

actual cost, M� � 1 ( for creating the singleton heap )

potential change, Δ� � Φ V� �Φ V��� � M
( as #trees increases by 1 )

amortized cost, M̂� � M� � Δ� � 1 � M � Θ 1



Binomial Heap Operations with Lazy Union 

We use exactly the same potential function as in the previous version, 

Φ V� � M W ( #trees in the data structure after the �-th operation ),

where M is a constant.

UNION( ��, ��	): 
actual cost, M� � 1 ( for merging the two doubly linked lists )

potential change, Δ� � Φ V� �Φ V��� � 0
( no new tree is created or destroyed )

amortized cost, M̂� � M� � Δ� � 1 � Θ 1



Binomial Heap Operations with Lazy Union 

We use exactly the same potential function as in the previous version, 

Φ V� � M W ( #trees in the data structure after the �-th operation ),

where M is a constant.

INSERT( �, �	): 
Constant amount of work is done by MAKE-HEAP and UNION, 

and MAKE-HEAP creates a new tree.

actual cost, M� � 1 � 1 � 2
potential change, Δ� � Φ V� �Φ V��� � M
amortized cost, M̂� � M� � Δ� � 2 � M � Θ 1



Binomial Heap Operations with Lazy Union 

We use exactly the same potential function as in the previous version, 

Φ V� � M W ( #trees in the data structure after the �-th operation ),

where M is a constant.

EXTRACT-MIN( �	):
Cost of creating the array of pointers is log	 � � 1.

Suppose we start with ' trees in the doubly linked list, and perform <
link operations during the conversion from linked list to array version.  

So we perform ' � < work, and end up with ' � < trees.

Cost of converting to the linked list version is ' � <.
actual cost, M� � log	 � � 1 � ' � < � ' � < � 2' � log	 � � 1
potential change, Δ� � Φ V� �Φ V��� � �M W <



Binomial Heap Operations with Lazy Union 

We use exactly the same potential function as in the previous version, 

Φ V� � M W ( #trees in the data structure after the �-th operation ),

where M is a constant.

EXTRACT-MIN( �	):
actual cost, M� � log	 � � 1 � ' � < � ' � < � 2' � log	 � � 1
potential change, Δ� � Φ V� �Φ V��� � �M W <
amortized cost, M̂� � M� � Δ� � 2 ' � < � log	 � � 1 � M � 2 W <
But  ' � < � log	 � � 1 ( as we have at most one tree of each rank )

So, M̂� � 3 log	 � � 3 � M � 2 W <� 3 log	 � � 3 ( assuming M 0 2 )� Ο log �



Binomial Heap Operations

Heap 

Operation
Worst-case

Amortized

( Eager Union )

Amortized

( Lazy Union )

MAKE-

HEAP
Θ 1 Θ 1 Θ 1

INSERT Ο log � Θ 1 Θ 1
MINIMUM Θ 1 Θ 1 Θ 1
EXTRACT-

MIN
Ο log � Ο log � Ο log �

UNION Ο log � Ο log � Θ 1


