
CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Nov 26

Homework #4
( Due: Dec 10 )

Task 1. [ 80 Points ] Holes in the Wall

The Hole in the Wall1 restaurant in our neighborhood has a wall full of nail holes. All its walls
have holes, but that particular wall looks so ugly that the owner of the restaurant has decided to
cover the holes using some form of inexpensive artwork. The artwork will consist only of a number
of disks of the same size made from some inexpensive material. The disks will be placed carefully
on the wall to cover all holes. Each disk will have a hole at its center which can be used to nail
or screw the disk to the wall. Since the owner does not want to create additional holes in the wall
to install the artwork, each disk must be nailed/screwed to the wall using one of the existing nail
holes. The owner does not want to buy too many disks, and also wants to make sure that the total
area of all disks used in the artwork is as small is possible because the cost of a disk is proportional
to its area. Figure 1 shows a sample artwork.

Suppose there are n > 1 holes in the wall, and the artwork must not use more than K disks, where
K is a positive integer constant specified by the owner of the restaurant. The wall is rectangular,
and the location of a hole is given by a pair of real numbers (x, y), where x is the distance (in
inches) of the hole from the left end of the wall and y is the distance (also in inches) from the
bottom end (i.e., floor). Now given the value of K and the locations of all holes in the wall, how
many disks of what common size (i.e., radius) one must use in order to cover all those holes so that
the total area of all those disks is minimized?

Consider the algorithm Create-Artwork given in Figure 2 for computing the centers of at most k
disks of a common radius that can be used to cover all holes in the given wall. By d( g, h ) we denote
the Euclidean distance between two holes g and h. We define d( g, H ) = minh∈H{ d( g, h ) },
where H is a nonempty set of holes, and d( g, H ) =∞ when H is an empty set.

Now answer the following questions.

(a) [ 50 Points ] Prove that the total area of all ksol disks in Csol returned by Create-Artwork
is within a factor of 4 of an optimal solution that also uses exactly ksol disks.

(b) [ 10 Points ] Show that the total area of all ksol disks in Csol returned by Create-Artwork
is within a factor of 4 of an optimal solution that uses at most K disks.

(c) [ 20 Points ] Show that the solution returned by Create-Artwork is still within a factor
4 of optimal even if the owner does not insist on installing the artwork using only existing
nail holes.

1Hole-in-the-Wall: a small place (such as a bar or restaurant) that is not fancy or expensive (according to Merriam-
Webster dictionary)
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Figure 1: Sample artwork hiding holes in the wall.

Create-Artwork( K, h1, h2, . . . , hn )

Input: Maximum number K of disks to use, and coordinates of n > 1 nail holes h1, h2, . . . , hn.
Output: A subset Csol of ksol ≤ K holes to use as disk centers, and the common radius rsol of all disks.

1. Csol ← ∅, ksol ←∞, rsol ←∞
2. C ← ∅
3. for k ← 1 to K do

4. find the hole hi with the maximum distance d( hi, C ) from C (break ties arbitrarily)

5. C ← C ∪ { hi }
6. r ← max1≤j≤n d( hj , C )

7. if k
(
πr2

)
< ksol

(
πr2sol

)
then

8. ksol ← k

9. Csol ← C

10. rsol ← r

11. return 〈 ksol, Csol, rsol 〉

Figure 2: Finding disk coordinates for the artwork.
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Loops( X, F )

Input: Inputs are an n×n matrix X[0 : (n− 1), 0 : (n− 1)] of Boolean values, and an (h+ 1)×n matrix
F [0 : h, 0 : (n− 1)] of real values.
Output: Updated matrix F [0 : h, 0 : (n− 1)] based on values in X[0 : (n− 1), 0 : (n− 1)].

1. for u← 0 to n− 1 do

2. for i← 0 to h− 1 do

3. for v ← u+ 1 to n− 1 do

4. if X[u, v] = True then F [i+ 1, v]← F [i+ 1, v] + F [i, u]

Figure 3: A looping code.

Task 2. [ 100 Points ] Work and Span

You are given two sequential algorithms for solving the same problem in Figures 3 and 4. Your
task is to parallelize them and analyze their work, span and parallelism.

(a) [ 20 Points ] Explain how you would correctly parallelize the algorithm in Figure 3 using
only parallel for loops. Compute its work, span and parallelism on as functions of n and h.

(b) [ 80 Points ] Explain how you would correctly parallelize func-A and func-B in Figure
4 using parallel for loops, spawns and syncs. Compute their work, span and parallelism
assuming both n and h to be powers of 2.
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Func-A( X, F )

(Inputs are an n×n matrix X[0 : (n− 1), 0 : (n− 1)] of Boolean values, and an (h+1)×n matrix F [0 : h, 0 : (n− 1)] of real
values. Both n and h are assumed to be powers of 2.)

1. if n ≤ c and h ≤ c then

2. Loops( X, F )

3. else

4. if h > n then

5. Func-A( X, Ft )
{
Ft ≡ F

[
0 : h

2
, 0 : (n− 1)

]}
6. Func-A( X, Fb )

{
Fb ≡ F

[
h
2
: h, 0 : (n− 1)

]}
7. else

8. Func-A( X11, Fl )
{
X11 ≡ X

[
0 :
(
n
2
− 1
)
, 0 :

(
n
2
− 1
)]
, Fl ≡ F

[
0 : h, 0 :

(
n
2
− 1
)]}

9. Func-B( X12, Fl, Fr )
{
X12 ≡ X

[
0 :
(
n
2
− 1
)
, n
2
: (n− 1)

]
, Fr ≡ F

[
0 : h, n

2
: (n− 1)

]}
10. Func-A( X22, Fr )

{
X22 ≡ X

[
n
2
: (n− 1), n

2
: (n− 1)

]}
Func-B( X, F (s), F (d) )

(Inputs are an n× n matrix X[0 : (n− 1), 0 : (n− 1)] of Boolean values, and an (h+ 1)× n matrices F (s)[0 : h, 0 : (n− 1)]
and F (d)[0 : h, 0 : (n− 1)] of real values. Both n and h are assumed to be powers of 2.)

1. if n ≤ c and h ≤ c then

2. for i← 0 to h− 1 do

3. for u← 0 to n− 1 do

4. for v ← 0 to n− 1 do

5. if X[u, v] = True then F (d)[i+ 1, v]← F (d)[i+ 1, v] + F (s)[i, u]

6. else

7. if h > n then

8. Func-B
(
X, F

(s)
t , F

(d)
t

) {
F

(z)
t ≡ F (z)

[
0 : h

2
, 0 : (n− 1)

]
for z ∈ { s, t }

}
9. Func-B

(
X, F

(s)
b , F

(d)
b

) {
F

(z)
b ≡ F (z)

[
h
2
: h, 0 : (n− 1)

]
for z ∈ { s, t }

}
10. else

11. Func-B
(
X11, F

(s)
l , F

(d)
l

) {
X11 ≡ X

[
0 :
(
n
2
− 1
)
, 0 :

(
n
2
− 1
)]
, F

(z)
l ≡ F (z)

[
0 : h, 0 :

(
n
2
− 1
)]
, z ∈ {s, t}

}
12. Func-B

(
X12, F

(s)
l , F

(d)
r

) {
X12 ≡ X

[
0 :
(
n
2
− 1
)
, n
2
: (n− 1)

]
, F

(d)
r ≡ F (d)

[
0 : h, n

2
: (n− 1)

]}
13. Func-B

(
X21, F

(s)
r , F

(d)
l

) {
X21 ≡ X

[
n
2
: (n− 1), 0 :

(
n
2
− 1
)]
, F

(s)
r ≡ F (s)

[
0 : h, n

2
: (n− 1)

]}
14. Func-B

(
X22, F

(s)
r , F

(d)
r

) {
X22 ≡ X

[
n
2
: (n− 1), n

2
: (n− 1)

]}
Figure 4: Recursive divide-and-conquer algorithm for solving the problem solved by the looping
code in Figure 3. Assuming that both n and h are powers of 2, function calls A( X, F ) and
Loops( X, F ) produce the same results, where X[0 : (n − 1), 0 : (n − 1)] is an n × n matrix of
Boolean values, F [0 : h, 0 : (n− 1)] is an (h+ 1)×n matrix of real values, and c is a global positive
integer constant.
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