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The Divide-and-Conquer Process in Merge Sort

Suppose we want to sort a typical subarray � �. . � .

DIVIDE: Split � �. . � at midpoint � into two subarrays � �. . � and � � � 1. . � of equal or almost equal length.

CONQUER: Recursively sort � �. . � and � � � 1. . � .     

COMBINE: Merge the two sorted subarrays � �. . � and � � � 1. . �
to obtain a longer sorted subarray � �. . � .

The DIVIDE step is cheap ― takes only Θ 1 time.

But the COMBINE step is costly ― takes Θ 	 time, where 	 is the 

length of � �. . � .



The Divide-and-Conquer Process in Quicksort

Suppose we want to sort a typical subarray � �. . � .

DIVIDE: Partition � �. . � into two ( possibly empty ) subarrays� �. . � 
 1 and � � � 1. . � and find index � such that 

• each element of � �. . � 
 1 is � � � , and

• each element of � � � 1. . � is � � � .

CONQUER: Recursively sort � �. . � 
 1 and � � � 1. . � . 

COMBINE: Since � � is larger and smaller than everything to its left 

and right, respectively, and both left and right parts are sorted, 

subarray � �. . � is also sorted.

The COMBINE step is cheap ― takes only Θ 1 time.

But the DIVIDE step is costly ― takes Θ 	 time, where 	 is the 

length of � �. . � .



Quicksort

Input: A subarray �	� ∶ �	� of � 
 � � 1 numbers, where � � �.

Output: Elements of �	� ∶ �	� rearranged in non-decreasing order of value.

QUICKSORT ( A, p, r )

1. if � � � then

2. // partition � �. . � into � �. . � 
 1 and � � � 1. . � such that everything in � �. . � 
 1 is � � � and everything in � � � 1. . � is � � �
3. � � PARTITION ( A, p, r ) 

4. // recursively sort the left part

5. QUICKSORT ( A, p, q ‒ 1 )

6. // recursively sort the right part

7. QUICKSORT ( A, q + 1, r )



Partition

Input: A subarray �	� ∶ �	� of � 
 � � 1 numbers, where � � �.

Output: Elements of �	� ∶ �	� are rearranged such that for some � ∈ �, �
everything in �	� ∶ � 
 1	� is � � � and everything in �	� � 1: �	� is �� � . Index � is returned.

PARTITION ( A, p, r )

1. � � � �
2. � � � 
 1
3. for � � � to � 
 1
4. if � � � �
5. � � � � 1
6. exchange � � with � �
7. exchange � � � 1 with � �
8. return � � 1



Correctness of Partition

Input: A subarray �	� ∶ �	� of � 
 � � 1 numbers, where � � �.

Output: Elements of �	� ∶ �	� are rearranged such that for some � ∈ �, �
everything in �	� ∶ � 
 1	� is � � � and everything in �	� � 1: �	� is �� � . Index � is returned.

Loop Invariant

At the start of each iteration of the 

for loop of lines 3‒6, for any array 

index �,

1. if � � � � �, 
then � � � �.

2. if � � 1 � � � � 
 1, 

then � � � �.

3. if � � �, 

then � � � �. 



Running Time of Partition

Input: A subarray �	� ∶ �	� of � 
 � � 1 numbers, where � � �.

Output: Elements of �	� ∶ �	� are rearranged such that for some � ∈ �, �
everything in �	� ∶ � 
 1	� is � � � and everything in �	� � 1: �	� is �� � . Index � is returned.

Let 	 � � 
 � � 1.

The loop of lines 3‒6 takes Θ � 
 1 
 � � 1 � Θ 	 time.

Lines 1, 2, 7 and 8 take Θ 1 time each.

Hence, the overall running time is Θ 	 .



Worst-case Running Time of Quicksort

� 	 � � Θ 1 ��		 � 1,max!"#"$ � � 
 � � � � 
 � � Θ 	 ��		 � 1.

� 	 � % Θ 1 ��		 � 1,max&"'"( � � 
 1 � � 	 
 � � Θ 	 ��		 � 1.
Replacing � with � � � 
 1, we get:

Assuming 	 � � 
 � � 1, the worst-case running time of quicksort:



Worst-case Running Time of Quicksort (Upper Bound)

For 	 � 1 and a constant ) � 0,� 	 � max&"'"( � � 
 1 � � 	 
 � � )	
Our guess for upper bound: � 	 � )&	+ for constant )& � 0.

Using this bound on the right side of the recurrence equation, we get.� 	 � max&"'"( )& � 
 1 + � )& 	 
 � + � )	
⇒ � 	 � )& max&"'"( � 
 1 + � 	 
 � + � )	

But � 
 1 + � 	 
 � + reaches its maximum value for � � 1 and � � 	. Hence, � 	 � )& 1 
 1 + � 	 
 1 + � )	⇒ � 	 � )& 	 
 1 + � )	⇒ � 	 � )&	+ 
 )& 2	 
 1 
 )	



But for )& � ), we have,)& 2	 
 1 � ) 2	 
 1⇒ )& 2	 
 1 � 2)	 
 )⇒ )& 2	 
 1 
 )	 � )	 
 )
But  	 � 1 ⇒ )	 � ) ⇒ )	 
 ) � 0, and thus)& 2	 
 1 
 )	 � 0⇒ 
 )& 2	 
 1 
 )	 � 0	⇒ )&	+ 
 )& 2	 
 1 
 )	 � )&	+
But � 	 � )&	+ 
 )& 2	 
 1 
 )	 .

Hence, � 	 � )&	+ for )& � ). 

Worst-case Running Time of Quicksort (Upper Bound)



For 	 � 1 and a constant ) � 0,� 	 � max&"'"( � � 
 1 � � 	 
 � � )	
Our guess for lower bound: � 	 � )+	+ for constant )+ � 0.

Using this bound on the right side of the recurrence equation, we get.� 	 � max&"'"( )+ � 
 1 + � )& 	 
 � + � )	
⇒ � 	 � )+ max&"'"( � 
 1 + � 	 
 � + � )	

But � 
 1 + � 	 
 � + reaches its maximum value for � � 1 and � � 	. Hence, � 	 � )+ 1 
 1 + � 	 
 1 + � )	⇒ � 	 � )+ 	 
 1 + � )	⇒ � 	 � )+	+ � )	 
 )+ 2	 
 1

Worst-case Running Time of Quicksort (Lower Bound)



But for )+ � .+, we have,

)+ 2	 
 1 � .+ 2	 
 1
⇒ )+ 2	 
 1 � )	 
 .+⇒ )	 
 )+ 2	 
 1 � .+

But  ) � 0, and thus							)	 
 )+ 2	 
 1 � 0⇒ )+	+ � )	 
 )+ 2	 
 1 � )+	+
But � 	 � )+	+ � )	 
 )+ 2	 
 1 .

Hence, � 	 � )+	+ for )+ � .+. 

Worst-case Running Time of Quicksort (Lower Bound)



We have proved that� 	 � )&	+ for )& � ),

and � 	 � )+	+ for )+ � .+.

Worst-case Running Time of Quicksort (Tight Bound)

Thus )+	+ � � 	 � )&	+ for constants  )& � ) and )+ � .+.

Hence, � 	 � Θ 	+
.



Average Case Running Time of Quicksort

� 	 � Θ 1 ��		 � 1,1	 / � � 
 1 � � 	 
 �&"'"( � Θ 	 ��		 � 1.



Average Case Running Time of Quicksort

For 	 � 1 and a constant ) � 0,� 	 � &(∑ � � 
 1 � � 	 
 �&"'"( � )	⇒ 	� 	 � ∑ � � 
 1 � � 	 
 �&"'"( � )	+⇒ 	� 	 � 2∑ � �1"'"(2& � )	+ ⋯ 1
Replacing 	 with 	 
 1,⇒ 	 
 1 � 	 
 1 � 2∑ � �1"'"(2+ � ) 	 
 1 + ⋯ 2
Subtracting equation 2 from equation 1 , we get	� 	 
 	 
 1 � 	 
 1 � 2� 	 
 1 � ) 2	 
 1⇒ 	� 	 
 	 � 1 � 	 
 1 � ) 2	 
 1
Dividing both sides by 	 	 � 1 , we get

4 ((5& 
 4 (2&( � . +(2&( (5&



Average Case Running Time of Quicksort

Assuming 
4 ((5& � � 	 , we get from the equation above,

� 	 
 � 	 
 1 � . +(2&( (5&⇒ � 	 � � 	 
 1 � . +(2&( (5&⇒ � 	 � � 	 
 1 � +.(5& 
 .( (5&⇒ � 	 � � 	 
 1 � +.(5&⇒ � 	 � � 	 
 2 � +.( � +.(5&⇒ � 	 � � 	 
 3 � +.(2& � +.( � +.(5&⇒ � 	 � � 	 
 � � +.(2'5+ � +.(2'57 �⋯� +.( � +.(5&⇒ � 	 � � 1 � +.7 � +.8 �⋯� +.( � +.(5&



Average Case Running Time of Quicksort

Since � 1 � 4 &+ � Θ 1 , we get,

⇒ � 	 � Θ 1 � 2) &7 � &8 �⋯� &( � &(5&⇒ � 	 � Θ 1 � 2) 1 � &+ � &7 �⋯� &( � &(5& 
 2) 1 � &+
But 9(5& � 1 � &+ � &7 �⋯� &( � &(5& is the 	 � 1’st Harmonic 

Number, and lim(→=9(5& � ln 	 � 1 � ?, where ? @ 0.5772 is 

known as the Euler-Mascheroni constant.
Hence, for 	 → ∞: � 	 � 2) ln 	 � 1 � ? 
 3) � Θ 1⇒ � 	 � 2) ln 	 � 1 � Θ 1

⇒ � 		 � 1 � 2) ln 	 � 1 � Θ 1
⇒ � 	 � 2) 	 � 1 ln 	 � 1 � Θ 	⇒ � 	 � D 	 log 	


