
CSE 373: Analysis of Algorithms

Lectures 11, 12 & 13

(Quicksort and Average Case Analysis)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2014

The Divide-and-Conquer Process in Merge Sort

Suppose we want to sort a typical subarray � �. . � .

DIVIDE: Split � �. . � at midpoint � into two subarrays � �. . � and � � � 1. . � of equal or almost equal length.

CONQUER: Recursively sort � �. . � and � � � 1. . � .

COMBINE: Merge the two sorted subarrays � �. . � and � � � 1. . �
to obtain a longer sorted subarray � �. . � .

The DIVIDE step is cheap ― takes only Θ 1 time.

But the COMBINE step is costly ― takes Θ 	 time, where 	 is the

length of � �. . � .

The Divide-and-Conquer Process in Quicksort

Suppose we want to sort a typical subarray � �. . � .

DIVIDE: Partition � �. . � into two (possibly empty) subarrays� �. . �
 1 and � � � 1. . � and find index � such that

• each element of � �. . �
 1 is � � � , and

• each element of � � � 1. . � is � � � .

CONQUER: Recursively sort � �. . �
 1 and � � � 1. . � .

COMBINE: Since � � is larger and smaller than everything to its left

and right, respectively, and both left and right parts are sorted,

subarray � �. . � is also sorted.

The COMBINE step is cheap ― takes only Θ 1 time.

But the DIVIDE step is costly ― takes Θ 	 time, where 	 is the

length of � �. . � .

Quicksort

Input: A subarray �	� ∶ �	� of �
 � � 1 numbers, where � � �.

Output: Elements of �	� ∶ �	� rearranged in non-decreasing order of value.

QUICKSORT (A, p, r)

1. if � � � then

2. // partition � �. . � into � �. . �
 1 and � � � 1. . � such that everything in � �. . �
 1 is � � � and everything in � � � 1. . � is � � �
3. � � PARTITION (A, p, r)

4. // recursively sort the left part

5. QUICKSORT (A, p, q ‒ 1)

6. // recursively sort the right part

7. QUICKSORT (A, q + 1, r)

Partition

Input: A subarray �	� ∶ �	� of �
 � � 1 numbers, where � � �.

Output: Elements of �	� ∶ �	� are rearranged such that for some � ∈ �, �
everything in �	� ∶ �
 1	� is � � � and everything in �	� � 1: �	� is �� � . Index � is returned.

PARTITION (A, p, r)

1. � � � �
2. � � �
 1
3. for � � � to �
 1
4. if � � � �
5. � � � � 1
6. exchange � � with � �
7. exchange � � � 1 with � �
8. return � � 1

Correctness of Partition

Input: A subarray �	� ∶ �	� of �
 � � 1 numbers, where � � �.

Output: Elements of �	� ∶ �	� are rearranged such that for some � ∈ �, �
everything in �	� ∶ �
 1	� is � � � and everything in �	� � 1: �	� is �� � . Index � is returned.

Loop Invariant

At the start of each iteration of the

for loop of lines 3‒6, for any array

index �,

1. if � � � � �,
then � � � �.

2. if � � 1 � � � �
 1,

then � � � �.

3. if � � �,

then � � � �.

Running Time of Partition

Input: A subarray �	� ∶ �	� of �
 � � 1 numbers, where � � �.

Output: Elements of �	� ∶ �	� are rearranged such that for some � ∈ �, �
everything in �	� ∶ �
 1	� is � � � and everything in �	� � 1: �	� is �� � . Index � is returned.

Let 	 � �
 � � 1.

The loop of lines 3‒6 takes Θ �
 1
 � � 1 � Θ 	 time.

Lines 1, 2, 7 and 8 take Θ 1 time each.

Hence, the overall running time is Θ 	 .

Worst-case Running Time of Quicksort

� 	 � � Θ 1 ��		 � 1,max!"#"$ � �
 � � � �
 � � Θ 	 ��		 � 1.

� 	 � % Θ 1 ��		 � 1,max&"'"(� �
 1 � � 	
 � � Θ 	 ��		 � 1.
Replacing � with � � �
 1, we get:

Assuming 	 � �
 � � 1, the worst-case running time of quicksort:

Worst-case Running Time of Quicksort (Upper Bound)

For 	 � 1 and a constant) � 0,� 	 � max&"'"(� �
 1 � � 	
 � �)	
Our guess for upper bound: � 	 �)&	+ for constant)& � 0.

Using this bound on the right side of the recurrence equation, we get.� 	 � max&"'"()& �
 1 + �)& 	
 � + �)	
⇒ � 	 �)& max&"'"(�
 1 + � 	
 � + �)	

But �
 1 + � 	
 � + reaches its maximum value for � � 1 and � � 	. Hence, � 	 �)& 1
 1 + � 	
 1 + �)	⇒ � 	 �)& 	
 1 + �)	⇒ � 	 �)&	+
)& 2	
 1
)	

But for)& �), we have,)& 2	
 1 �) 2	
 1⇒)& 2	
 1 � 2)	
)⇒)& 2	
 1
)	 �)	
)
But 	 � 1 ⇒)	 �) ⇒)	
) � 0, and thus)& 2	
 1
)	 � 0⇒
)& 2	
 1
)	 � 0	⇒)&	+
)& 2	
 1
)	 �)&	+
But � 	 �)&	+
)& 2	
 1
)	 .

Hence, � 	 �)&	+ for)& �).

Worst-case Running Time of Quicksort (Upper Bound)

For 	 � 1 and a constant) � 0,� 	 � max&"'"(� �
 1 � � 	
 � �)	
Our guess for lower bound: � 	 �)+	+ for constant)+ � 0.

Using this bound on the right side of the recurrence equation, we get.� 	 � max&"'"()+ �
 1 + �)& 	
 � + �)	
⇒ � 	 �)+ max&"'"(�
 1 + � 	
 � + �)	

But �
 1 + � 	
 � + reaches its maximum value for � � 1 and � � 	. Hence, � 	 �)+ 1
 1 + � 	
 1 + �)	⇒ � 	 �)+ 	
 1 + �)	⇒ � 	 �)+	+ �)	
)+ 2	
 1

Worst-case Running Time of Quicksort (Lower Bound)

But for)+ � .+, we have,

)+ 2	
 1 � .+ 2	
 1
⇒)+ 2	
 1 �)	
 .+⇒)	
)+ 2	
 1 � .+

But) � 0, and thus)	
)+ 2	
 1 � 0⇒)+	+ �)	
)+ 2	
 1 �)+	+
But � 	 �)+	+ �)	
)+ 2	
 1 .

Hence, � 	 �)+	+ for)+ � .+.

Worst-case Running Time of Quicksort (Lower Bound)

We have proved that� 	 �)&	+ for)& �),

and � 	 �)+	+ for)+ � .+.

Worst-case Running Time of Quicksort (Tight Bound)

Thus)+	+ � � 	 �)&	+ for constants)& �) and)+ � .+.

Hence, � 	 � Θ 	+
.

Average Case Running Time of Quicksort

� 	 � Θ 1 ��		 � 1,1	 / � �
 1 � � 	
 �&"'"(� Θ 	 ��		 � 1.

Average Case Running Time of Quicksort

For 	 � 1 and a constant) � 0,� 	 � &(∑ � �
 1 � � 	
 �&"'"(�)	⇒ 	� 	 � ∑ � �
 1 � � 	
 �&"'"(�)	+⇒ 	� 	 � 2∑ � �1"'"(2& �)	+ ⋯ 1
Replacing 	 with 	
 1,⇒ 	
 1 � 	
 1 � 2∑ � �1"'"(2+ �) 	
 1 + ⋯ 2
Subtracting equation 2 from equation 1 , we get	� 	
 	
 1 � 	
 1 � 2� 	
 1 �) 2	
 1⇒ 	� 	
 	 � 1 � 	
 1 �) 2	
 1
Dividing both sides by 	 	 � 1 , we get

4 ((5&
 4 (2&(� . +(2&((5&

Average Case Running Time of Quicksort

Assuming
4 ((5& � � 	 , we get from the equation above,

� 	
 � 	
 1 � . +(2&((5&⇒ � 	 � � 	
 1 � . +(2&((5&⇒ � 	 � � 	
 1 � +.(5&
 .((5&⇒ � 	 � � 	
 1 � +.(5&⇒ � 	 � � 	
 2 � +.(� +.(5&⇒ � 	 � � 	
 3 � +.(2& � +.(� +.(5&⇒ � 	 � � 	
 � � +.(2'5+ � +.(2'57 �⋯� +.(� +.(5&⇒ � 	 � � 1 � +.7 � +.8 �⋯� +.(� +.(5&

Average Case Running Time of Quicksort

Since � 1 � 4 &+ � Θ 1 , we get,

⇒ � 	 � Θ 1 � 2) &7 � &8 �⋯� &(� &(5&⇒ � 	 � Θ 1 � 2) 1 � &+ � &7 �⋯� &(� &(5&
 2) 1 � &+
But 9(5& � 1 � &+ � &7 �⋯� &(� &(5& is the 	 � 1’st Harmonic

Number, and lim(→=9(5& � ln 	 � 1 � ?, where ? @ 0.5772 is

known as the Euler-Mascheroni constant.
Hence, for 	 → ∞: � 	 � 2) ln 	 � 1 � ?
 3) � Θ 1⇒ � 	 � 2) ln 	 � 1 � Θ 1

⇒ � 		 � 1 � 2) ln 	 � 1 � Θ 1
⇒ � 	 � 2) 	 � 1 ln 	 � 1 � Θ 	⇒ � 	 � D 	 log 	

