
CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Nov 30

Final In-Class Exam
( 7:05 PM – 8:20 PM : 75 Minutes )

• This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 30% of your grade, and the lower one 15%.

• There are three (3) questions, worth 75 points in total. Please answer all of them in the
spaces provided.

• There are 16 pages including four (4) blank pages and one (1) page of appendix. Please use
the blank pages if you need additional space for your answers.

• The exam is open slides and open notes. But no books and no computers (no laptops, tablets,
capsules, cell phones, etc.).

Good Luck!

Question Pages Score Maximum

1. The Lazy Deletion Filter 2–5 30

2. Randomized 3
2-Approximate 3-way Max-Cut 7–11 35

3. Exam Scores 13 10

Total 75

Name:

1



Init(Q) ( )

1. Q.queue← ∅, Q.filter ← ∅ {Q.queue and Q.filter are basic priority queues}

Insert(Q) ( x ) {insert key x into Q}
1. Insert(Q.queue)( x )

Delete(Q) ( x ) {delete key x from Q}
1. Insert(Q.filter)( x )

Minimum(Q) ( ) {return the smallest key in Q}
1. x←Minimum(Q.queue)( ), x′ ←Minimum(Q.filter)( ) {x is the smallest key in Q, and x′ is the

smallest key with a pending Delete request}

2. while x 6= NIL and x = x′ do
{
x = x′ 6= NIL means that Delete(Q)( x ) was issued for x

}
3. Extract-Min(Q.queue)( ) {remove x from Q.queue}

4. Extract-Min(Q.filter)( )
{
remove Delete(Q)( x ) from Q.filter

}
5. x←Minimum(Q.queue)( ), x′ ←Minimum(Q.filter)( ) {next smallest key and pending Delete}

6. return x
{
x is the smallest key in Q for which Delete(Q)( ) was not issued

}

Extract-Min(Q) ( ) {extract and return the smallest key in Q}

1. x←Minimum(Q)( )
{
x is the smallest key in Q for which Delete(Q)( x ) was not issued

}
2. Extract-Min(Q.queue)( ) {remove x from Q}
3. return x

Figure 1: Using two instances (Q.queue and Q.filter) of the given basic priority queue to create a
new priority queue Q that supports Insert, Delete, Minimum and Extract-Min operations.

Question 1. [ 30 Points ] The Lazy Deletion Filter. I have a basic priority queue implemen-
tation that supports only Insert, Minimum and Extract-Min operations in O (1), O (1) and
O (log n) worst-case time, respectively, where n is the number of items currently in it. If the queue
is empty both Minimum and Extract-Min return NIL.

I have an application that requires a Delete operation in addition to the three operations men-
tioned above, but unfortunately, I cannot change the given priority queue implementation to add
the Delete operation1.

Figure 1 shows how I have used the given basic priority queue implementation as a blackbox to
create a new priority queue Q that supports all four operations I need. The trick is to use one basic
priority queue Q.queue to perform Insert and Extract-Min operations as usual, and another
basic priority queue Q.filter to store all pending Delete operations. Whenever I access a key x
from Q.queue, I check Q.filter to see if a Delete(Q)( x ) operation was issued, and if so, I discard
x. Thus Q.filter acts as a filter to lazily remove deleted keys from Q.queue.

Priority queue Q assumes that for any given key value x:

(i) Insert(Q)( x ) will not be performed more than once during Q’s lifetime,

(ii) Delete(Q)( x ) will not be issued more than once during Q’s lifetime, and

(iii) Delete(Q)( x ) operation will not be issued unless x already exists in Q.queue.

1I only have a pre-compiled library, not the source code.

2



Suppose my application first initializes Q by calling Init(Q)( ) and then performs an intermixed
seqeuence of Insert, Delete, Minimum and Extract-Min operations among which exactly N
(≥ 1) are Insert operations. Then answer the following questions.

1(a) [ 8 Points ] What is the worst-case cost of each of the following operations: (i) Insert(Q)( x ),
(ii) Delete(Q)( x ), (iii) Minimum(Q)( ) and (iv) Extract-Min(Q)( )? Justify your answers.

3



1(b) [ 4 Points ] In order to find the amortized costs of the operations performed on Q we will
use the following potential function:

Φ ( Qi ) = c logN × number of items in Q.queue after the i-th operation,

where, Qi is the state of Q after the i-th (i ≥ 0) operation is performed on it assuming that
Q was initially empty, and c is a positive constant.

Argue that this potential function guarantees that the total amortized cost will always be an
upper bound on the total actual cost.

4



1(c) [ 18 Points ] Use the potential function given in part 1(b) to find the amortized cost of each
of the following operations: (i) Insert(Q)( x ), (ii) Delete(Q)( x ), (iii) Minimum(Q)( ) and
(iv) Extract-Min(Q)( ).

5



Use this page if you need additional space for your answers.

6



Question 2. [ 35 Points ] Randomized 3
2-Approximate 3-way Max-Cut. Suppose you are

given an undirected graph G = (V,E) with vertex set V and edge set E, where |V | = n and |E| = m.
Now you divide V into three pairwise disjoint subsets V1, V2 and V3 such that V1 ∪ V2 ∪ V3 = V .
For any edge (u, v) ∈ E, let u ∈ Vi and v ∈ Vj for some i, j ∈ [1, 3]. Then we say that (u, v) is a
cut edge provided i 6= j. Let Ec ⊆ E be the set of all cut edges of G, and let mc = |Ec|. We will
call Ec the cut set. Figure 2 shows an example.

Figure 2: A 3-way cut example.

The 3-way Max-Cut problem asks one to find subsets V1, V2 and V3 to maximize mc. A randomized
approximation algorithm for solving the problem is given in Figure 3 below.

Approx-3-way-Max-Cut( V, E )

1. V1 ← ∅, V2 ← ∅, V3 ← ∅
2. for each vertex v ∈ V do

3. choose a Vk from {V1, V2, V3} uniformly at random {i.e., k takes each value from

{1, 2, 3} with probability 1
3

}
4. Vk ← Vk ∪ {v}
5. Ec ← ∅
6. for each edge (x, y) ∈ E do

7. if x ∈ Vi and y ∈ Vj and i 6= j then {1 ≤ i, j ≤ 3}
8. Ec ← Ec ∪ {(x, y)} {(x, y) is a cut edge}
9. return 〈V1, V2, V3, Ec〉

Figure 3: Approximating 3-way Max-Cut.

7



2(a) [ 7 Points ] Show that the expected approximation ratio of Approx-3-way-Max-Cut given
in Figure 3 is 3

2 .

8



2(b) [ 8 Points ] Show that for the cut set Ec returned by Approx-3-way-Max-Cut:

Pr

{
mc ≥

2m

3

}
≥ 3

m+ 3
.

9



2(c) [ 10 Points ] Explain how you will use Approx-3-way-Max-Cut as a subroutine to design
an approximation algorithm with

Pr

{
mc ≥

2m

3

}
≥ 1− 1

e
,

where, mc is the size of the cut set returned by the algorithm.

You must describe your algorithm (briefly in words) and prove the probability bound.

10



2(d) [ 10 Points ] Explain how you will use your algorithm from part (c) as a subroutine to design
another approximation algorithm that returns a cut set of size at least 2m

3 with high probabil-
ity inm. You must describe your algorithm (briefly in words) and prove the probability bound.

11



Use this page if you need additional space for your answers.

12



Question 3. [ 10 Points ] Exam Scores. After grading the last midterm exam I made a sorted
list of n anonymous scores public. That was, indeed, a complete list of the scores obtained by all
n students of the class. This time I plan to release a smaller list L. I will use the algorithm shown
in Figure 4 for constructing L.

1. L← ∅
2. for each student x in the class do

3. include x’s score in L with probablity 1

n
1
3

Figure 4: Making the list L of scores to release.

3(a) [ 10 Points ] Show that Pr
{
|L| < n

2
3 + n

1
2

}
≥ 1− 1

e
n
1
3
3

.

13



Use this page if you need additional space for your answers.

14



Use this page if you need additional space for your answers.

15



Appendix I: Useful Tail Bounds

Markov’s Inequality. Let X be a random variable that assumes only nonnegative values. Then
for all δ > 0, Pr [X ≥ δ] ≤ E[X]

δ .

Chebyshev’s Inequality. Let X be a random variable with a finite mean E[X] and a finite

variance V ar[X]. Then for any δ > 0, Pr [|X − E[X]| ≥ δ] ≤ V ar[X]
δ2

.

Chernoff Bounds. Let X1, . . . , Xn be independent Poisson trials, that is, each Xi is a 0-1 random

variable with Pr[Xi = 1] = pi for some pi. Let X =
n∑
i=1

Xi and µ = E[X]. Following bounds hold:

Lower Tail:

– for 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ
– for 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−

µδ2

2

– for 0 < γ < µ, Pr [X ≤ µ− γ] ≤ e−
γ2

2µ

Upper Tail:

– for any δ > 0, Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
– for 0 < δ < 1, Pr [X ≥ (1 + δ)µ] ≤ e−

µδ2

3

– for 0 < γ < µ, Pr [X ≥ µ+ γ] ≤ e−
γ2

3µ

16


