CSE 373: Analysis of Algorithms

Lectures 21 & 22
(Iterated Log, Inverse Ackermann,

and the Union-Find Data Structure)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2014

lterated Functions

) B 0 ifn<1
POt () ifn>1

-

= min {i > O:f(f(f(...f(n)))) < 1}
= min{i > 0: fWD(n) < 1},

(n ifi=0

where f®(n) = <\f (f<i—1)(n)) if i >0

Example: If f = log, we have:

log(®)(65536) = 65536 log(®(65536) = 2
logM(65536) = 16 log®)(65536) = 1
log(?)(65536) = 4 ~ log*(65536) = 4

lterated Functions

f(n) fr(n)
n—1 n—1
) n
" 2
n
n—-c —
C
n
> log, n
n
- log.n
Jn loglogn
logn log*n

The Inverse Ackermann Function: a(n)

f(n) fr(n

" logn log™n > 3
log*n log™ n > 3
log™ n log™*n >3

k = a(n) S

rows e
log*™" " n log“"n >3

e L3

_ log™n log"*n <3

a(n) = min {k > 1:log;'l’%n < 3}

Union-Find:
A Disjoint-Set Data Structure

Disjoint Set Operations

A disjoint-set data structure maintains a collection of disjoint

dynamic sets. Each set is identified by a representative which must
be a member of the set.

The collection is maintained under the following operations:

MAKE-SET(x): create a new set {x} containing only element x.

Element x becomes the representative of the set.

FIND(x): returns a pointer to the representative of the set
containing x

UNION(x, ¥): replace the dynamic sets S, and S,, containing

x and y, respectively, with the set 5, U §,,

Union-Find Data Structure
with Union by Rank and Find with Path Compression

MAKE-SET (x)

1. w(x) « x

2. rank(x) « 0

LINK (x,y)
1. if rank(x) > rank(y) then n(y) « x

2. else m(x) « vy
3. if rank(x) = rank(y) then rank(y) < rank(y) + 1
UNION (x,y)

1. LINK (FIND (x), FIND (y))

FIND (x)
1. if x # m(x) then w(x) « FIND (w(x))

2. return mw(x)

Some Useful Properties of Rank

If x is not a root then rank(x) < rank(n(x))

Node ranks strictly increase along any simple path towards a root
Once a node becomes a non-root its rank never changes

If m(x) changes from y to z then rank(z) > rank(y)

If the root of x’s tree changes from y to z then rank(z) > rank(y)
If x is the root of a tree then size(x) = 27enk(x)

If there are only n nodes the highest possible rank is |log, n|

There are at most % nodes with rankr = 0

Some Useful Properties of Rank

— We will analyze the total running time of m’ MAKE-SET, UNION
and FIND operations of which exactly n (< m') are MAKE-SET

— But each UNION can be replaced with two FIND and one LINK

— Hence, we can simply analyze the total running time of m
MAKE-SET, LINK and FIND operations of which exactly n (< m)
are MAKE-SET and wherem’ < m < 3m'’

Compress

COMPRESS (x,V) { y is an ancestor of x }
1. if x #y then m(x) « COMPRESS (m(x),y)
2. return m(x)

— We will analyze the total running time of m MAKE-SET, LINK and
FIND operations of which exactly n (< m) are MAKE-SET

— But FIND(x) is nothing but CompRrEss(x, y), where y is the root
of the tree containing x

— Hence, we can analyze the total running time of m MAKE-SET,

LINK and COMPRESS operations of which exactly n (< m) are
MAKE-SET

Compress

COMPRESS (x,V) { y is an ancestor of x }
1. if x #y then m(x) « COMPRESS (m(x),y)
2. return m(x)

We can reorder the sequence of LINK and COMPRESS operations so
that all LINK's are performed before all COMPRESS operations
without changing the number of parent pointer reassignments!

= &) O\OO &)
z =) r v
z @ @}"Pﬁ%ﬁ
o)))
By - A

Shater

SHATTER (x)

1. if x # m(x) then SHATTER (m(x))

2.

w(x) « x

Bound 0

Let T(m, n,r) = worst-case number of parent pointer assignments
— during any sequence of at most m COMPRESS operations
— on a forest of n nodes

— with maximum rank r

Bound 0: T(m,n,r) < nr.

Proof: Since there are at most r distinct ranks, and each new parent
of a node has a higher rank than its previous parent, any node can

change parents fewer than r times.

Bound 1

Bound 1: T(m,n,r) < m+ 2nlog*r.

Proof: Let F be the forest, and C be the sequence of COMPRESS
operations performed on F.

Let T(F, C) be the number of parent pointer assignments by C in F.

Let s be an arbitrary rank. We partition F into two subforests:
F,, containing all nodes with rank < s, and
F; containing all nodes with rank > s.

rank > s

rank > s
_______ _ﬂ._ -

rank <s rank <s

Bound 1

Bound 1: T(m,n,r) < m+ 2nlog*r.

Proof: Let s be an arbitrary rank. We partition F into two subforests:
F, containing all nodes with rank < s, and

F; containing all nodes with rank > s.

rank > s

rank <s

Let n, = #nodes in F¢, and n, = #nodes in F;,

Let m; = #COMPRESS operations with at least one node in F, and
my =m—my

Bound 1
Bound 1: T(m,n,r) < m+ 2nlog*r.

Proof: The sequence C on F can be decomposed into
— asequence of COMPRESS operations in F;, and
— asequence of COMPRESS and SHATTER operations in F),

é}@ = Booo f = /5

c b awzy«x

Suppose, this decomposition partitions C into two subsequences
- (¢ in F¢, and
— Cb in Fb

Bound 1

Bound 1: T(m,n,r) < m+ 2nlog*r.

Proof: We get the following recurrence:

T(F, C) < T(Ft, Ct) + T(Fb, Cb) +my + Ny

Cost on Left Side Corresponding Cost on Right Side
node € F; gets new parent € F; T(F;, C;)

node € F, gets new parent € F;, T(F;, Cy)

node € F}, gets new parent € F; ng

(for the first time)

node € F}, gets new parent € F; m;
(again)

Bound 1

Bound 1: T(m,n,r) < m+ 2nlog*r.

Proof: We get the following recurrence:
T(F, C) < T(Ft, Ct) + T(Fb, Cb) +my + Ny

n n

Now ny < Djss; =55 and 1 =7 —s < 7.

Hence, using bound 0: T(Fy, C;) < niry < %
Let s = logr. Then T(F;, C;) < n.

Hence, T(F,C) <T(Fy, Cy)+m;+2n
:>T(F,C)—mS T(Fb,Cb)—mb + 2n

Bound 1

Bound 1: T(m,n,r) < m+ 2nlog*r.

Proof:
WegotT(F,C) —m < T(F,,Cy) —my + 2n
let Ty(m,n,r) =T(m,n,r) —m

Then Ty(m,n,r) < Ty(my,ny, 1) + 20
> Ty(m,n,r) <Ty(m,n,logr)+ 2n

Solving, T;(m,n,r) < 2nlog*r

Hence, T(m,n,r) < m+ 2nlog*r

Bound 2

Bound 2: T(m,n,r) < 2m + 3nlog™ r.

Proof: Similar to the proof of bound 1.
But we solve T (F;, C;) using bound 1, instead of bound 0!
We fix s = log™ r (instead of log r for bound 1)

Then using bound 1: T(F;, C;) < m; + 2n;log™ r;

n

<m;+2n

log*r

Then from T(F,C) < T(F;, Ct) + T(F,, Cy) + m; + ny, we get

T(F, C) < T(Fb,Cb) + th + 3nb

Bound 2
Bound 2: T(m,n,r) < 2m + 3nlog™ r.

Proof: Our recurrence:
T(F,C) <T(Fy,Cp) +2m; + 3ny
= T(F,C) —2m < T(F,,Cy) — 2my + 3n,
let T,(m,n,r) =T(m,n,r) —2m
Then T,(m,n,r) < T,(my, np, 1) + 3n
> T,(m,n,r) <T,(m,nlog*"r) + 3n

Solving, T,(m,n,r) < 3nlog™* r

Hence, T(m,n,r) < 2m + 3nlog™ r

Bound k

k

—~
...

Bound k: T(m,n,r) < km+ (k + 1)nlog™ " r.

Observation: As we increase k:

— the dependency on m increases

— the dependency on r decreases

k

—~
*Cl

When k = a(r), we have log" " r < 3!

Bound a: T(m,n,r) < ma(r) + 3(a(r) + 1)n.

The a Bound

Bound a: T(m,n,r) < ma(r) + 3(a(r) + 1)n.
Observing that r < n, we have:

Bound a: T(m,n,r) < (m+ 3n)a(n) + 3n = O((m + n)a(n)).

Assuming m = n, we have:

Bound a: T(m,n,r) = O(ma(n)).

So, amortized complexity of each operation is only O(a:(n))!

