# CSE 373: Analysis of Algorithms 

## Lecture 14 (Selection )

Rezaul A. Chowdhury<br>Department of Computer Science<br>SUNY Stony Brook<br>Fall 2014

## Deterministic Select

Input: An array $A[q: r$ ] of distinct elements, and integer $k \in[1, r-q+1]$. Output: An element $x$ of $A[q: r]$ such that $\operatorname{rank}(x, A[q: r])=k$.

```
Select(A[q:r],k)
    1. }n\leftarrowr-q+
    2. if }n\leq140\mathrm{ then 
    3. sort A[q:r] and return A[q+k-1]
    4. else
    5. divide A[q:r] into blocks B's each containing 5 consecutive elements
                        ( last block may contain fewer than 5 elements )
    6. for i\leftarrow1 to\lceiln/5\rceildo
    7. M[i]}\leftarrow\mathrm{ median of Bi using sorting
    8. }x\leftarrow\operatorname{Select (M[1:\lceiln/5\rceil],L(「n/5\rceil+1)/2\rfloor) {median of medians }
    9. t}t<\operatorname{Partition (A[q:r],x) {partition around x which ends up at A[t]}
10. if k =t-q+1 then return }A[t
11. else if k<t-q+1 then return Select (A[q:t-1],k)
12. else return Select (A[t+1:r],k-t+q-1)
```


## Deterministic Select

$\operatorname{Select}(A, k)$ : Given an unsorted set $A$ of $n(=|A|)$ items, find the $k^{t h}$ smallest item in the set


## Deterministic Select

$\operatorname{Select}(A, k)$ : Given an unsorted set $A$ of $n(=|A|)$ items, find the $k^{t h}$ smallest item in the set

\#items definitely smaller than $x$ is
\#items definitely larger than $x$ is

$$
\begin{aligned}
& \geq 3\left(\left\lfloor\frac{1}{2}\left[\frac{n}{5}\right]\right]-1\right) \geq \frac{3 n}{10}-6 \\
& \geq 3\left(\left[\frac{1}{2}\left[\frac{n}{5}\right]\right]-1\right) \geq \frac{3 n}{10}-6
\end{aligned}
$$

\#items in any recursive call (lines $11 / 12) \leq n-\left(\frac{3 n}{10}-6\right)=\frac{7 n}{10}+6$

## Deterministic Select

The following recurrence describes the worst-case running time of the deterministic selection algorithm ( given in Section 9.3 of CLRS ):

$$
T(n) \leq \begin{cases}\Theta(1), & \text { if } n<140 \\ T\left(\left\lceil\left.\frac{n}{5} \right\rvert\,\right)+T\left(\frac{7 n}{10}+6\right)+\Theta(n),\right. & \text { if } n \geq 140\end{cases}
$$

How do you solve for $T(n)$ ?

