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Iterated Functions
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Example: If � � log, we have:

log�� 65536 � 65536log�
 65536 � 16log�$ 65536 � 4
log�& 65536 � 2	log�( 65536 � 1∴ log∗ 65536 � 4



Iterated Functions

� � 																																				�∗ �� * 1 � * 1
� * 2 �2

�2 log$ �

√� log log �
log � log∗ �

� * , �,
�, log- �
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Union-Find:

A Disjoint-Set Data Structure



Disjoint Set Operations

MAKE-SET( 8 ): create a new set 9 containing only element 9.  

Element 9 becomes the representative of the set.

FIND( 8 ): returns a pointer to the representative of the set 

containing 9
UNION( 8, ; ): replace the dynamic sets <= and <> containing 9 and ?, respectively, with the set <= ∪ <>

A disjoint-set data structure maintains a collection of disjoint 

dynamic sets. Each set is identified by a representative which must 

be a member of the set.

The collection is maintained under the following operations:



Union-Find Data Structure 
with Union by Rank and Find with Path Compression

MAKE-SET ( 9 )

1. A 9 ← 9
2. CD�7 9 ← 0

UNION ( 9, ? )

1. LINK ( FIND ( 9 ), FIND ( ? ) )

LINK ( 9, ? )

1. if CD�7 9 � CD�7 ? then A ? ← 9
2. else 	A 9 ← ?
3. if CD�7 9 � CD�7 ? then CD�7 ? ← CD�7 ? � 1

FIND ( 9 )

1. if 9 E A 9 then A 9 ← FIND ( A 9 )

2. return 	A 9



Some Useful Properties of Rank

− If 9 is not a root then CD�7 9 F CD�7 A 9
− Node ranks strictly increase along any simple path towards a root

− Once a node becomes a non-root its rank never changes

− If A 9 changes from ? to G then CD�7 G � CD�7 ?
− If the root of 9’s tree changes from ? to G then CD�7 G � CD�7 ?
− If 9 is the root of a tree then H�GI 9 � 2JKLM =
− If there are only � nodes the highest possible rank is log$ �
− There are at most 

L$N nodes with rank C � 0



Some Useful Properties of Rank

− We will analyze the total running time of O′ MAKE-SET, UNION

and FIND operations of which exactly �	 � O′ are MAKE-SET

− But each UNION can be replaced with two FIND and one LINK

− Hence, we can simply analyze the total running time of O
MAKE-SET, LINK and FIND operations of which exactly �	 � O
are MAKE-SET and where OQ � O � 3O′



Compress

COMPRESS ( 9, ? )             { ? is an ancestor of 9 }

1. if 9 E ? then A 9 ← COMPRESS ( A 9 , ? )

2. return 	A 9

− We will analyze the total running time of O MAKE-SET, LINK and 

FIND operations of which exactly �	 � O are MAKE-SET

− But FIND 9 is nothing but COMPRESS 9, ? , where ? is the root 

of the tree containing 9
− Hence, we can analyze the total running time of O MAKE-SET, 

LINK and COMPRESS operations of which exactly �	 � O are 

MAKE-SET



Compress

COMPRESS ( 9, ? )             { ? is an ancestor of 9 }

1. if 9 E ? then A 9 ← COMPRESS ( A 9 , ? )

2. return 	A 9
We can reorder the sequence of LINK and COMPRESS operations so 

that all LINK’S are performed before all COMPRESS operations 

without changing the number of parent pointer reassignments!

9
?
G 9 ? G

9 ? G

9
?
G

9 ? G
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Shatter

SHATTER ( 9 )

1. if 9 E A 9 then SHATTER ( A 9 )

2. A 9 ← 9

9
?

G
R R G ? 9



Bound 0

Let S O, �, C � worst-case number of parent pointer assignments

− during any sequence of at most O COMPRESS operations

− on a forest of � nodes

− with maximum rank C
Bound 0: S O, �, C � �C.

Proof: Since there are at most C distinct ranks, and each new parent 

of a node has a higher rank than its previous parent, any node can 

change parents fewer than C times. 



Bound 1
Bound 1: S O, �, C � O � 2� log∗ C.

Proof: Let T be the forest, and U be the sequence of COMPRESS

operations performed on T.

Let S T, U be the number of parent pointer assignments by U in T.

Let H be an arbitrary rank. We partition T into two subforests: TV containing all nodes with rank � H, and T� containing all nodes with rank � H.

W WX
WY

CD�7 � HCD�7 � H CD�7 � HCD�7 � H



Bound 1
Bound 1: S O, �, C � O � 2� log∗ C.

Proof: Let H be an arbitrary rank. We partition T into two subforests: TV containing all nodes with rank � H, and T� containing all nodes with rank � H.

Let �� � #nodes in T�, and  �V � #nodes in TV
Let O� � #COMPRESS operations with at least one node in T�, and    OV � O * O�

W WX
WY

CD�7 � HCD�7 � H CD�7 � HCD�7 � H



Bound 1
Bound 1: S O, �, C � O � 2� log∗ C.

Proof: The sequence U on T can be decomposed into 

− a sequence of COMPRESS operations in T�, and

− a sequence of COMPRESS and SHATTER operations in TV

Suppose, this decomposition partitions U into two subsequences

− U� in T�, and

− UV in TV



Bound 1
Bound 1: S O, �, C � O � 2� log∗ C.

Proof: We get the following recurrence:S T, U � S T�, U� � S TV, UV � O� � �V
Cost on Left Side Corresponding Cost on Right Side

node ∈ T� gets new parent ∈ T� S T� , U�
node ∈ TV gets new parent ∈ TV S TV , UV
node ∈ TV gets new parent ∈ T�
( for the first time )

�V
node ∈ TV gets new parent ∈ T�
( again )

O�



Bound 1
Bound 1: S O, �, C � O � 2� log∗ C.

Proof: We get the following recurrence:S T, U � S T�, U� � S TV, UV � O� � �V
Now �� � ∑ L$\�]� � L$^,  and  C� � C * H F C.

Hence, using bound 0: S T� , U� � ��C� F LJ$^
Let H � log C. Then S T� , U� F �.
Hence,      S T, U � S TV , UV � O� � 2�⇒ S T, U * O � S TV, UV * OV � 2�



Bound 1
Bound 1: S O, �, C � O � 2� log∗ C.

Proof:

We got S T, U * O � S TV , UV * OV � 2�
Let  S
 O,�, C � S O, �, C * O
Then S
 O,�, C � S
 OV , �V, CV � 2�⇒ S
 O,�, C � S
 O,�, log C � 2�
Solving, S
 O,�, C � 2� log∗ C
Hence, S O, �, C � O � 2� log∗ C



Bound 2
Bound 2: S O, �, C � 2O � 3� log∗∗ C.

Proof: Similar to the proof of bound 1.

But we solve S T� , U� using bound 1, instead of bound 0!

We fix H � log∗ C ( instead of log C	for bound 1 )

Then using bound 1: S T� , U� � O� � 2�� log∗ C�� O� � 2 L$abc∗ N	 log∗ C� O� � 2�
Then from  S T, U � S T� , U� � S TV , UV � O� � �V, we get

S T, U � S TV , UV � 2O� � 3�V



Bound 2
Bound 2: S O, �, C � 2O � 3� log∗∗ C.

Proof: Our recurrence:S T, U � S TV , UV � 2O� � 3�V⇒ S T, U * 2O � S TV, UV * 2OV � 3�V
Let  S$ O,�, C � S O, �, C * 2O
Then S$ O,�, C � S$ OV , �V, CV � 3�⇒ S$ O,�, C � S$ O, �, log∗ C � 3�
Solving, S$ O,�, C � 3� log∗∗ C
Hence, S O, �, C � 2O � 3� log∗∗ C



Bound d
Bound k: S O, �, C � 7O � �7 � 1 � log∗⋯∗12 C.

Observation: As we increase 7:

− the dependency on O increases

− the dependency on C decreases

When 7 � 6 C , we have log∗⋯∗12 C � 3 !
Bound .: S O, �, C � O6 C � 3�6 C � 1 �.



The . Bound

Bound .: S O, �, C � O6 C � 3�6 C � 1 �.

Observing that  C F �, we have:

Bound .: S O, �, C � O � 3� 6 � � 3� � Ο O � � 6 � .

Assuming  O � �, we have:

Bound .: S O, �, C � Ο O6 � .

So, amortized complexity of each operation is only Ο 6 � !


