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where f®(n) = <\f (f<i—1)(n)) if i >0

Example: If f = log, we have:

log(®)(65536) = 65536 log(®(65536) = 2
logM(65536) = 16 log®)(65536) = 1
log(?)(65536) = 4 ~ log*(65536) = 4
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The Inverse Ackermann Function: a(n)
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Union-Find:
A Disjoint-Set Data Structure



Disjoint Set Operations

A disjoint-set data structure maintains a collection of disjoint

dynamic sets. Each set is identified by a representative which must
be a member of the set.

The collection is maintained under the following operations:

MAKE-SET( x ): create a new set {x} containing only element x.

Element x becomes the representative of the set.

FIND( x ): returns a pointer to the representative of the set
containing x

UNION( x, ¥ ): replace the dynamic sets S, and S,, containing

x and y, respectively, with the set 5, U §,,



Union-Find Data Structure
with Union by Rank and Find with Path Compression

MAKE-SET ( x )

1. w(x) « x

2. rank(x) « 0

LINK (x,y )
1. if rank(x) > rank(y) then n(y) « x

2. else m(x) « vy
3. if rank(x) = rank(y) then rank(y) < rank(y) + 1
UNION ( x,y )

1. LINK (FIND (x ), FIND (y ) )

FIND ( x )
1. if x # m(x) then w(x) « FIND ( w(x) )

2. return mw(x)




Some Useful Properties of Rank

If x is not a root then rank(x) < rank(n(x))

Node ranks strictly increase along any simple path towards a root
Once a node becomes a non-root its rank never changes

If m(x) changes from y to z then rank(z) > rank(y)

If the root of x’s tree changes from y to z then rank(z) > rank(y)
If x is the root of a tree then size(x) = 27enk(x)

If there are only n nodes the highest possible rank is |log, n|

There are at most % nodes with rankr = 0



Some Useful Properties of Rank

— We will analyze the total running time of m’ MAKE-SET, UNION
and FIND operations of which exactly n (< m') are MAKE-SET

— But each UNION can be replaced with two FIND and one LINK

— Hence, we can simply analyze the total running time of m
MAKE-SET, LINK and FIND operations of which exactly n (< m)
are MAKE-SET and wherem’ < m < 3m'’



Compress

COMPRESS ( x,V ) { y is an ancestor of x }
1. if x #y then m(x) « COMPRESS ( m(x),y )
2. return m(x)

— We will analyze the total running time of m MAKE-SET, LINK and
FIND operations of which exactly n (< m) are MAKE-SET

— But FIND(x) is nothing but CompRrEss(x, y), where y is the root
of the tree containing x

— Hence, we can analyze the total running time of m MAKE-SET,

LINK and COMPRESS operations of which exactly n (< m) are
MAKE-SET



Compress

COMPRESS ( x,V ) { y is an ancestor of x }
1. if x #y then m(x) « COMPRESS ( m(x),y )
2. return m(x)

We can reorder the sequence of LINK and COMPRESS operations so
that all LINK's are performed before all COMPRESS operations
without changing the number of parent pointer reassignments!
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Shater

SHATTER ( x )

1. if x # m(x) then SHATTER ( m(x) )

2.

w(x) « x




Bound 0

Let T(m, n,r) = worst-case number of parent pointer assignments
— during any sequence of at most m COMPRESS operations
— on a forest of n nodes

— with maximum rank r

Bound 0: T(m,n,r) < nr.

Proof: Since there are at most r distinct ranks, and each new parent
of a node has a higher rank than its previous parent, any node can

change parents fewer than r times.



Bound 1

Bound 1: T(m,n,r) < m+ 2nlog*r.

Proof: Let F be the forest, and C be the sequence of COMPRESS
operations performed on F.

Let T(F, C) be the number of parent pointer assignments by C in F.

Let s be an arbitrary rank. We partition F into two subforests:
F,, containing all nodes with rank < s, and
F; containing all nodes with rank > s.

rank > s

rank > s
_______ _ﬂ._ -

rank <s rank <s




Bound 1

Bound 1: T(m,n,r) < m+ 2nlog*r.

Proof: Let s be an arbitrary rank. We partition F into two subforests:
F, containing all nodes with rank < s, and

F; containing all nodes with rank > s.

rank > s

rank <s

Let n, = #nodes in F¢, and n, = #nodes in F;,

Let m; = #COMPRESS operations with at least one node in F, and
my =m—my



Bound 1
Bound 1: T(m,n,r) < m+ 2nlog*r.

Proof: The sequence C on F can be decomposed into
— asequence of COMPRESS operations in F;, and
— asequence of COMPRESS and SHATTER operations in F),

é}@ = Booo f = /5

c b awzy«x

Suppose, this decomposition partitions C into two subsequences
- (¢ in F¢, and
— Cb in Fb



Bound 1

Bound 1: T(m,n,r) < m+ 2nlog*r.

Proof: We get the following recurrence:

T(F, C) < T(Ft, Ct) + T(Fb, Cb) +my + Ny

Cost on Left Side Corresponding Cost on Right Side
node € F; gets new parent € F; T(F;, C;)

node € F, gets new parent € F;, T(F;, Cy)

node € F}, gets new parent € F; ng

( for the first time )

node € F}, gets new parent € F; m;
( again )



Bound 1

Bound 1: T(m,n,r) < m+ 2nlog*r.

Proof: We get the following recurrence:
T(F, C) < T(Ft, Ct) + T(Fb, Cb) +my + Ny

n n

Now ny < Djss; =55 and 1 =7 —s < 7.

Hence, using bound 0: T(Fy, C;) < niry < %
Let s = logr. Then T(F;, C;) < n.

Hence, T(F,C) <T(Fy, Cy)+m;+2n
:>T(F,C)—mS T(Fb,Cb)—mb + 2n



Bound 1

Bound 1: T(m,n,r) < m+ 2nlog*r.

Proof:
WegotT(F,C) —m < T(F,,Cy) —my + 2n
let Ty(m,n,r) =T(m,n,r) —m

Then Ty(m,n,r) < Ty(my,ny, 1) + 20
> Ty(m,n,r) <Ty(m,n,logr)+ 2n

Solving, T;(m,n,r) < 2nlog*r

Hence, T(m,n,r) < m+ 2nlog*r



Bound 2

Bound 2: T(m,n,r) < 2m + 3nlog™ r.

Proof: Similar to the proof of bound 1.
But we solve T (F;, C;) using bound 1, instead of bound 0!
We fix s = log™ r ( instead of log r for bound 1)

Then using bound 1: T(F;, C;) < m; + 2n;log™ r;

n

<m;+2n

log*r

Then from T(F,C) < T(F;, Ct) + T(F,, Cy) + m; + ny, we get

T(F, C) < T(Fb,Cb) + th + 3nb



Bound 2
Bound 2: T(m,n,r) < 2m + 3nlog™ r.

Proof: Our recurrence:
T(F,C) <T(Fy,Cp) +2m; + 3ny
= T(F,C) —2m < T(F,,Cy) — 2my + 3n,
let T,(m,n,r) =T(m,n,r) —2m
Then T,(m,n,r) < T,(my, np, 1) + 3n
> T,(m,n,r) <T,(m,nlog*"r) + 3n

Solving, T,(m,n,r) < 3nlog™* r

Hence, T(m,n,r) < 2m + 3nlog™ r



Bound k

k
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Bound k: T(m,n,r) < km+ (k + 1)nlog™ " r.

Observation: As we increase k:

— the dependency on m increases

— the dependency on r decreases

k

—~
*Cl

When k = a(r), we have log" " r < 3!

Bound a: T(m,n,r) < ma(r) + 3(a(r) + 1)n.



The a Bound

Bound a: T(m,n,r) < ma(r) + 3(a(r) + 1)n.
Observing that r < n, we have:

Bound a: T(m,n,r) < (m+ 3n)a(n) + 3n = O((m + n)a(n)).

Assuming m = n, we have:

Bound a: T(m,n,r) = O(ma(n)).

So, amortized complexity of each operation is only O(a:(n))!



