CSE 373: Analysis of Algorithms

Lectures 11, 12 \& 13
(Quicksort and Average Case Analysis)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2014

The Divide-and-Conquer Process in Merge Sort

Suppose we want to sort a typical subarray $A[p . . r]$.
DIvIDE: Split $A[p . . r]$ at midpoint q into two subarrays $A[p . . q]$ and $A[q+1 . . r]$ of equal or almost equal length.

Conquer: Recursively sort $A[p . . q]$ and $A[q+1 . . r]$.
Combine: Merge the two sorted subarrays $A[p . . q]$ and $A[q+1 . . r]$ to obtain a longer sorted subarray $A[p . . r]$.

The DIVIDE step is cheap - takes only $\Theta(1)$ time.
But the Combine step is costly $-\operatorname{takes} \Theta(n)$ time, where n is the length of $A[p . . r]$.

The Divide-and-Conquer Process in Quicksort

Suppose we want to sort a typical subarray $A[p . . r]$.
DIVIDE: Partition $A[p . . r]$ into two (possibly empty) subarrays $A[p . . q-1]$ and $A[q+1 . . r]$ and find index q such that

- each element of $A[p . . q-1]$ is $\leq A[q]$, and
- each element of $A[q+1 . . r]$ is $\geq A[q]$.

CONQUER: Recursively sort $A[p . . q-1]$ and $A[q+1 . . r]$.
Combine: Since $A[q]$ is larger and smaller than everything to its left and right, respectively, and both left and right parts are sorted, subarray $A[p . . r]$ is also sorted.

The Combine step is cheap - takes only $\Theta(1)$ time.
But the DIVIDE step is costly - takes $\Theta(n)$ time, where n is the length of $A[p . . r]$.

Quicksort

Input: A subarray $A[p: r$] of $r-p+1$ numbers, where $p \leq r$.
Output: Elements of $A[p: r$] rearranged in non-decreasing order of value.

Quicksort (A, p, r)

1. if $p<r$ then
2. // partition $A[p . . r]$ into $A[p . . q-1]$ and $A[q+1 . . r]$ such that everything in $A[p . . q-1]$ is $\leq A[q]$ and everything in $A[q+1 . . r]$ is $\geq A[q]$
3. $q=\operatorname{PaRtITION}(A, p, r)$
4. // recursively sort the left part
5. $\operatorname{Quicksort~(~} A, p, q-1$)
6. // recursively sort the right part
7. \quad Quicksort ($A, q+1, r$)

Partition

Input: A subarray $A[p: r$] of $r-p+1$ numbers, where $p \leq r$.
Output: Elements of $A[p: r]$ are rearranged such that for some $q \in[p, r]$ everything in $A[p: q-1]$ is $\leq A[q]$ and everything in $A[q+1: r]$ is \geq $A[q]$. Index q is returned.

Partition (A, p, r)

1. $x=A[r]$
2. $i=p-1$
3. $f o r j=p$ to $r-1$
4. if $A[j] \leq x$
5. $\quad i=i+1$
6. exchange $A[i]$ with $A[j]$
7. exchange $A[i+1]$ with $A[r]$
8. return $i+1$

Correctness of Partition

Input: A subarray $A[p: r]$ of $r-p+1$ numbers, where $p \leq r$.
Output: Elements of $A[p: r]$ are rearranged such that for some $q \in[p, r]$ everything in $A[p: q-1]$ is $\leq A[q]$ and everything in $A[q+1: r]$ is \geq $A[q]$. Index q is returned.

Partition (A, p, r)

1. $x=A[r]$
2. $i=p-1$
3. for $j=p$ to $r-1$
4. if $A[j] \leq x$
5. $\quad i=i+1$
6. exchange $A[i]$ with $A[j]$
7. exchange $A[i+1]$ with $A[r]$
8. return $i+1$

Loop Invariant
At the start of each iteration of the for loop of lines 3-6, for any array index k,

1. if $p \leq k \leq i$, then $A[k] \leq x$.
2. if $i+1 \leq k \leq j-1$, then $A[k]>x$.
3. if $k=r$,

$$
\text { then } A[k]=x
$$

Running Time of Partition

Input: A subarray $A[p: r$] of $r-p+1$ numbers, where $p \leq r$.
Output: Elements of $A[p: r]$ are rearranged such that for some $q \in[p, r]$ everything in $A[p: q-1]$ is $\leq A[q]$ and everything in $A[q+1: r]$ is \geq $A[q]$. Index q is returned.

Partition (A, p, r)

1. $x=A[r]$
2. $i=p-1$
3. $f o r j=p$ to $r-1$
4. if $A[j] \leq x$
5. $\quad i=i+1$
6. exchange $A[i]$ with $A[j]$
7. exchange $A[i+1]$ with $A[r]$
8. return $i+1$

The loop of lines 3-6 takes $\Theta(r-1-p+1)=\Theta(n)$ time.

Lines 1, 2, 7 and 8 take $\Theta(1)$ time each. Hence, the overall running time is $\Theta(n)$.

Worst-case Running Time of Quicksort

```
QUICKSORT ( }A,p,r
    1. if p<r then
    2. // partition }A[p..r] into A[p..q-1
            and }A[q+1..r] such that everything
            in}A[p..q-1] is \leqA[q] and everything
            in}A[q+1..r] is \geqA[q
3. q}q=\operatorname{PARTITION ( }A,p,r
4. // recursively sort the left part
5. QUICKSORT ( A, p,q-1)
6. // recursively sort the right part
7. QuickSORT ( A,q+1,r)
```

Assuming $n=r-p+1$, the worst-case running time of quicksort:

$$
T(n)=\left\{\begin{array}{cl}
\Theta(1) & \text { if } n=1 \\
\max _{p \leq q \leq r}\{T(q-p)+T(r-q)\}+\Theta(n) & \text { if } n>1
\end{array}\right.
$$

Replacing q with $k+p-1$, we get:

$$
T(n)=\left\{\begin{array}{cl}
\Theta(1) & \text { if } n=1 \\
\max _{1 \leq k \leq n}\{T(k-1)+T(n-k)\}+\Theta(n) & \text { if } n>1 .
\end{array}\right.
$$

Worst-case Running Time of Quicksort (Upper Bound)

For $n>1$ and a constant $c>0$,

$$
T(n)=\max _{1 \leq k \leq n}\{T(k-1)+T(n-k)\}+c n
$$

Our guess for upper bound: $T(n) \leq c_{1} n^{2}$ for constant $c_{1}>0$.
Using this bound on the right side of the recurrence equation, we get.

$$
\begin{aligned}
& T(n) \leq \max _{1 \leq k \leq n}\left\{c_{1}(k-1)^{2}+c_{1}(n-k)^{2}\right\}+c n \\
\Rightarrow & T(n) \leq c_{1} \max _{1 \leq k \leq n}\left\{(k-1)^{2}+(n-k)^{2}\right\}+c n
\end{aligned}
$$

But $(k-1)^{2}+(n-k)^{2}$ reaches its maximum value for $k=1$ and $k=n$. Hence,

$$
\begin{aligned}
& T(n) \leq c_{1}\left((1-1)^{2}+(n-1)^{2}\right)+c n \\
\Rightarrow & T(n) \leq c_{1}(n-1)^{2}+c n \\
\Rightarrow & T(n) \leq c_{1} n^{2}-\left(c_{1}(2 n-1)-c n\right)
\end{aligned}
$$

Worst-case Running Time of Quicksort (Upper Bound)

But for $c_{1} \geq c$, we have,

$$
\begin{aligned}
& c_{1}(2 n-1) \geq c(2 n-1) \\
\Rightarrow & c_{1}(2 n-1) \geq 2 c n-c \\
\Rightarrow & c_{1}(2 n-1)-c n \geq c n-c
\end{aligned}
$$

But $n \geq 1 \Rightarrow c n \geq c \Rightarrow c n-c \geq 0$, and thus

$$
\begin{aligned}
& c_{1}(2 n-1)-c n \geq 0 \\
\Rightarrow & -\left(c_{1}(2 n-1)-c n\right) \leq 0 \\
\Rightarrow & c_{1} n^{2}-\left(c_{1}(2 n-1)-c n\right) \leq c_{1} n^{2}
\end{aligned}
$$

But $T(n) \leq c_{1} n^{2}-\left(c_{1}(2 n-1)-c n\right)$.

Hence, $T(n) \leq c_{1} n^{2}$ for $c_{1} \geq c$.

Worst-case Running Time of Quicksort (Lower Bound)

For $n>1$ and a constant $c>0$,

$$
T(n)=\max _{1 \leq k \leq n}\{T(k-1)+T(n-k)\}+c n
$$

Our guess for lower bound: $T(n) \geq c_{2} n^{2}$ for constant $c_{2}>0$.
Using this bound on the right side of the recurrence equation, we get.

$$
\begin{aligned}
& T(n) \geq \max _{1 \leq k \leq n}\left\{c_{2}(k-1)^{2}+c_{1}(n-k)^{2}\right\}+c n \\
\Rightarrow & T(n) \geq c_{2} \max _{1 \leq k \leq n}\left\{(k-1)^{2}+(n-k)^{2}\right\}+c n
\end{aligned}
$$

But $(k-1)^{2}+(n-k)^{2}$ reaches its maximum value for $k=1$ and $k=n$. Hence,

$$
\begin{aligned}
& T(n) \geq c_{2}\left((1-1)^{2}+(n-1)^{2}\right)+c n \\
\Rightarrow & T(n) \geq c_{2}(n-1)^{2}+c n \\
\Rightarrow & T(n) \geq c_{2} n^{2}+\left(c n-c_{2}(2 n-1)\right)
\end{aligned}
$$

Worst-case Running Time of Quicksort (Lower Bound)

But for $c_{2} \leq \frac{c}{2}$, we have,

$$
\begin{aligned}
& c_{2}(2 n-1) \leq \frac{c}{2}(2 n-1) \\
\Rightarrow & c_{2}(2 n-1) \leq c n-\frac{c}{2} \\
\Rightarrow & c n-c_{2}(2 n-1) \geq \frac{c}{2}
\end{aligned}
$$

But $c>0$, and thus

$$
\begin{gathered}
c n-c_{2}(2 n-1)>0 \\
\Rightarrow c_{2} n^{2}+\left(c n-c_{2}(2 n-1)\right)>c_{2} n^{2}
\end{gathered}
$$

But $T(n) \geq c_{2} n^{2}+\left(c n-c_{2}(2 n-1)\right)$.

Hence, $T(n) \geq c_{2} n^{2}$ for $c_{2} \leq \frac{c}{2}$.

Worst-case Running Time of Quicksort (Tight Bound)

We have proved that

$$
\begin{aligned}
T(n) & \leq c_{1} n^{2} \text { for } c_{1} \geq c \\
\text { and } T(n) & \geq c_{2} n^{2} \text { for } c_{2} \leq \frac{c}{2}
\end{aligned}
$$

Thus $c_{2} n^{2} \leq T(n) \leq c_{1} n^{2}$ for constants $c_{1} \geq c$ and $c_{2} \leq \frac{c}{2}$.
Hence, $T(n)=\Theta\left(n^{2}\right)$.

Average Case Running Time of Quicksort

$$
\begin{aligned}
& \text { Quicksort (} A, p, r \text {) } \\
& \text { 1. if } p<r \text { then } \\
& \text { 2. // partition } A[p . . r] \text { into } A[p . . q-1] \\
& \text { and } A[q+1 . . r] \text { such that everything } \\
& \text { in } A[p . . q-1] \text { is } \leq A[q] \text { and everything } \\
& \text { in } A[q+1 . . r] \text { is } \geq A[q] \\
& \text { 3. } q=\operatorname{PARTITION}(A, p, r) \\
& \text { 4. // recursively sort the left part } \\
& \text { 5. Quicksort (} A, p, q-1 \text {) } \\
& \text { 6. // recursively sort the right part } \\
& \text { 7. Quicksort (} A, q+1, r \text {) }
\end{aligned}
$$

$$
T(n)=\left\{\begin{array}{cl}
\Theta(1) & \text { if } n=1, \\
\frac{1}{n} \sum_{1 \leq k \leq n}\{T(k-1)+T(n-k)\}+\Theta(n) & \text { if } n>1 .
\end{array}\right.
$$

Average Case Running Time of Quicksort

For $n>1$ and a constant $c>0$,

$$
\begin{aligned}
T(n) & =\frac{1}{n} \sum_{1 \leq k \leq n}\{T(k-1)+T(n-k)\}+c n \\
\Rightarrow n T(n) & =\sum_{1 \leq k \leq n}\{T(k-1)+T(n-k)\}+c n^{2} \\
\Rightarrow n T(n) & =2 \sum_{0 \leq k \leq n-1} T(k)+c n^{2} \quad \cdots(1)
\end{aligned}
$$

Replacing n with $n-1$,

$$
\begin{equation*}
\Rightarrow(n-1) T(n-1)=2 \sum_{0 \leq k \leq n-2} T(k)+c(n-1)^{2} \tag{2}
\end{equation*}
$$

Subtracting equation (2) from equation (1), we get

$$
\begin{aligned}
n T(n)-(n-1) T(n-1) & =2 T(n-1)+c(2 n-1) \\
\Rightarrow n T(n)-(n+1) T(n-1) & =c(2 n-1)
\end{aligned}
$$

Dividing both sides by $n(n+1)$, we get

$$
\frac{T(n)}{n+1}-\frac{T(n-1)}{n}=\frac{c(2 n-1)}{n(n+1)}
$$

Average Case Running Time of Quicksort

Assuming $\frac{T(n)}{n+1}=A(n)$, we get from the equation above,

$$
\begin{aligned}
& A(n)-A(n-1)=\frac{c(2 n-1)}{n(n+1)} \\
\Rightarrow & A(n)=A(n-1)+\frac{c(2 n-1)}{n(n+1)} \\
\Rightarrow & A(n)=A(n-1)+\frac{2 c}{n+1}-\frac{c}{n(n+1)} \\
\Rightarrow & A(n)<A(n-1)+\frac{2 c}{n+1} \\
\Rightarrow & A(n)<A(n-2)+\frac{2 c}{n}+\frac{2 c}{n+1} \\
\Rightarrow & A(n)<A(n-3)+\frac{2 c}{n-1}+\frac{2 c}{n}+\frac{2 c}{n+1} \\
\Rightarrow & A(n)<A(n-k)+\frac{2 c}{n-k+2}+\frac{2 c}{n-k+3}+\cdots+\frac{2 c}{n}+\frac{2 c}{n+1} \\
\Rightarrow & A(n)<A(1)+\frac{2 c}{3}+\frac{2 c}{4}+\cdots+\frac{2 c}{n}+\frac{2 c}{n+1}
\end{aligned}
$$

Average Case Running Time of Quicksort

Since $A(1)=\frac{T(1)}{2}=\Theta(1)$, we get,

$$
\begin{aligned}
& \Rightarrow A(n)<\Theta(1)+2 c\left(\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}+\frac{1}{n+1}\right) \\
& \Rightarrow A(n)<\Theta(1)+2 c\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1}\right)-2 c\left(1+\frac{1}{2}\right)
\end{aligned}
$$

But $H_{n+1}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1}$ is the $n+1$ 'st Harmonic
Number, and $\lim _{n \rightarrow \infty} H_{n+1}=\ln (n+1)+\gamma$, where $\gamma \approx 0.5772$ is known as the Euler-Mascheroni constant. Hence, for $n \rightarrow \infty: A(n)<2 c(\ln (n+1)+\gamma)-3 c+\Theta(1)$

$$
\begin{aligned}
& \Rightarrow A(n)<2 c \ln (n+1)+\Theta(1) \\
& \Rightarrow \frac{T(n)}{n+1}<2 c \ln (n+1)+\Theta(1) \\
& \Rightarrow T(n)<2 c(n+1) \ln (n+1)+\Theta(n) \\
& \Rightarrow T(n)=O(n \log n)
\end{aligned}
$$

