CSE 548: Analysis of Algorithms

Lecture 10
 (Dijkstra's SSSP \& Fibonacci Heaps)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2016

Fibonacci Heaps (Fredman \& Tarjan, 1984)

A Fibonacci heap can be viewed as an extension of Binomial heaps which supports Decrease-Key and Delete operations efficiently.

Heap Operation	Binary Heap (worst-case)	Binomial Heap (amortized)
MAKE-HEAP	$\Theta(1)$	$\Theta(1)$
INSERT	$\mathrm{O}(\log n)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$\Theta(1)$
EXTRACT-MIN	$\mathrm{O}(\log n)$	$\mathrm{O}(\log n)$
UnIoN	$\Theta(n)$	$\Theta(1)$
DECREASE-KEY	$\mathrm{O}(\log n)$	-
DELETE	$\mathrm{O}(\log n)$	-

Fibonacci Heaps (Fredman \& Tarjan, 1984)

A Fibonacci heap can be viewed as an extension of Binomial heaps which supports Decrease-Key and Delete operations efficiently.

| Heap Operation | Binary Heap
 (worst-case) | Binomial Heap
 (amortized) |
| :--- | :---: | :---: | :---: |
| MAKE-HEAP | $\Theta(1)$ | $\Theta(1)$ |
| INSERT | $\mathrm{O}(\log n)$ | $\Theta(1)$ |
| MINIMUM | $\Theta(1)$ | $\Theta(1)$ |
| EXTRACT-MIN | $\mathrm{O}(\log n)$ | $\mathrm{O}(\log n)$ |
| UNION | $\Theta(n)$ | $\Theta(1)$ |
| DECREASE-KEY | $\mathrm{O}(\log n)$ | $\mathrm{O}(\log n)$
 $($ worst case)
 O(log $n)$ |
| DELETE | $\mathrm{O}(\log n)$ | worst case) |

Fibonacci Heaps (Fredman \& Tarjan, 1984)

A Fibonacci heap can be viewed as an extension of Binomial heaps which supports Decrease-Key and Delete operations efficiently.

Heap Operation	Binary Heap (worst-case)	Binomial Heap (amortized)	Fibonacci Heap (amortized)
Make-Heap	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
INSERT	$\mathrm{O}(\log n)$	$\Theta(1)$	$\Theta(1)$
Minimum	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
Extract-Min	$\mathrm{O}(\log n)$	$\mathrm{O}(\log n)$	$\mathrm{O}(\log n)$
UNION	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$
Decrease-Key	$\mathrm{O}(\log n)$	$\begin{gathered} \mathrm{O}(\log n) \\ (\text { worst case) } \end{gathered}$	$\Theta(1)$
Delete	$\mathrm{O}(\log n)$	$\begin{gathered} \mathrm{O}(\log n) \\ (\text { amortized) } \end{gathered}$	$\mathrm{O}(\log n)$

Dijkstra's SSSP Algorithm with a Min-Heap (SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G=(V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V], v . d$ is set to the shortest distance from s to v.

```
Dijkstra-SSSP(G = (V,E), w, s )
1. for each v\inG[V] do v.d\leftarrow\infty
2. s.d\leftarrow0
3. H}\leftarrow { empty min-heap }
4. for each v\inG[V] do INSERT(H,v)
5. while H}\not=\emptyset\mathrm{ do
6. u\leftarrowEXTRACT-MIN(H)
7. for each v\in Adj[u] do
8. if v.d>u.d+wwu,v}\mathrm{ then
9. DECREASE-KEY(H,v,u.d+wuuv)
10. v.d\leftarrowu.d+ wu,v
```


Dijkstra's SSSP Algorithm with a Min-Heap (SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G=(V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V], v . d$ is set to the shortest distance from s to v.

```
Dijkstra-SSSP ( \(G=(V, E), w, s)\)
1. for each \(v \in G[V]\) do \(v . d \leftarrow \infty\)
2. s. \(d \leftarrow 0\)
3. \(H \leftarrow \phi \quad\) \{empty min-heap \}
4. for each \(v \in G[V]\) do \(\operatorname{Insert}(H, v)\)
5. while \(H \neq \emptyset\) do
6. \(u \leftarrow \operatorname{ExTRACT}-\operatorname{MiN}(H)\)
7. for each \(v \in \operatorname{Adj}[u] d o\)
8. if \(v . d>u . d+w_{u, v}\) then
9. \(\operatorname{DECREASE-KEY}\left(H, v, u . d+w_{u, v}\right)\)
10.
    \(v . d \leftarrow u . d+w_{u, v}\)
```

```
Let \(n=|G[V]|\) and \(m=|G[E]|\)
\# InSERTS = n
\# Extract-Mins \(=n\)
\# Decrease-Keys \(\leq m\)
Total cost
    \(\leq n\left(\cos _{\text {Insert }}+\operatorname{cost}_{\text {Extract-Min }}\right)\)
    \(+m\left(\right.\) cost \(\left._{\text {Decrease-Key }}\right)\)
```


Dijkstra's SSSP Algorithm with a Min-Heap (SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G=(V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V], v . d$ is set to the shortest distance from s to v.

```
Dijkstra-SSSP ( \(G=(V, E), w, s)\)
1. for each \(v \in G[V]\) do \(v . d \leftarrow \infty\)
2. s. \(d \leftarrow 0\)
3. \(H \leftarrow \phi \quad\) \{empty min-heap \}
4. for each \(v \in G[V]\) do \(\operatorname{INSERT}(H, v)\)
5. while \(H \neq \emptyset\) do
6. \(u \leftarrow \operatorname{ExTRACT}-\operatorname{MiN}(H)\)
7. \(\quad\) for each \(v \in \operatorname{Adj}[u] d o\)
8. if \(v . d>u . d+w_{u, v}\) then
9. \(\operatorname{DECREASE-KEY}\left(H, v, u . d+w_{u, v}\right)\)
10. \(\quad v . d \leftarrow u . d+w_{u, v}\)
```

Let $n=|G[V]|$ and $m=|G[E]|$
For Binary Heap (worst-case costs):

$$
\begin{aligned}
& \operatorname{cost}_{\text {Insert }}=\mathrm{O}(\log n) \\
& \operatorname{cost}_{\text {Extract-Min }}=\mathrm{O}(\log n) \\
& \cos _{\text {Decrease }- \text { Key }}=\mathrm{O}(\log n)
\end{aligned}
$$

\therefore Total cost (worst-case)

$$
=\mathrm{O}((m+n) \log n)
$$

Dijkstra's SSSP Algorithm with a Min-Heap (SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G=(V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V], v . d$ is set to the shortest distance from s to v.

```
Dijkstra-SSSP ( \(G=(V, E), w, s)\)
1. for each \(v \in G[V]\) do \(v . d \leftarrow \infty\)
2. s. \(d \leftarrow 0\)
3. \(H \leftarrow \phi \quad\) \{empty min-heap \}
4. for each \(v \in G[V]\) do \(\operatorname{Insert}(H, v)\)
5. while \(H \neq \emptyset\) do
6. \(u \leftarrow \operatorname{ExTRACT}-\operatorname{MiN}(H)\)
7. for each \(v \in \operatorname{Adj}[u] d o\)
8. if v.d>u.d+w, \(w_{u, v}\) then
9. \(\operatorname{DECREASE-KEY}\left(H, v, u . d+w_{u, v}\right)\)
10. \(\quad v . d \leftarrow u . d+w_{u, v}\)
```

Let $n=|G[V]|$ and $m=|G[E]|$
For Binomial Heap (amortized costs):

$$
\begin{aligned}
& \operatorname{cost}_{\text {Insert }}=\mathrm{O}(1) \\
& \operatorname{cost}_{\text {Extract-Min }}=\mathrm{O}(\log n) \\
& \operatorname{cost}_{\text {Decrease-Key }}=\mathrm{O}(\log n) \\
& \\
& \quad(\text { worst-case })
\end{aligned}
$$

\therefore Total cost (worst-case)

$$
=\mathrm{O}((m+n) \log n)
$$

Dijkstra's SSSP Algorithm with a Min-Heap (SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G=(V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V], v . d$ is set to the shortest distance from s to v.

```
Dijkstra-SSSP(G=(V,E),w,s )
1. for each v\inG[V] do v.d\leftarrow\infty
2. s.d
3. H}\leftarrow { empty min-heap }
4. for each v\inG[V] do INSERT(H,v)
5. while H}\not=\emptyset\mathrm{ do
6. u}u\mathrm{ EXTRACT-MIN(H)
7. for each v \in Adj[u] do
8. if v.d>u.d+wwu,v
9. DECREASE-KEY(H,v,u.d+wu,v)
10. v.d\leftarrowu.d+wu,v
```

$$
\text { Let } n=|G[V]| \text { and } m=|G[E]|
$$

Total cost

$$
\begin{aligned}
& \leq n\left(\operatorname{cost}_{\text {Insert }}+\operatorname{cost}_{\text {Extract-Min }}\right) \\
& +m\left(\operatorname{cost}_{\text {Decrease-Key }}\right)
\end{aligned}
$$

Observation:
Obtaining a worst-case bound for a sequence of n INSERTS, n EXTRACT-MINS and m DECREASE-KEYS is enough.
\therefore Amortized bound per operation is sufficient.

Dijkstra's SSSP Algorithm with a Min-Heap (SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G=(V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V], v . d$ is set to the shortest distance from s to v.

```
Dijkstra-SSSP ( \(G=(V, E), w, s)\)
1. for each \(v \in G[V]\) do \(v . d \leftarrow \infty\)
2. s. \(d \leftarrow 0\)
3. \(H \leftarrow \phi \quad\) \{empty min-heap \}
4. for each \(v \in G[V]\) do \(\operatorname{Insert}(H, v)\)
5. while \(H \neq \emptyset\) do
6. \(u \leftarrow \operatorname{EXTRACT}-\operatorname{MiN}(H)\)
7. \(\quad\) for each \(v \in \operatorname{Adj}[u] d o\)
8. if \(v . d>u . d+w_{u, v}\) then
9. \(\operatorname{DECREASE-KEY}\left(H, v, u . d+w_{u, v}\right)\)
10. \(\quad v . d \leftarrow u . d+w_{u, v}\)
```

Let $n=|G[V]|$ and $m=|G[E]|$
Total cost

$$
\begin{aligned}
& \leq n\left(\operatorname{cost}_{\text {Insert }}+\operatorname{cost}_{\text {Extract-Min }}\right) \\
& +m\left(\operatorname{cost}_{\text {Decrease-Key }}\right)
\end{aligned}
$$

Observation:
For $n\left(\operatorname{cost}_{\text {Insert }}+\operatorname{cost}_{\text {Extract-Min }}\right)$ the best possible bound is $\Theta(n \log n)$. (else violates sorting lower bound)

Perhaps $m\left(\operatorname{cost}_{\text {Decrease-Key }}\right)$ can be improved to $\mathrm{o}(m \log n)$.

Fibonacci Heaps from Binomial Heaps

A Fibonacci heap can be viewed as an extension of Binomial heaps which supports Decrease-Key and Delete operations efficiently.

But the trees in a Fibonacci heap are no longer binomial trees as we will be cutting subtrees out of them.

However, all operations (except Decrease-Key and Delete) are still performed in the same way as in binomial heaps.

The rank of a tree is still defined as the number of children of the root, and we still link two trees if they have the same rank.

Implementing DECREASE-KEY($\boldsymbol{H}, \boldsymbol{x}, \boldsymbol{k})$

Decrease-Key($\boldsymbol{H}, \boldsymbol{x}, \boldsymbol{k}$): One possible approach is to cut out the subtree rooted at x from H, reduce the value of x to k, and insert that subtree into the root list of H.

Problem: If we cut out a lot of subtrees from a tree its size will no longer be exponential in its rank. Since our analysis of ExTRACT-MIN in binomial heaps was highly dependent on this exponential relationship, that analysis will no longer hold.

Solution: Limit \#cuts among the children of any node to 2 . We will show that the size of each tree will still remain exponential in its rank.

When a 2 nd child is cut from a node x, we also cut x from its parent leading to a possible sequence of cuts moving up towards the root.

Analysis of Fibonacci Heap Operations

Recurrence for Fibonacci numbers: $f_{n}=\left\{\begin{array}{cc}0 & \text { if } n=0, \\ 1 & \text { if } n=1, \\ f_{n-1}+f_{n-2} & \text { otherwise } .\end{array}\right.$

We showed in a pervious lecture: $f_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right)$,
where $\phi=\frac{1+\sqrt{5}}{2}$ and $\hat{\phi}=\frac{1+\sqrt{5}}{2}$ are the roots $z^{2}-z-1=0$.

Analysis of Fibonacci Heap Operations

Lemma 1: For all integers $n \geq 0, f_{n+2}=1+\sum_{i=0}^{n} f_{i}$.

Proof: By induction on n.
Base case: $f_{2}=1=1+0=1+f_{0}=1+\sum_{i=0}^{n} f_{i}$.
Inductive hypothesis: $f_{k+2}=1+\sum_{i=0}^{k} f_{i}$ for $0 \leq k \leq n-1$.
Then $f_{n+2}=f_{n+1}+f_{n}=f_{n}+\left(1+\sum_{i=0}^{n-1} f_{i}\right)=1+\sum_{i=0}^{n} f_{i}$.

Analysis of Fibonacci Heap Operations

Lemma 2: For all integers $n \geq 0, f_{n+2} \geq \phi^{n}$.

Proof: By induction on n.
Base case: $f_{2}=1=\phi^{0}$ and $f_{3}=2>\phi^{1}$.
Inductive hypothesis: $f_{k+2} \geq \phi^{k}$ for $0 \leq k \leq n-1$.
Then $f_{n+2}=f_{n+1}+f_{n}$

$$
\begin{aligned}
& \geq \phi^{n-1}+\phi^{n-2} \\
& =(\phi+1) \phi^{n-2} \\
& =\phi^{2} \phi^{n-2} \\
& =\phi^{n}
\end{aligned}
$$

Analysis of Fibonacci Heap Operations

Lemma 3: Let x be any node in a Fibonacci heap, and suppose that $k=\operatorname{rank}(x)$. Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children of x in the order in which they were linked to x, from the earliest to the latest. Then $\operatorname{rank}\left(y_{i}\right) \geq \max \{0, i-2\}$ for $1 \leq i \leq k$.

Proof: Obviously, $\operatorname{rank}\left(y_{1}\right) \geq 0$.

For $i>1$, when y_{i} was linked to x, all of $y_{1}, y_{2}, \ldots, y_{i-1}$ were children of x. So, $\operatorname{rank}(x) \geq i-1$.

Because y_{i} is linked to x only if $\operatorname{rank}\left(y_{i}\right)=\operatorname{rank}(x)$, we must have had $\operatorname{rank}\left(y_{i}\right) \geq i-1$ at that time.

Since then, y_{i} has lost at most one child, and hence $\operatorname{rank}\left(y_{i}\right) \geq i-2$.

Analysis of Fibonacci Heap Operations

Lemma 4: Let z be any node in a Fibonacci heap with $n=\operatorname{size}(z)$ and $r=\operatorname{rank}(z)$. Then $r \leq \log _{\phi} n$.

Proof: Let s_{k} be the minimum possible size of any node of rank k in any Fibonacci heap.

Trivially, $s_{0}=1$ and $s_{1}=2$.
Since adding children to a node cannot decrease its size, s_{k} increases monotonically with k.

Let x be a node in any Fibonacci heap with $\operatorname{rank}(x)=r$ and $\operatorname{size}(x)=s_{r}$.

Analysis of Fibonacci Heap Operations

Lemma 4: Let z be any node in a Fibonacci heap with $n=\operatorname{size}(z)$ and $r=\operatorname{rank}(z)$. Then $r \leq \log _{\phi} n$.

Proof (continued): Let $y_{1}, y_{2}, \ldots, y_{r}$ be the children of x in the order in which they were linked to x, from the earliest to the latest.

Then $s_{r} \geq 1+\sum_{i=1}^{r} s_{\operatorname{rank}\left(y_{i}\right)} \geq 1+\sum_{i=1}^{r} s_{\max \{0, i-2\}}=2+\sum_{i=2}^{r} s_{i-2}$
We now show by induction on r that $s_{r} \geq f_{r+2}$ for all integer $r \geq 0$. Base case: $s_{0}=1=f_{2}$ and $s_{1}=2=f_{3}$. Inductive hypothesis: $s_{k} \geq f_{k+2}$ for $0 \leq k \leq r-1$.

Then $s_{r} \geq 2+\sum_{i=2}^{r} s_{i-2} \geq 2+\sum_{i=2}^{r} f_{i}=1+\sum_{i=1}^{r} f_{i}=f_{r+2}$.
Hence $n \geq s_{r} \geq f_{r+2} \geq \phi^{r} \Rightarrow r \leq \log _{\phi} n$.

Analysis of Fibonacci Heap Operations

Corollary: The maximum degree of any node in an n node Fibonacci heap is $\mathrm{O}(\log n)$.

Proof: Let z be any node in the heap.
Then from Lemma 4,

$$
\operatorname{degree}(z)=\operatorname{rank}(z) \leq \log _{\phi}(\operatorname{size}(z)) \leq \log _{\phi} n=\mathrm{O}(\log n) .
$$

Analysis of Fibonacci Heap Operations

All nodes are initially unmarked.
We mark a node when

- it loses its first child

We unmark a node when

- it loses its second child, or
- becomes the child of another node (e.g., Linked)

We extend the potential function used for binomial heaps:

$$
\Phi\left(D_{i}\right)=2 t\left(D_{i}\right)+3 m\left(D_{i}\right),
$$

where D_{i} is the state of the data structure after the $i^{\text {th }}$ operation, $t\left(D_{i}\right)$ is the number of trees in the root list, and $m\left(D_{i}\right)$ is the number of marked nodes.

Analysis of Fibonacci Heap Operations

We extend the potential function used for binomial heaps:

$$
\Phi\left(D_{i}\right)=2 t\left(D_{i}\right)+3 m\left(D_{i}\right)
$$

where D_{i} is the state of the data structure after the $i^{t h}$ operation, $t\left(D_{i}\right)$ is the number of trees in the root list, and $m\left(D_{i}\right)$ is the number of marked nodes.

Decrease-Key $\left.\boldsymbol{H}, \boldsymbol{x}, \boldsymbol{k}_{\boldsymbol{x}}\right)$: Let $k=$ \#cascading cuts performed.
Then the actual cost of cutting the tree rooted at x is 1 , and the actual cost of each of the cascading cuts is also 1.
\therefore overall actual cost, $c_{i}=1+k$

Fibonacci Heaps from Binomial Heaps

Potential function: $\Phi\left(D_{i}\right)=2 t\left(D_{i}\right)+3 m\left(D_{i}\right)$
Decrease-Key $\boldsymbol{H}, \boldsymbol{x}, \boldsymbol{k}_{\boldsymbol{x}}$):
New trees: 1 tree rooted at x, and
1 tree produced by each of the k cascading cuts.
$\therefore t\left(D_{i}\right)-t\left(D_{i-1}\right)=1+k$
Marked nodes: 1 node unmarked by each cascading cut, and at most 1 node marked by the last cut/cascading cut.
$\therefore m\left(D_{i}\right)-m\left(D_{i-1}\right) \leq-k+1$
Potential drop, $\Delta_{i}=\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$

$$
\begin{aligned}
& =2\left(t\left(D_{i}\right)-t\left(D_{i-1}\right)\right)+3\left(m\left(D_{i}\right)-m\left(D_{i-1}\right)\right) \\
& \leq 2(1+k)+3(-k+1) \\
& =-k+5
\end{aligned}
$$

Fibonacci Heaps from Binomial Heaps

Potential function: $\Phi\left(D_{i}\right)=2 t\left(D_{i}\right)+3 m\left(D_{i}\right)$
Decrease-Key $\boldsymbol{H}, \boldsymbol{x}, \boldsymbol{k}_{\boldsymbol{x}}$):
Amortized cost, $\hat{c}_{i}=c_{i}+\Delta_{i}$

$$
\begin{aligned}
& \leq(1+k)+(-k+5) \\
& =6 \\
& =\mathrm{O}(1)
\end{aligned}
$$

Fibonacci Heaps from Binomial Heaps

Potential function: $\Phi\left(D_{i}\right)=2 t\left(D_{i}\right)+3 m\left(D_{i}\right)$

Extract-Min(\boldsymbol{H}):

Let d_{n} be the max degree of any node in an n-node Fibonacci heap.
Cost of creating the array of pointers is $\leq d_{n}+1$.
Suppose we start with k trees in the doubly linked list, and perform l link operations during the conversion from linked list to array version. So we perform $k+l$ work, and end up with $k-l$ trees.

Cost of converting to the linked list version is $k-l$.
actual cost, $c_{i} \leq d_{n}+1+(k+l)+(k-l)=2 k+d_{n}+1$
Since no node is marked, and each link reduces the \#trees by 1 , potential change, $\Delta_{i}=\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \geq-2 l$

Fibonacci Heaps from Binomial Heaps

Potential function: $\Phi\left(D_{i}\right)=2 t\left(D_{i}\right)+3 m\left(D_{i}\right)$
Extract-Min(\boldsymbol{H}):
actual cost, $c_{i} \leq d_{n}+1+(k+l)+(k-l)=2 k+d_{n}+1$
potential change, $\Delta_{i}=\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \geq-2 l$
amortized cost, $\hat{c}_{i}=c_{i}+\Delta_{i} \leq 2(k-l)+d_{n}+1$
But $k-l \leq d_{n}+1$ (as we have at most one tree of each rank)
So, $\hat{c}_{i} \leq 3 d_{n}+3=\mathrm{O}(\log n)$.

Fibonacci Heaps from Binomial Heaps

Potential function: $\Phi\left(D_{i}\right)=2 t\left(D_{i}\right)+3 m\left(D_{i}\right)$
Delete($\boldsymbol{H}, \boldsymbol{x}$):
Step 1: Decrease-Key $(H, x,-\infty)$
Step 2: Extract-Min(H)
amortized cost, $\hat{c}_{i}=$ amortized cost of DECREASE-KEY

+ amortized cost of ExTRACT-MIN

$$
\begin{aligned}
& =\mathrm{O}(1)+\mathrm{O}(\log n) \\
& =\mathrm{O}(\log n)
\end{aligned}
$$

