CSE 373: Analysis of Algorithms

Lectures 21 & 22 (Iterated Log, Inverse Ackermann, and the Union-Find Data Structure)

Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Fall 2014

Iterated Functions

$$f^{*}(n) = \begin{cases} 0 & \text{if } n \leq 1\\ 1 + f^{*}(f(n)) & \text{if } n > 1 \end{cases}$$
$$= \min\left\{i \geq 0: \underbrace{f\left(f(f(\dots f(n) \dots))\right)}_{i \text{ times}} \leq 1\right\}$$
$$= \min\{i \geq 0: f^{(i)}(n) \leq 1\},$$
where $f^{(i)}(n) = \begin{cases} n & \text{if } i = 0\\ f\left(f^{(i-1)}(n)\right) & \text{if } i > 0 \end{cases}$

Example: If $f = \log$, we have:

$$log^{(0)}(65536) = 65536 \qquad log^{(3)}(65536) = 2$$

$$log^{(1)}(65536) = 16 \qquad log^{(4)}(65536) = 1$$

$$log^{(2)}(65536) = 4 \qquad \therefore log^{*}(65536) = 4$$

Iterated Functions

f(n)	$f^{*}(n)$
n - 1	n - 1
n - 2	$\frac{n}{2}$
n-c	$\frac{n}{c}$
$\frac{n}{2}$	$\log_2 n$
$\frac{n}{c}$	$\log_c n$
\sqrt{n}	log log n
$\log n$	$\log^* n$

<u>The Inverse Ackermann Function: $\alpha(n)$ </u>

	f(n)	$f^*(n)$	
	$\log n$	$\log^* n$	> 3
	$\log^* n$	$\log^{**} n$	> 3
	$\log^{**} n$	$\log^{***} n$	> 3
$k = \alpha(n)$			
rows			
	$\log^{\frac{k-2}{*\cdots*}}n$	$\log^{\frac{k-1}{*\cdots*}}n$	> 3
	$\log^{\frac{k-1}{*\cdots*}} n$	$\log^{\stackrel{k}{\widetilde{\ast\cdots\ast}}} n$	≤ 3
	$\alpha(n) = \min \Big\{ k$	$\geq 1: \log^{\frac{k}{*\cdots*}} n \leq 3$	}

Union-Find: A Disjoint-Set Data Structure

Disjoint Set Operations

A *disjoint-set data structure* maintains a collection of disjoint dynamic sets. Each set is identified by a *representative* which must be a member of the set.

The collection is maintained under the following operations:

MAKE-SET(x): create a new set $\{x\}$ containing only element x. Element x becomes the representative of the set.

FIND(x): returns a pointer to the representative of the set containing x

UNION(x, y): replace the dynamic sets S_x and S_y containing x and y, respectively, with the set $S_x \cup S_y$

Union-Find Data Structure with Union by Rank and Find with Path Compression

MAKE-SET (x) 1. $\pi(x) \leftarrow x$ 2. $rank(x) \leftarrow 0$

LINK (x, y)

- 1. *if* rank(x) > rank(y) *then* $\pi(y) \leftarrow x$
- 2. else $\pi(x) \leftarrow y$
- 3. if rank(x) = rank(y) then $rank(y) \leftarrow rank(y) + 1$

UNION (x, y)

1. LINK (FIND (x), FIND (y))

FIND (x)

- 1. if $x \neq \pi(x)$ then $\pi(x) \leftarrow F$ IND $(\pi(x))$
- 2. return $\pi(x)$

Some Useful Properties of Rank

- If x is not a root then $rank(x) < rank(\pi(x))$
- Node ranks strictly increase along any simple path towards a root
- Once a node becomes a non-root its rank never changes
- If $\pi(x)$ changes from y to z then rank(z) > rank(y)
- If the root of x's tree changes from y to z then rank(z) > rank(y)
- If x is the root of a tree then $size(x) \ge 2^{rank(x)}$
- If there are only n nodes the highest possible rank is $\lfloor \log_2 n \rfloor$
- There are at most $\frac{n}{2^r}$ nodes with rank $r \ge 0$

Some Useful Properties of Rank

- We will analyze the total running time of m' MAKE-SET, UNION and FIND operations of which exactly $n (\leq m')$ are MAKE-SET
- But each UNION can be replaced with two FIND and one LINK
- Hence, we can simply analyze the total running time of mMAKE-SET, LINK and FIND operations of which exactly $n~(\leq m)$ are MAKE-SET and where $m' \leq m \leq 3m'$

<u>Compress</u>

- We will analyze the total running time of m Make-Set, Link and Find operations of which exactly $n~(\leq m)$ are Make-Set
- But FIND(x) is nothing but COMPRESS(x, y), where y is the root of the tree containing x
- Hence, we can analyze the total running time of m Make-Set, LINK and COMPRESS operations of which exactly $n~(\leq m)$ are Make-Set

<u>Compress</u>

We can reorder the sequence of LINK and COMPRESS operations so that all LINK's are performed before all COMPRESS operations without changing the number of parent pointer reassignments!

<u>Shatter</u>

Shatter (x)

1. if $x \neq \pi(x)$ then SHATTER ($\pi(x)$)

2.
$$\pi(x) \leftarrow x$$

<u>Bound 0</u>

Let T(m, n, r) = worst-case number of parent pointer assignments

- during any sequence of at most *m* COMPRESS operations
- on a forest of n nodes
- with maximum rank r

Bound 0: $T(m, n, r) \leq nr$.

Proof: Since there are at most *r* distinct ranks, and each new parent of a node has a higher rank than its previous parent, any node can change parents fewer than *r* times.

Bound 1: $T(m, n, r) \le m + 2n \log^* r$.

Proof: Let F be the forest, and C be the sequence of COMPRESS operations performed on F.

Let T(F, C) be the number of parent pointer assignments by C in F.

Let *s* be an arbitrary rank. We partition *F* into two subforests:

 F_b containing all nodes with rank $\leq s$, and

 F_t containing all nodes with rank > s.

Bound 1: $T(m, n, r) \le m + 2n \log^* r$.

Proof: Let *s* be an arbitrary rank. We partition *F* into two subforests:

Let $n_t =$ #nodes in F_t , and $n_b =$ #nodes in F_b

Let $m_t = \#COMPRESS$ operations with at least one node in F_t , and $m_b = m - m_t$

Bound 1: $T(m, n, r) \le m + 2n \log^* r$.

Proof: The sequence *C* on *F* can be decomposed into

- a sequence of COMPRESS operations in F_t , and
- a sequence of COMPRESS and SHATTER operations in F_b

Suppose, this decomposition partitions C into two subsequences

- C_t in F_t , and
- $-C_b$ in F_b

Bound 1: $T(m, n, r) \le m + 2n \log^* r$.

Proof: We get the following recurrence:

```
T(F,C) \leq T(F_t,C_t) + T(F_b,C_b) + m_t + n_b
```

<u>Cost on Left Side</u>	Corresponding Cost on Right Side
node $\in F_t$ gets new parent $\in F_t$	$T(F_t, C_t)$
node $\in F_b$ gets new parent $\in F_b$	$T(F_b, C_b)$
node $\in F_b$ gets new parent $\in F_t$ (for the first time)	n_b
node $\in F_b$ gets new parent $\in F_t$ (again)	m_t

<u>Bound 1</u>

Bound 1: $T(m, n, r) \le m + 2n \log^* r$.

Proof: We get the following recurrence:

 $T(F,C) \le T(F_t,C_t) + T(F_b,C_b) + m_t + n_b$

Now $n_t \leq \sum_{i>s} \frac{n}{2^i} = \frac{n}{2^s}$, and $r_t = r - s < r$.

Hence, using bound 0: $T(F_t, C_t) \le n_t r_t < \frac{nr}{2^s}$

Let $s = \log r$. Then $T(F_t, C_t) < n$.

Hence, $T(F,C) \le T(F_b,C_b) + m_t + 2n$ $\Rightarrow T(F,C) - m \le T(F_b,C_b) - m_b + 2n$

<u>Bound 1</u>

Bound 1: $T(m, n, r) \le m + 2n \log^* r$. **Proof:**

We got $T(F, C) - m \le T(F_b, C_b) - m_b + 2n$ Let $T_1(m, n, r) = T(m, n, r) - m$ Then $T_1(m, n, r) \le T_1(m_b, n_b, r_b) + 2n$ $\Rightarrow T_1(m, n, r) \le T_1(m, n, \log r) + 2n$

Solving, $T_1(m, n, r) \le 2n \log^* r$

Hence, $T(m, n, r) \le m + 2n \log^* r$

Bound 2: $T(m, n, r) \le 2m + 3n \log^{**} r$.

Proof: Similar to the proof of bound 1.

But we solve $T(F_t, C_t)$ using bound 1, instead of bound 0!

We fix $s = \log^* r$ (instead of $\log r$ for bound 1)

Then using bound 1: $T(F_t, C_t) \le m_t + 2n_t \log^* r_t$ $\le m_t + 2 \frac{n}{2^{\log^* r}} \log^* r$ $\le m_t + 2n$

Then from $T(F,C) \leq T(F_t,C_t) + T(F_b,C_b) + m_t + n_b$, we get $T(F,C) \leq T(F_b,C_b) + 2m_t + 3n_b$

Bound 2: $T(m, n, r) \le 2m + 3n \log^{**} r$.

Proof: Our recurrence:

 $T(F,C) \leq T(F_b,C_b) + 2m_t + 3n_b$ $\Rightarrow T(F,C) - 2m \leq T(F_b,C_b) - 2m_b + 3n_b$ Let $T_2(m,n,r) = T(m,n,r) - 2m$ Then $T_2(m,n,r) \leq T_2(m_b,n_b,r_b) + 3n$ $\Rightarrow T_2(m,n,r) \leq T_2(m,n,\log^* r) + 3n$

Solving, $T_2(m, n, r) \leq 3n \log^{**} r$

Hence, $T(m, n, r) \leq 2m + 3n \log^{**} r$

Bound k

Bound k: $T(m, n, r) \leq km + (k + 1)n \log^{k} r$.

Observation: As we increase *k*:

- the dependency on *m* increases
- the dependency on *r* decreases

When $k = \alpha(r)$, we have $\log^{k} r \le 3!$

Bound α : $T(m, n, r) \le m\alpha(r) + 3(\alpha(r) + 1)n$.

<u>The *α* Bound</u>

Bound α : $T(m, n, r) \le m\alpha(r) + 3(\alpha(r) + 1)n$.

Observing that r < n, we have:

Bound α : $T(m, n, r) \leq (m + 3n)\alpha(n) + 3n = O((m + n)\alpha(n)).$

Assuming $m \ge n$, we have:

Bound α : $T(m, n, r) = O(m\alpha(n))$.

So, amortized complexity of each operation is only $O(\alpha(n))!$