
CSE 373: Analysis of Algorithms

Lectures 9 ‒ 10

(Heaps, Heapsort and Priority Queues)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2014

Selection Sort

Input: An array ��	1 ∶ 	�	� of � numbers.

Output: Elements of ��	1 ∶ 	�	� rearranged in non-decreasing order of value.

SELECTION-SORT (A)

1. for � 	 �. ����� downto 2
2. // find the index of an entry with the largest value in � 1. . �
3. ��� 	 1
4. for � 	 2 to �
5. if � � � � ���
6. ��� 	 �
7. // swap � � and � ���
8. � � ↔ � ���

This way of finding the index of an entry

with the largest value in a subarray of

length � takes Θ � time, which is bad!

Selection Sort

� � 	 � � �
�����

	 � Θ �
�����

	 Θ � �
�����

	 Θ ��

Then running time of SELECTION-SORT,

Let � � be the time needed to find the index of an entry with the

largest value in a subarray of length �.

Selection Sort

	 � O log �
�����

	 O � log �
�����

	 O � log �

running time of SELECTION-SORT will be,

If we can decrease � � , then the running time of SELECTION-SORT will

also decrease. For example, if we have � � 	 O log � ,

How can you decrease � � to O log � ? →→→→ Use a heap!

� � 	 � � �
�����

Heap (Binary Heap)

A (binary) heap data structure is an array object that

can be viewed as a nearly complete binary tree.

Each node of the tree corresponds to an

element of the array.

The tree is completely filled on all levels

except possibly the last, which is filled

from the left up to a point.

An array � that represents a heap is an

object with two attributes:

�. �����, which gives the number of

elements in the array.

�. ���#$�%�, which represents how many elements in the heap are

stored within array �.

Though � 1. . �. ����� may contain numbers, only � 1. . �. ���#$�%�
contain valid elements of the heap, where 1 & �. ���#$�%� & �. �����.

Parent and Children

The root of the tree is � 1 .

Given the index � of a node, we can

easily compute the indices of its parent,

left child and right child.

PARENT (i)

1. return
'
�

LEFT (i)

1. return 2�
RIGHT (i)

1. return 2� (1

A node with no child is called a leaf.

A node with at least one child is called

an internal node.

A node has 0, 1 or 2 children.

Max-Heap and Min-Heap

The root of the tree is � 1 .

Max-heap. Each node � � 1 satisfies the

max-heap property: � PA R E N T � / � � .

Min-heap. Each node � � 1 satisfies the

min-heap property: � PA R E N T � & � � .

Hence, the largest element in a

max-heap is stored at the root.

Hence, the smallest element in a min-heap is stored at the root.

We will use max-heaps in the

heapsort algorithm which can be

viewed as improved selection sort.

Min-heaps commonly implement priority queues which have many

applications, e.g., in shortest paths computation.

Height and Levels of a Heap

The root of the tree is � 1 .

Height of a node = Number of edges on the longest simple downward

path from that node to a leaf.

Height of a heap = height of its root.

0

1

2

3

��2��

Levels:
Level of the root, LE V E L 1 	 0
Level of node � � 1, LE V E L � 	 LE V E L PA R E N T � (1

A heap of height � has exactly � (1 levels, numbered from 0 to �.

Height of an 5-node Binary Heap
Let � be the height of a heap containing � � 0 elements.

So, the heap will have exactly � (1 levels.

0

1

2

3

��2��
Let �6 be the number of nodes at level �, where 0 & � & �.

Clearly, �6 	 26 for 0 & � & � 7 1,

and 1 & �6 & 26 for � 	 �.

Also � 	 �8 (�9 (⋯ (�; 	 ∑ �6;6=8 .

Height of an 5-node Binary Heap

But 1 & �; & 2;

⇒ 1 (2; 7 1 & �; (2; 7 1 & 2; (2; 7 1
⇒ 2; & � & 2;?9 7 1
⇒ 2; & � @ 2;?9

⇒ log� � 7 1 @ � & log� �

We have, � 	 ∑ �6;6=8 	 �; (∑ �6;A96=8 	 �; (∑ 26;A96=8 	 �; (2; 7 1 .

Since � is an integer, and the only integer � log� � 7 1 and & log� � is

log� � , we have � 	 log� � .

Maintaining Heap Property
Input: An array � and an index � into the array with the subtrees rooted at

LE FT � and RIG H T � are max-heaps, but � � might be smaller than its

children and thus violating the max-heap property.

Output: Array � with its elements rearranged so that the subtree rooted at

index � is a max-heap.

MAX-HEAPIFY (A, i)

1. � 	 LE F T �
2. F 	 RIG H T �
3. if � & �. ���#$�%� and � � � � �
4. ��F�$� 	 �
5. else ��F�$� 	 �
6. if F & �. ���#$�%� and � F � � ��F�$�
7. ��F�$� 	 F
8. if ��F�$� G �
9. exchange � � with � ��F�$�
10. MAX-HEAPIFY (�, ��F�$�)

Building a Max-Heap

Input: An array � 1: � , where � 	 �. �����.

Output: Array � with its elements rearranged so that the entire array is now

a max-heap.

BUILD-MAX-HEAP (A)

1. �. ���#$�%� 	 �. �����
2. for � 	 �. �����/2 downto 1
3. MAX-HEAPIFY (�, �)

The Heapsort Algorithm

HEAPSORT (A)

1. BUILD-MAX-HEAP (�)

2. for � 	 �. ����� downto 2
3. exchange � 1 with � �
4. �. ���#$�%� 	 �. ���#$�%� 7 1
5. MAX-HEAPIFY (�, 1)

Input: An array ��	1 ∶ 	�	� of � numbers.

Output: Elements of ��	1 ∶ 	�	� rearranged in non-decreasing order of value.

Priority Queues

A priority queue is a data structure for maintaining a set J of elements,

each with an associated value called a key.

A max-priority queue supports the following operations:

IIIIN SER TN SER TN SER TN SER T J, � inserts the element � into the set J, which is equivalent to

the operation J 	 J ∪ � .

MMMMA X IM U MA X IM U MA X IM U MA X IM U M J returns the element of J with the largest key.

EEEEX TR A CTX TR A CTX TR A CTX TR A CT7M7M7M7MA XA XA XA X J removes and returns the element of J with the

largest key.

IIIIN CR EA SEN CR EA SEN CR EA SEN CR EA SE7K7K7K7KEYEYEYEY J, �, T increases the value of element �’s key to the new

value T, which is assumed to be at least as large as �’s current key value.

A Max-Heap as a Max-Priority Queue

HEAP-EXTRACT-MAX (A)

1. if �. ���#$�%� @ 1
2. error “heap underflow”

3. ��� 	 � 1
4. � 1 	 � �. ���#$�%�
5. �. ���#$�%� 	 �. ���#$�%� 7 1
6. MAX-HEAPIFY (�, 1)

7. return ���

HEAP-MAXIMUM (A)

1. return � 1

A Max-Heap as a Max-Priority Queue

HEAP-INCREASE-KEY (A, i, key)

1. if T�U @ � �
2. error “new key is smaller than current key”

3. � � 	 T�U
4. while � � 1 and � PA R E N T � @ � �
5. exchange � � with � PA R E N T �
6. � 	 PA R E N T �

MAX-HEAP-INSERT (A, key)

1. �. ���#$�%� 	 �. ���#$�%� (1
2. � �. ���#$�%� 	 7∞
3. HEAP-INCREASE-KEY (�, �. ���#$�%�, T�U)

