
CSE 373: Analysis of Algorithms

Lectures 21 & 22

(Iterated Log, Inverse Ackermann,

and the Union-Find Data Structure)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2014

Iterated Functions

� � � � � � ��	� � 0� � �	
 � ��	� � 0

�∗ � �
 0 ��	� � 11 � �∗ � � ��	� � 1
� min � � 0: � � � …� � …

�	�����
� 1

� min � � 0: � � � � 1 ,

where

Example: If � � log, we have:

log�� 65536 � 65536log�
 65536 � 16log�$ 65536 � 4
log�& 65536 � 2	log�(65536 � 1∴ log∗ 65536 � 4

Iterated Functions

� � 																																				�∗ �� * 1 � * 1
� * 2 �2

�2 log$ �

√� log log �
log � log∗ �

� * , �,
�, log- �

The Inverse Ackermann Function: . /� � 																																				�∗ �log � log∗ �log∗ � log∗∗ �log∗∗ � log∗∗∗ �

log∗⋯∗1234 � log∗⋯∗1235 �
log∗⋯∗1235 � log∗⋯∗12 �

� 3� 3� 3

� 3
� 3

6 � � min 7 � 1: log∗⋯∗12 � � 3

7 � 6 �
rows

Union-Find:

A Disjoint-Set Data Structure

Disjoint Set Operations

MAKE-SET(8): create a new set 9 containing only element 9.

Element 9 becomes the representative of the set.

FIND(8): returns a pointer to the representative of the set

containing 9
UNION(8, ;): replace the dynamic sets <= and <> containing 9 and ?, respectively, with the set <= ∪ <>

A disjoint-set data structure maintains a collection of disjoint

dynamic sets. Each set is identified by a representative which must

be a member of the set.

The collection is maintained under the following operations:

Union-Find Data Structure
with Union by Rank and Find with Path Compression

MAKE-SET (9)

1. A 9 ← 9
2. CD�7 9 ← 0

UNION (9, ?)

1. LINK (FIND (9), FIND (?))

LINK (9, ?)

1. if CD�7 9 � CD�7 ? then A ? ← 9
2. else 	A 9 ← ?
3. if CD�7 9 � CD�7 ? then CD�7 ? ← CD�7 ? � 1

FIND (9)

1. if 9 E A 9 then A 9 ← FIND (A 9)

2. return 	A 9

Some Useful Properties of Rank

− If 9 is not a root then CD�7 9 F CD�7 A 9
− Node ranks strictly increase along any simple path towards a root

− Once a node becomes a non-root its rank never changes

− If A 9 changes from ? to G then CD�7 G � CD�7 ?
− If the root of 9’s tree changes from ? to G then CD�7 G � CD�7 ?
− If 9 is the root of a tree then H�GI 9 � 2JKLM =
− If there are only � nodes the highest possible rank is log$ �
− There are at most

L$N nodes with rank C � 0

Some Useful Properties of Rank

− We will analyze the total running time of O′ MAKE-SET, UNION

and FIND operations of which exactly �	 � O′ are MAKE-SET

− But each UNION can be replaced with two FIND and one LINK

− Hence, we can simply analyze the total running time of O
MAKE-SET, LINK and FIND operations of which exactly �	 � O
are MAKE-SET and where OQ � O � 3O′

Compress

COMPRESS (9, ?) { ? is an ancestor of 9 }

1. if 9 E ? then A 9 ← COMPRESS (A 9 , ?)

2. return 	A 9

− We will analyze the total running time of O MAKE-SET, LINK and

FIND operations of which exactly �	 � O are MAKE-SET

− But FIND 9 is nothing but COMPRESS 9, ? , where ? is the root

of the tree containing 9
− Hence, we can analyze the total running time of O MAKE-SET,

LINK and COMPRESS operations of which exactly �	 � O are

MAKE-SET

Compress

COMPRESS (9, ?) { ? is an ancestor of 9 }

1. if 9 E ? then A 9 ← COMPRESS (A 9 , ?)

2. return 	A 9
We can reorder the sequence of LINK and COMPRESS operations so

that all LINK’S are performed before all COMPRESS operations

without changing the number of parent pointer reassignments!

9
?
G 9 ? G

9 ? G

9
?
G

9 ? G
9
?
G

Shatter

SHATTER (9)

1. if 9 E A 9 then SHATTER (A 9)

2. A 9 ← 9

9
?

G
R R G ? 9

Bound 0

Let S O, �, C � worst-case number of parent pointer assignments

− during any sequence of at most O COMPRESS operations

− on a forest of � nodes

− with maximum rank C
Bound 0: S O, �, C � �C.

Proof: Since there are at most C distinct ranks, and each new parent

of a node has a higher rank than its previous parent, any node can

change parents fewer than C times.

Bound 1
Bound 1: S O, �, C � O � 2� log∗ C.

Proof: Let T be the forest, and U be the sequence of COMPRESS

operations performed on T.

Let S T, U be the number of parent pointer assignments by U in T.

Let H be an arbitrary rank. We partition T into two subforests: TV containing all nodes with rank � H, and T� containing all nodes with rank � H.

W WX
WY

CD�7 � HCD�7 � H CD�7 � HCD�7 � H

Bound 1
Bound 1: S O, �, C � O � 2� log∗ C.

Proof: Let H be an arbitrary rank. We partition T into two subforests: TV containing all nodes with rank � H, and T� containing all nodes with rank � H.

Let �� � #nodes in T�, and �V � #nodes in TV
Let O� � #COMPRESS operations with at least one node in T�, and OV � O * O�

W WX
WY

CD�7 � HCD�7 � H CD�7 � HCD�7 � H

Bound 1
Bound 1: S O, �, C � O � 2� log∗ C.

Proof: The sequence U on T can be decomposed into

− a sequence of COMPRESS operations in T�, and

− a sequence of COMPRESS and SHATTER operations in TV

Suppose, this decomposition partitions U into two subsequences

− U� in T�, and

− UV in TV

Bound 1
Bound 1: S O, �, C � O � 2� log∗ C.

Proof: We get the following recurrence:S T, U � S T�, U� � S TV, UV � O� � �V
Cost on Left Side Corresponding Cost on Right Side

node ∈ T� gets new parent ∈ T� S T� , U�
node ∈ TV gets new parent ∈ TV S TV , UV
node ∈ TV gets new parent ∈ T�
(for the first time)

�V
node ∈ TV gets new parent ∈ T�
(again)

O�

Bound 1
Bound 1: S O, �, C � O � 2� log∗ C.

Proof: We get the following recurrence:S T, U � S T�, U� � S TV, UV � O� � �V
Now �� � ∑ L$\�]� � L$^, and C� � C * H F C.

Hence, using bound 0: S T� , U� � ��C� F LJ$^
Let H � log C. Then S T� , U� F �.
Hence, S T, U � S TV , UV � O� � 2�⇒ S T, U * O � S TV, UV * OV � 2�

Bound 1
Bound 1: S O, �, C � O � 2� log∗ C.

Proof:

We got S T, U * O � S TV , UV * OV � 2�
Let S
 O,�, C � S O, �, C * O
Then S
 O,�, C � S
 OV , �V, CV � 2�⇒ S
 O,�, C � S
 O,�, log C � 2�
Solving, S
 O,�, C � 2� log∗ C
Hence, S O, �, C � O � 2� log∗ C

Bound 2
Bound 2: S O, �, C � 2O � 3� log∗∗ C.

Proof: Similar to the proof of bound 1.

But we solve S T� , U� using bound 1, instead of bound 0!

We fix H � log∗ C (instead of log C	for bound 1)

Then using bound 1: S T� , U� � O� � 2�� log∗ C�� O� � 2 L$abc∗ N	 log∗ C� O� � 2�
Then from S T, U � S T� , U� � S TV , UV � O� � �V, we get

S T, U � S TV , UV � 2O� � 3�V

Bound 2
Bound 2: S O, �, C � 2O � 3� log∗∗ C.

Proof: Our recurrence:S T, U � S TV , UV � 2O� � 3�V⇒ S T, U * 2O � S TV, UV * 2OV � 3�V
Let S$ O,�, C � S O, �, C * 2O
Then S$ O,�, C � S$ OV , �V, CV � 3�⇒ S$ O,�, C � S$ O, �, log∗ C � 3�
Solving, S$ O,�, C � 3� log∗∗ C
Hence, S O, �, C � 2O � 3� log∗∗ C

Bound d
Bound k: S O, �, C � 7O � �7 � 1 � log∗⋯∗12 C.

Observation: As we increase 7:

− the dependency on O increases

− the dependency on C decreases

When 7 � 6 C , we have log∗⋯∗12 C � 3 !
Bound .: S O, �, C � O6 C � 3�6 C � 1 �.

The . Bound

Bound .: S O, �, C � O6 C � 3�6 C � 1 �.

Observing that C F �, we have:

Bound .: S O, �, C � O � 3� 6 � � 3� � Ο O � � 6 � .

Assuming O � �, we have:

Bound .: S O, �, C � Ο O6 � .

So, amortized complexity of each operation is only Ο 6 � !

