
CSE548, AMS542: Analysis of Algorithms, Fall 2015 Date: Dec 4

Final In-Class Exam
( 1:05 PM – 2:20 PM : 75 Minutes )

• This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 30% of your grade, and the lower one 15%.

• There are three (3) questions, worth 75 points in total. Please answer all of them in the
spaces provided.

• There are 12 pages including four (4) blank pages and one (1) page of appendix. Please use
the blank pages if you need additional space for your answers.

• The exam is open slides and open notes.

Good Luck!

Question Pages Score Maximum

1. Escaping with a PhD 2–3 30

2. Finding Max 5–7 35

3. Files on Compact Discs 9 10

Total 75

Name:
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Question 1. [ 30 Points ] Escaping with a PhD. Once n PhD students got trapped indefinitely
in a research lab, and they formed m teams T1, T2, . . . , Tm to work out various aspects of a successful
escape strategy (i.e., getting a PhD). A PhD student could be part of any number of teams, and
each team could include any number of PhD students. Together they were able to figure out how to
get approximately half of the students out of the lab by negotiating approximately n

2 PhD degrees
with the lab director. But the teams were so effective in finding this solution that the students
that were going to be left behind would want to use them again to find another successful escape
strategy. So the students decided to choose approximately half of the n students in such a way
that even when that half leave the lab each team Ti would still have roughly |Ti|/2 of its original
members in the lab.

For 1 ≤ i ≤ m, let ni be the number of members of team Ti before the espace, and let n′i be the
number after the escape. Let di =

∣∣n′i − ni
2

∣∣.
The students would like to choose the escaping party in such a way that D = max1≤i≤m di is
minimized.

They came up with a surprisingly simple algorithm! Each of the n students was chosen to be
included in the escaping party (i.e., chosen for a PhD) independently at random with probability
1
2 . You are asked to show that this is a reasonably good algorithm.

1(a) [ 20 Points ] Show that if the simple algorithm is used then for each i ∈ [1,m], di <√
3ni logm w.h.p. in m.
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1(b) [ 10 Points ] Use your result from part 2(a) to show that D <
√

3n logm w.h.p. in m for
the algorithm devised by the students.
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Use this page if you need additional space for your answers.
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Question 2. [ 35 Points ] Finding Max. We saw in the class how to compute the maximum
of n numbers in Θ (n) work and Θ

(
log2 n

)
span (e.g., use the parallel prefix sums algorithm given

in slides 70–74 of lecture 13 with max as the binary associative operator ⊕). In this problem, we
will design a parallel algorithm with a shorter span. We will assume that the span of a parallel
for loop is O (logm+ t), where m is the number of iterations, and t is the maximum span of an
iteration.

2(a) [ 8 Points ] Design an algorithm to find the maximum number in A[1 : n] in Θ
(
n2
)

work
and Θ (log n) span. We assume that if multiple processors try to write to the same memory
location at the same time only one of them (an arbitrary one) succeeds, and all others imme-
diately fail. Let’s call this algorithm Find-Max-2a.
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2(b) [ 20 Points ] Write recurrences for the work and span of Find-Max-2b given below, and
solve them.

Find-Max-2b( A[ 1 : n ] )

(Input is an array A[ 1 : n ] of n numbers, where n = 22
h

for some integer h ≥ 0. This function returns the
value of the maximum number in the given array.)

1. if n = 2 then return max{ A[1], A[2] } {base case}
2. else

3. Let A1[1 :
√
n], . . . , A√n[1 :

√
n] be the

√
n consecutive segments of A[1 : n] of size

√
n each

4. array B[ 1 :
√
n ] {temporary storage}

5. parallel for i← 1 to
√
n do {use a constant depth parallel for loop}

6. B[i]← Find-Max-2b( Ai[ 1 :
√
n ] ) {recursively find the max in the i-th segment}

7. return Find-Max-2a( B[ 1 :
√
n ] ) {use the algorithm from part 2(a)}

Figure 1: Find the maximum number in A[ 1 : n ].
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2(c) [ 7 Points ] Is the algorithm in part 2(b) work-optimal? Why or why not?
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Use this page if you need additional space for your answers.
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Question 3. [ 10 Points ] Files on Compact Discs. I have m > 0 files and a set S of n > 1
compact discs (CDs). I have copied each file to at least one of the CDs in S. Different files may
have been copied to different sets of CDs. Now given that for each file I know which CDs I copied
them to, I want to find a subset S′ ⊆ S such that each file is contained in at least one CD of S′,
and |S′| is as small as possible.

3(a) [ 10 Points ] Give a polynomial-time approximation algorithm for solving this problem.
What is the approximation ratio?
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Use this page if you need additional space for your answers.
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Use this page if you need additional space for your answers.
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Appendix I: Useful Tail Bounds

Markov’s Inequality. Let X be a random variable that assumes only nonnegative values. Then
for all δ > 0, Pr [X ≥ δ] ≤ E[X]

δ .

Chebyshev’s Inequality. Let X be a random variable with a finite mean E[X] and a finite

variance V ar[X]. Then for any δ > 0, Pr [|X − E[X]| ≥ δ] ≤ V ar[X]
δ2

.

Chernoff Bounds. Let X1, . . . , Xn be independent Poisson trials, that is, each Xi is a 0-1 random

variable with Pr[Xi = 1] = pi for some pi. Let X =

n∑
i=1

Xi and µ = E[X]. Following bounds hold:

Lower Tail:

– for 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ
– for 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−

µδ2

2

– for 0 < γ < µ, Pr [X ≤ µ− γ] ≤ e−
γ2

2µ

Upper Tail:

– for any δ > 0, Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
– for 0 < δ < 1, Pr [X ≥ (1 + δ)µ] ≤ e−

µδ2

3

– for 0 < γ < µ, Pr [X ≥ µ+ γ] ≤ e−
γ2

3µ

Appendix II: The Master Theorem

Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T (n) be defined on the nonnegative
integers by the recurrence

T (n) =

{
Θ (1) , if n ≤ 1,
aT
(
n
b

)
+ f(n), otherwise,

where, n
b is interpreted to mean either

⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) has the following bounds:

Case 1: If f(n) = O
(
nlogb a−ε

)
for some constant ε > 0, then T (n) = Θ

(
nlogb a

)
.

Case 2: If f(n) = Θ
(
nlogb a logk n

)
for some constant k ≥ 0, then T (n) = Θ

(
nlogb a logk+1 n

)
.

Case 3: If f(n) = Ω
(
nlogb a+ε

)
for some constant ε > 0, and af

(
n
b

)
≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T (n) = Θ (f(n)).
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