CSE 373: Analysis of Algorithms

Lectures 11, 12 & 13
(Quicksort and Average Case Analysis)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2014

The Divide-and-Conquer Process in Merge Sort

Suppose we want to sort a typical subarray A[p..r].

DiviDE: Split A[p..r] at midpoint g into two subarrays A|p..qg] and
Alq + 1..r] of equal or almost equal length.

CoNQuUER: Recursively sort A|p..q] and Al|g + 1..7].

CoMBINE: Merge the two sorted subarrays A|p..q] and A|qg + 1..7]

to obtain a longer sorted subarray A|p..r].

The DIvIDE step is cheap — takes only (1) time.

But the COMBINE step is costly — takes ©(n) time, where n is the
length of A[p..r].

The Divide-and-Conquer Process in Quicksort

Suppose we want to sort a typical subarray A[p..r].

DivIDE: Partition A[p..r] into two (possibly empty) subarrays
Alp..q — 1] and A|g + 1..r] and find index g such that

each element of A|p..q — 1] is < A|q], and

each element of A|qg + 1..7]is = Alq].

CONQUER: Recursively sort A[p..q — 1] and A|q + 1..7].

CoMBINE: Since A[q] is larger and smaller than everything to its left

and right, respectively, and both left and right parts are sorted,
subarray A[p..r] is also sorted.

The CoMBINE step is cheap — takes only O(1) time.

But the DIVIDE step is costly — takes @(n) time, where n is the
length of A[p..r].

Quicksort

Input: A subarray A[p : v] of r — p + 1 numbers, wherep <.

Output: Elements of A[p : 7] rearranged in non-decreasing order of value.

QUICKSORT (A, p, r)

1. if p <r then

2. // partition A[p..r] into A[p..q — 1] and A[q + 1..r] such that everything in
Alp..q — 1] is < Alq] and everything in A[qg + 1..r] is = A|q]

q = PARTITION (A, p, r)

// recursively sort the left part

QUICKSORT (A, p,g—-1)

// recursively sort the right part

N o AW

QUICKSORT (A, g+ 1, r)

Partition

Input: A subarray A[p : v] of r — p + 1 numbers, wherep <.

Output: Elements of A[p : r] are rearranged such that for some q € [p,]
everythingin A[p: q —1]is < A|q] and everythingin A[g + 1:r] is >
Alq]. Index q is returned.

PARTITION (A, p, r)

x = Alr]
i=p—1
forj=ptor—1
if Alj] < x
i=i+1
exchange A[i] with AJ[j]
exchange A[i + 1] with A[r]

O N O U1 A W N =

returni + 1

Correctness of Paritition

Input: A subarray A[p : v] of r — p + 1 numbers, wherep <.

Output: Elements of A[p : r] are rearranged such that for some q € [p,]
everythingin A[p: q —1]is < A|q] and everythingin A[g + 1:r] is >
Alq]. Index q is returned.

Loop Invariant

PARTITION (A, p, I) At the start of each iteration of the
for loop of lines 3—6, for any array
. x=Alr] index k
2. i=p-1 ’
3. forj=ptor—1 1. ifpSkSi,
4. if A[j] < x then Alk] < x.
5. i=i+1 2. ifi+1<k<j—1,
6. exchange A[i] with A[j] then A[k] > x
7. exchange A[i + 1] with A[r] .
8. returni+1 3. ifk=rm,
then Alk] = x.

Running Time of Partition

Input: A subarray A[p : v] of r — p + 1 numbers, wherep <.

Output: Elements of A[p : r] are rearranged such that for some q € [p,]
everythingin A[p: q —1]is < A|q] and everythingin A[g + 1:r] is >

Alq]. Index q is returned.

PARTITION (A, p,)

x = Alr]
i=p—1
forj=ptor—1
if Alj] < x
I=i+1
exchange A[i] with A[j]
exchange A[i + 1] with A[r]

e A - T A

returni+1

letn=7r—p+ 1.

The loop of lines 3—6 takes
O(r—1—p+1) = 0(n) time.

Lines 1, 2, 7 and 8 take ©(1) time each.

Hence, the overall running time is O(n).

Worst-case Running Time of Quicksort

QUICKSORT (A, p,)

1. if p <r then

2. // partition A[p..r]into A[p..q — 1]
and A[q + 1..r] such that everything
in A[p..q — 1] is < A[q] and everything
inAlg+ 1..r] is = A[q]

q = PARTITION (A, p, r)

/1 recursively sort the left part

QUICKSORT (A, p,g-1)

/1 recursively sort the right part

N o U AW

QUICKSORT (A, g+ 1, r)

Assumingn = r — p + 1, the worst-case running time of quicksort:

(0(1) ifn=1,

T =0 max (T(q =p) + T = @)} +0(m) if n>1.
\

Replacing g with k +p — 1, we get:

0(1) if n=1,

T(n) = max {Tk—1D+Tn—k)}+06(n) ifn>1

Worst-case Running Time of Quicksort (Upper Bound)

Forn > 1 and a constantc > 0,

T(n) = max{T(k—1)+Tn—-k)}+cn

1<k<n

Our guess for upper bound: T(n) < ¢;n? for constant ¢; > 0.
Using this bound on the right side of the recurrence equation, we get.

T(n) < max{c;(k—1)?+c;(n—k)?}+cn

1<k<n

>Tn) <c max{(k—1)*+(n—-k)*}+cn

1<ksn
But (k — 1)? + (n — k)? reaches its maximum value for k = 1 and
k = n. Hence,

T(m) <c((1-124+n—-1)2)+cn
>Tmn) <ci(n—1)%*+cn
=>Tmn) <cn?—(c;(2n—1) —cn)

Worst-case Running Time of Quicksort (Upper Bound)

But for ¢; = ¢, we have,
ct2n—-1)=>c(2n-1)
=>c;(2n—1)=>2cn—c
=>c(2n—-1)—cn=cn—-c

Butn=>1=>cn>=c=cn—c=0,andthus
ct@2n—1)—cn=0
> —(c;(2n—-1)—-cn) <0
= cn? — (c;(2n—1) — cn) < ¢yn?

ButT(n) < cn? — (c;(2n — 1) — cn).

Hence, T(n) < ¢;n? forc¢; = c.

Worst-case Running Time of Quicksort (Lower Bound)

Forn > 1 and a constantc > 0,

T(n) = max{T(k—1)+Tn—-k)}+cn

1<k<n

Our guess for lower bound: T(n) = c,n* for constant ¢, > 0.
Using this bound on the right side of the recurrence equation, we get.

T(n) = max{c,(k—1)? + c;(n —k)*} +cn

1<k<n

=>TMn) =>c, max{(k —1)* + (n — k)*} + cn

1<k=n
But (k — 1)? + (n — k)? reaches its maximum value for k = 1 and
k = n. Hence,

T(n) = c,((1— 1%+ (n—1)?) + cn
>Tm) =>c,(n—1)%+cn
= T(n) = c;n? + (cn — c,(2n — 1))

Worst-case Running Time of Quicksort (Lower Bound)

C
But for ¢, < ~» We have,

c,2n—1) < %(Zn - 1)

But ¢ > 0, and thus
cn—c,(2n—1) >0
= c,n? + (en— c,(2n — 1)) > ¢,n?

But T(n) = c,n* + (cn —c,(2n — 1)).

C
Hence, T(n) = c,n* forc, < .

Worst-case Running Time of Quicksort (Tight Bound)

We have proved that
T(n) < ¢yn® forcy = c,

C
and T(n) = c,n* for ¢, < -

C
Thus ¢c,n? < T(n) < ¢.n? for constants ¢, > cand ¢, < =
2 1 1 257

Hence, T(n) = 0(n?).

Average Case Running Time of Quicksort

T(n)

1.

N

N o U AW

QUICKSORT (A, p,)

if p <r then

// partition A[p..r]into A[p..q — 1]
and A[q + 1..r] such that everything
in A[p..q — 1] is < A[q] and everything
inAlg+ 1..r] is = A[q]

q = PARTITION (A, p, r)

/1 recursively sort the left part

QUICKSORT (A, p,g-1)

/1 recursively sort the right part

QUICKSORT (A, g+ 1, r)

O(1)

if n=1,

Z (Th—D+T -k} +0(n) ifn>1

1<k<n

Average Case Running Time of Quicksort

Forn > 1 and a constantc > 0,
T(n) =~ L1ckenlT(k = 1) + T(n = k)} + cn

= nT(n) = LqeentTCk — 1) + T(n — k)} + cn?
= nT(n) = 2 Yoepen_t T(k) +cn? (1)

Replacing n withn — 1,
>nh-DT—1)=2YgckcnnT(k) +c(n—1)% - (2)

Subtracting equation (2) from equation (1), we get
nTn) —(n—1DTn—-1)=2T(n—1)+c(2n—-1)
>nTn)—(n+1DTn-1)=c(2n—-1)

Dividing both sides by n(n + 1), we get

M . T(n—1) _ c(2n-1)
n+1 n o n(n+1)

Average Case Running Time of Quicksort

Assuming % = A(n), we get from the equation above,
A() — An — 1) = S22
= A(n) =A(n—-1) + 6;1((2;1;11))
= A(n) =A(n—1) + n2+61 B n(nc+1)
> A() < A — 1) + 25
= A(n) < A(n —2) + 2 + 25
= A(n) < A(n —3) +n2_cl+2nc+%
= An) < A(n—k) + n_z,;z T n_zkc+3 T % T %

2C
n+1

> AM) <A + =+ 2+ + 24

Average Case Running Time of Quicksort

Since 4A(1) = @ = 0(1), we get,

= A() <O(1) +2c (s +5+ -+ +—-)

n n+1

=>A(”)<6(1)+2C(1+%+§+"-+%+$)—2c(1+%)

ButH,,; =1 + =424 4=+ ——isthe n + 1’st Harmonic
2 3 n o n+i

Number, and lim H,,,; =In(n+ 1) + y, wherey = 0.5772 is

n—->00
known as the Euler-Mascheroni constant.
Hence, forn - o: A(n) < 2c(In(n+1) +y) — 3c + 6(1)

= An) < 2cln(n+1) +6(1)
T(n)
n+1
=>Tn)<2c(n+1Dn(n+1) +60(n)
= T(n) = 0(nlogn)

= <2cln(n+1)+06(1)

