
CSE 373: Analysis of Algorithms

Lectures 23 & 24

(Dynamic Programming)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2014

Dynamic Programming vs. Divide-and-Conquer

‒ Dynamic programming, like the divide-and-conquer method,

solves problems by combining solutions to subproblems

‒ Divide-and-conquer algorithms

o partition the problem into disjoint subproblems,

o solve the subproblems recursively, and

o then combine their solutions to solve the original problem

‒ In contrast, dynamic programming applies when the subproblems

overlap — that is, when subproblems share subsubproblems

‒ A dynamic-programming algorithm solves each subsubproblem

just once and then saves its answer in a table, thereby avoiding

the work of recomputing the answer every time it solves each

subsubproblem

Dynamic Programming

When developing a dynamic-programming algorithm, we follow a

sequence of four steps:

1) Characterize the structure of an optimal solution.

2) Recursively define the value of an optimal solution.

3) Compute the value of an optimal solution, typically in a

bottom-up fashion.

4) Construct an optimal solution from computed information.

If we need only the value of an optimal solution, and not the solution

itself, then we can omit step 4.

If we perform step 4, we sometimes maintain additional information

during step 3 so that we can easily construct an optimal solution.

Longest Common Subsequence (LCS)

A subsequence of a sequence X is obtained by deleting zero or more

symbols from X.

Example:

X = abcba

Z = bca ← obtained by deleting the 1st ‘a’ and the 2nd ‘b’ from X

A Longest Common Subsequence (LCS) of two sequence X and Y is a

sequence Z that is a subsequence of both X and Y, and is the longest

among all such subsequences.

Given X and Y, the LCS problem asks for such a Z.

Optimal Substructure of an LCS

Given two sequences: � � ��, ��, … , �� and 	 �
�,
�, … ,
�
For 0 � �, let �� � ��, ��, … , �� . We define 	� and �� similarly.

Let � � ��, ��, … , �� be any LCS of � and 	.

Then

(1) If �� �
�,

then �� � �� �
� and ���� is an LCS of ���� and 	���.

(2) If �� �
�,

then �� � �� implies that � is an LCS of ���� and 	.

(3) If �� �
�,

then �� �
� implies that � is an LCS of � and 	���.

The LCS Recurrence

Given two sequences: � � ��, ��, … , �� and 	 �
�,
�, … ,
�
For 0 � � and 0 � �,

let � �, � be the length of an LCS of �� and 	�. Then

Traceback

Path (LCS)

y1 y2 y3 y4 y5 y6 y7 y8c

x1

x2

x3

x4

x5

x6

x7

x8

c[i, j]

c[m, n]

= length of LCS

� �, � � �0, 																																															��	� � 0 ∨ � � 0,� � � 1, � � 1 1, 									��	�, � ! 0 ∧ �� �
� ,max � �, � � 1 , � � � 1, � , 									&'()*+�,).

Computing the Length of an LCS

Running time � Θ ��

Computing the Length of an LCS

� B D C A B A

��
A

B

C

B

D

A

B

� 0 1 2 3 4 5 6�
0

1

2

3

4

5

6

7

Computing the Length of an LCS

0 0 0 0 0 0 0

0

0

0

0

0

0

0

� B D C A B A

��
A

B

C

B

D

A

B

� 0 1 2 3 4 5 6�
0

1

2

3

4

5

6

7

Computing the Length of an LCS

0 0 0 0 0 0 0

0

`

0

`

0

`

0

à .

1 P 1

à .

1

0

à .

1 P 1 P 1

`

1

à .

2 P 2

0

`

1

`

1

à .

2 P 2

`

2

`

2

0

à .

1

`

1

`

2

`

2

à .

3 P 3

0

`

1

à .

2

`

2

`

2

`

3

`

3

0

`

1

`

2

`

2

à .

3

`

3

à .

4

0

à .

1

`

2

`

2

`

3

à .

4

`

4

� B D C A B A

��
A

B

C

B

D

A

B

� 0 1 2 3 4 5 6�
0

1

2

3

4

5

6

7

Computing the Length of an LCS

0 0 0 0 0 0 0

0

`

0

`

0

`

0

à .

1 P 1

à .

1

0

à .

1 P 1 P 1

`

1

à .

2 P 2

0

`

1

`

1

à .

2 P 2

`

2

`

2

0

à .

1

`

1

`

2

`

2

à .

3 P 3

0

`

1

à .

2

`

2

`

2

`

3

`

3

0

`

1

`

2

`

2

à .

3

`

3

à .

4

0

à .

1

`

2

`

2

`

3

à .

4

`

4

� B D C A B A

��
A

B

C

B

D

A

B

� 0 1 2 3 4 5 6�
0

1

2

3

4

5

6

7

Constructing an LCS

Running time � O � �

