CSE 373: Analysis of Algorithms

Lectures 21 \& 22
(Iterated Log, Inverse Ackermann, and the Union-Find Data Structure)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2014

Iterated Functions

$$
\begin{aligned}
f^{*}(n) & =\left\{\begin{array}{cc}
0 & \text { if } n \leq 1 \\
1+f^{*}(f(n)) & \text { if } n>1
\end{array}\right. \\
& =\min \{i \geq 0: \underbrace{f(f(f(\ldots f(n) \ldots))}_{\text {itimes }} \leq 1\} \\
& =\min \left\{i \geq 0: f^{(i)}(n) \leq 1\right\}, \\
\text { where } f^{(i)}(n) & =\left\{\begin{array}{cc}
n & \text { if } i=0 \\
f\left(f^{(i-1)}(n)\right) & \text { if } i>0
\end{array}\right.
\end{aligned}
$$

Example: If $f=\log$, we have:

$$
\begin{array}{lr}
\log ^{(0)}(65536)=65536 & \log ^{(3)}(65536)=2 \\
\log ^{(1)}(65536)=16 & \log ^{(4)}(65536)=1 \\
\log ^{(2)}(65536)=4 & \therefore \log ^{*}(65536)=4
\end{array}
$$

Iterated Functions

$$
\begin{array}{cc}
f(n) & f^{*}(n) \\
\hline n-1 & n-1 \\
n-2 & \frac{n}{2} \\
n-c & \frac{n}{c} \\
\frac{n}{2} & \log _{2} n \\
\frac{n}{c} & \log _{c} n \\
\sqrt{n} & \log _{\log n} \\
\log n & \log ^{*} n
\end{array}
$$

The Inverse Ackermann Function: $\alpha(n)$

$$
\begin{aligned}
& \begin{array}{c}
k=\alpha(n) \\
\text { rows }
\end{array} \underbrace{}_{\begin{array}{ll}
f(n) & f^{*}(n) \\
\log ^{*} n & >3 \\
\log ^{*} n \\
\log ^{* *} n & \log ^{* *} n
\end{array} \quad>3} \begin{array}{l}
\log ^{* * *} n
\end{array}>3 \\
& \alpha(n)=\min \left\{k \geq 1: \log ^{\stackrel{k}{\cdots \cdots *}} n \leq 3\right\}
\end{aligned}
$$

Union-Find:
A Disjoint-Set Data Structure

Disjoint Set Operations

A disjoint-set data structure maintains a collection of disjoint dynamic sets. Each set is identified by a representative which must be a member of the set.

The collection is maintained under the following operations:

Make-Set (\boldsymbol{x}) : create a new set $\{x\}$ containing only element x. Element x becomes the representative of the set.

Find $(x):$ returns a pointer to the representative of the set containing x

Union $(\boldsymbol{x}, \boldsymbol{y})$: replace the dynamic sets S_{x} and S_{y} containing x and y, respectively, with the set $S_{x} \cup S_{y}$

Union-Find Data Structure

with Union by Rank and Find with Path Compression

```
MAKE-SET ( }x\mathrm{ )
1. }\pi(x)\leftarrow
2. }\operatorname{rank}(x)\leftarrow
```

```
\(\operatorname{LINK}(x, y)\)
1. if \(\operatorname{rank}(x)>\operatorname{rank}(y)\) then \(\pi(y) \leftarrow x\)
2. else \(\pi(x) \leftarrow y\)
3. if \(\operatorname{rank}(x)=\operatorname{rank}(y)\) then \(\operatorname{rank}(y) \leftarrow \operatorname{rank}(y)+1\)
```

```
UNION( }x,y\mathrm{ )
1. LINK(FIND ( }x\mathrm{ ), FIND ( y ) )
```

```
FIND ( }x\mathrm{ )
    1. if }x\not=\pi(x)\mathrm{ then }\pi(x)\leftarrow\operatorname{FIND}(\pi(x)
    2. return }\pi(x
```


Some Useful Properties of Rank

- If x is not a root then $\operatorname{rank}(x)<\operatorname{rank}(\pi(x))$
- Node ranks strictly increase along any simple path towards a root
- Once a node becomes a non-root its rank never changes
- If $\pi(x)$ changes from y to z then $\operatorname{rank}(z)>\operatorname{rank}(y)$
- If the root of x^{\prime} s tree changes from y to z then $\operatorname{rank}(z)>\operatorname{rank}(y)$
- If x is the root of a tree then $\operatorname{size}(x) \geq 2^{\operatorname{rank}(x)}$
- If there are only n nodes the highest possible rank is $\left\lfloor\log _{2} n\right\rfloor$
- There are at most $\frac{n}{2^{r}}$ nodes with rank $r \geq 0$

Some Useful Properties of Rank

- We will analyze the total running time of m^{\prime} Make-Set, Union and FIND operations of which exactly $n\left(\leq m^{\prime}\right)$ are MAKE-SET
- But each Union can be replaced with two Find and one LInk
- Hence, we can simply analyze the total running time of m Make-Set, Link and Find operations of which exactly $n(\leq m)$ are Make-Set and where $m^{\prime} \leq m \leq 3 m^{\prime}$

Compress

```
COMPRESS (x,y) {y is an ancestor of x}
1. if }x\not=y\mathrm{ then }\pi(x)\leftarrow\operatorname{CompRESS }(\pi(x),y
2. return }\pi(x
```

- We will analyze the total running time of m Make-Set, Link and Find operations of which exactly $n(\leq m)$ are MAKe-Set
- But $\operatorname{Find}(x)$ is nothing but $\operatorname{Compress}(x, y)$, where y is the root of the tree containing x
- Hence, we can analyze the total running time of m Make-Set, LINK and COMPRESS operations of which exactly $n(\leq m)$ are Make-Set

Compress

```
COMPRESS ( }x,y\mathrm{ ) {y is an ancestor of }x
1. if }x\not=y\mathrm{ then }\pi(x)\leftarrowCOMPRESS ( \pi(x),y
2. return }\pi(x
```

We can reorder the sequence of LINK and COMPRESS operations so that all LINK's are performed before all Compress operations without changing the number of parent pointer reassignments!

Shatter

Bound 0

Let $T(m, n, r)=$ worst-case number of parent pointer assignments

- during any sequence of at most m COMPRESS operations
- on a forest of n nodes
- with maximum rank r

Bound 0: $T(m, n, r) \leq n r$.

Proof: Since there are at most r distinct ranks, and each new parent of a node has a higher rank than its previous parent, any node can change parents fewer than r times.

Bound 1

Bound 1: $T(m, n, r) \leq m+2 n \log ^{*} r$.
Proof: Let F be the forest, and C be the sequence of Compress operations performed on F.

Let $T(F, C)$ be the number of parent pointer assignments by C in F.
Let s be an arbitrary rank. We partition F into two subforests:
F_{b} containing all nodes with rank $\leq s$, and
F_{t} containing all nodes with rank $>s$.

Bound 1

Bound 1: $T(m, n, r) \leq m+2 n \log ^{*} r$.
Proof: Let s be an arbitrary rank. We partition F into two subforests:
F_{b} containing all nodes with rank $\leq s$, and
F_{t} containing all nodes with rank $>s$.

Let $n_{t}=\#$ nodes in F_{t}, and $n_{b}=\#$ nodes in F_{b}
Let $m_{t}=$ \#COMPRESS operations with at least one node in F_{t}, and

$$
m_{b}=m-m_{t}
$$

Bound 1

Bound 1: $T(m, n, r) \leq m+2 n \log ^{*} r$.
Proof: The sequence C on F can be decomposed into

- a sequence of COMPRESS operations in F_{t}, and
- a sequence of COMPRESS and SHATTER operations in F_{b}

Suppose, this decomposition partitions C into two subsequences

- C_{t} in F_{t}, and
- C_{b} in F_{b}

Bound 1

Bound 1: $T(m, n, r) \leq m+2 n \log ^{*} r$.
Proof: We get the following recurrence:

$$
T(F, C) \leq T\left(F_{t}, C_{t}\right)+T\left(F_{b}, C_{b}\right)+m_{t}+n_{b}
$$

Cost on Left Side

node $\in F_{t}$ gets new parent $\in F_{t}$ node $\in F_{b}$ gets new parent $\in F_{b}$ node $\in F_{b}$ gets new parent $\in F_{t}$ (for the first time) node $\in F_{b}$ gets new parent $\in F_{t}$ (again)

Corresponding Cost on Right Side

$$
\begin{gathered}
T\left(F_{t}, C_{t}\right) \\
T\left(F_{b}, C_{b}\right)
\end{gathered}
$$

Bound 1

Bound 1: $T(m, n, r) \leq m+2 n \log ^{*} r$.
Proof: We get the following recurrence:

$$
T(F, C) \leq T\left(F_{t}, C_{t}\right)+T\left(F_{b}, C_{b}\right)+m_{t}+n_{b}
$$

Now $n_{t} \leq \sum_{i>s} \frac{n}{2^{i}}=\frac{n}{2^{s}}$, and $r_{t}=r-s<r$.
Hence, using bound $0: T\left(F_{t}, C_{t}\right) \leq n_{t} r_{t}<\frac{n r}{2^{s}}$
Let $s=\log r$. Then $T\left(F_{t}, C_{t}\right)<n$.
Hence, $\quad T(F, C) \leq T\left(F_{b}, C_{b}\right)+m_{t}+2 n$

$$
\Rightarrow T(F, C)-m \leq T\left(F_{b}, C_{b}\right)-m_{b}+2 n
$$

Bound 1

Bound 1: $T(m, n, r) \leq m+2 n \log ^{*} r$.

Proof:

We got $T(F, C)-m \leq T\left(F_{b}, C_{b}\right)-m_{b}+2 n$
Let $T_{1}(m, n, r)=T(m, n, r)-m$
Then $T_{1}(m, n, r) \leq T_{1}\left(m_{b}, n_{b}, r_{b}\right)+2 n$

$$
\Rightarrow T_{1}(m, n, r) \leq T_{1}(m, n, \log r)+2 n
$$

Solving, $T_{1}(m, n, r) \leq 2 n \log ^{*} r$
Hence, $T(m, n, r) \leq m+2 n \log ^{*} r$

Bound 2

Bound 2: $T(m, n, r) \leq 2 m+3 n \log ^{* *} r$.
Proof: Similar to the proof of bound 1.
But we solve $T\left(F_{t}, C_{t}\right)$ using bound 1 , instead of bound 0 !
We fix $s=\log ^{*} r($ instead of $\log r$ for bound 1$)$

Then using bound 1: $T\left(F_{t}, C_{t}\right) \leq m_{t}+2 n_{t} \log ^{*} r_{t}$

$$
\begin{aligned}
& \leq m_{t}+2 \frac{n}{2^{\log ^{*} r}} \log ^{*} r \\
& \leq m_{t}+2 n
\end{aligned}
$$

Then from $T(F, C) \leq T\left(F_{t}, C_{t}\right)+T\left(F_{b}, C_{b}\right)+m_{t}+n_{b}$, we get

$$
T(F, C) \leq T\left(F_{b}, C_{b}\right)+2 m_{t}+3 n_{b}
$$

Bound 2

Bound 2: $T(m, n, r) \leq 2 m+3 n \log ^{* *} r$.
Proof: Our recurrence:

$$
\begin{gathered}
T(F, C) \leq T\left(F_{b}, C_{b}\right)+2 m_{t}+3 n_{b} \\
\Rightarrow T(F, C)-2 m \leq T\left(F_{b}, C_{b}\right)-2 m_{b}+3 n_{b}
\end{gathered}
$$

Let $T_{2}(m, n, r)=T(m, n, r)-2 m$
Then $T_{2}(m, n, r) \leq T_{2}\left(m_{b}, n_{b}, r_{b}\right)+3 n$

$$
\Rightarrow T_{2}(m, n, r) \leq T_{2}\left(m, n, \log ^{*} r\right)+3 n
$$

Solving, $T_{2}(m, n, r) \leq 3 n \log ^{* *} r$
Hence, $T(m, n, r) \leq 2 m+3 n \log ^{* *} r$

Bound k

Bound $k: T(m, n, r) \leq k m+(k+1) n \log ^{\stackrel{k}{* \cdots *}} r$. Observation: As we increase k :

- the dependency on m increases
- the dependency on r decreases

When $k=\alpha(r)$, we have $\log ^{\stackrel{k}{* \cdots *}} r \leq 3$!

Bound $\alpha: T(m, n, r) \leq m \alpha(r)+3(\alpha(r)+1) n$.

The α Bound

Bound $\alpha: T(m, n, r) \leq m \alpha(r)+3(\alpha(r)+1) n$.
Observing that $r<n$, we have:
Bound $\alpha: T(m, n, r) \leq(m+3 n) \alpha(n)+3 n=\mathrm{O}((m+n) \alpha(n))$.

Assuming $m \geq n$, we have:
Bound $\alpha: T(m, n, r)=\mathrm{O}(m \alpha(n))$.

So, amortized complexity of each operation is only $\mathrm{O}(\alpha(n))$!

