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Fibonacci Heaps
( Fredman & Tarjan, 1984 )

Heap Operation
Binary Heap

( worst-case )

Binomial Heap

( amortized )

MAKE-HEAP Θ 1 Θ 1
INSERT Ο log � Θ 1
MINIMUM Θ 1 Θ 1
EXTRACT-MIN Ο log � Ο log �
UNION Θ � Θ 1
DECREASE-KEY Ο log � �
DELETE Ο log � �

A Fibonacci heap can be viewed as an extension of Binomial heaps 

which supports DECREASE-KEY and DELETE operations efficiently.
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Fibonacci Heaps
( Fredman & Tarjan, 1984 )

Heap Operation
Binary Heap

( worst-case )

Binomial Heap

( amortized )

Fibonacci Heap

( amortized )

MAKE-HEAP Θ 1 Θ 1 Θ 1
INSERT Ο log � Θ 1 Θ 1
MINIMUM Θ 1 Θ 1 Θ 1
EXTRACT-MIN Ο log � Ο log � Ο log �
UNION Θ � Θ 1 Θ 1
DECREASE-KEY Ο log � Ο log �

( worst case )
Θ 1

DELETE Ο log � Ο log �
( amortized )

Ο log �

A Fibonacci heap can be viewed as an extension of Binomial heaps 

which supports DECREASE-KEY and DELETE operations efficiently.



Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( � � 	, � , �,  )

1. for each � ∈ � 	 do �. � ← ∞
2. . � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT( �, � )

5. while � � ∅ do

6. � ← EXTRACT-MIN( � )

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then

9. DECREASE-KEY( �, �, �. � � ��,� )

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a 

weight function �, and a source vertex  ∈ � 	 . 

Output: For all � ∈ � 	 , �. � is set to the shortest distance from  to �.
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# INSERTS � �
# EXTRACT-MINS � �
# DECREASE-KEYS !  
Total cost! 	� #$%&'()*+ � #$%,-+*./+012'�	 #$%3)/*).()04)5



Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( � � 	, � , �,  )

1. for each � ∈ � 	 do �. � ← ∞
2. . � ← 0
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Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a 

weight function �, and a source vertex  ∈ � 	 . 

Output: For all � ∈ � 	 , �. � is set to the shortest distance from  to �.

Let � � � 	 and  � � �
For Binary Heap ( worst-case costs ):#$%&'()*+ � Ο log � 	#$%,-+*./+012' � Ο log �#$%3)/*).()04)5 � Ο log �
∴ Total cost ( worst-case ) � Ο  � � log �



Dijkstra’s SSSP Algorithm with a Min-Heap
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Dijkstra-SSSP ( � � 	, � , �,  )
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weight function �, and a source vertex  ∈ � 	 . 

Output: For all � ∈ � 	 , �. � is set to the shortest distance from  to �.

Let � � � 	 and  � � �
For Binomial Heap ( amortized costs ):#$%&'()*+ � Ο 1 	#$%,-+*./+012' � Ο log �#$%3)/*).()04)5 � Ο log �

( worst-case )

∴ Total cost ( worst-case ) � Ο  � � log �



Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( � � 	, � , �,  )

1. for each � ∈ � 	 do �. � ← ∞
2. . � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT( �, � )

5. while � � ∅ do

6. � ← EXTRACT-MIN( � )

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then

9. DECREASE-KEY( �, �, �. � � ��,� )

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a 

weight function �, and a source vertex  ∈ � 	 . 

Output: For all � ∈ � 	 , �. � is set to the shortest distance from  to �.

Let � � � 	 and  � � �
Total cost! 	� #$%&'()*+ � #$%,-+*./+012'�	 #$%3)/*).()04)5
Observation:

Obtaining a worst-case bound for a 

sequence of � INSERTS, � EXTRACT-MINS

and  DECREASE-KEYS is enough.∴ Amortized bound per operation is 

sufficient.



Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( � � 	, � , �,  )

1. for each � ∈ � 	 do �. � ← ∞
2. . � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT( �, � )

5. while � � ∅ do

6. � ← EXTRACT-MIN( � )

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then

9. DECREASE-KEY( �, �, �. � � ��,� )

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a 

weight function �, and a source vertex  ∈ � 	 . 

Output: For all � ∈ � 	 , �. � is set to the shortest distance from  to �.

Let � � � 	 and  � � �
Total cost! 	� #$%&'()*+ � #$%,-+*./+012'�	 #$%3)/*).()04)5
Observation:

For � #$%&'()*+ � #$%,-+*./+012' 	
the best possible bound is Θ � log � . 

( else violates sorting lower bound ) 

Perhaps  #$%3)/*).()04)5 can be 

improved to o  log � .



Fibonacci Heaps from Binomial Heaps

A Fibonacci heap can be viewed as an extension of Binomial heaps 

which supports DECREASE-KEY and DELETE operations efficiently.

But the trees in a Fibonacci heap are no longer binomial trees as we 

will be cutting subtrees out of them.

However, all operations ( except DECREASE-KEY and DELETE ) are still 

performed in the same way as in binomial heaps. 

The rank of a tree is still defined as the number of children of the root, 

and we still link two trees if they have the same rank.



Implementing DECREASE-KEY7	8, 9, :	;
DECREASE-KEY( 8, 9, : ): One possible approach is to cut out the 

subtree rooted at < from �, reduce the value of < to =, and insert that 

subtree into the root list of �. 

Problem: If we cut out a lot of subtrees from a tree its size will no 

longer be exponential in its rank. Since our analysis of EXTRACT-MIN in 

binomial heaps was highly dependent on this exponential relationship, 

that analysis will no longer hold.

Solution: Limit #cuts among the children of any node to 2. We will 

show that the size of each tree will still remain exponential in its rank. 

When a 2nd child is cut from a node <, we also cut < from its parent 

leading to a possible sequence of cuts moving up towards the root.



Analysis of Fibonacci Heap Operations

>' � ? 0 @>	� � 0,1 @>	� � 1,>'0A � >'0B $%CDE�@D.Recurrence for Fibonacci numbers:

We showed in a pervious lecture:  >' � AFG �' � �H' ,

where � � AI FGB and �H � AI FGB 	 are the roots JB � J � 1 � 0.



Lemma 1: For all integers � K 0, >'IB � 1 � ∑ >2'2MN .

Inductive hypothesis:  >OIB � 1 � ∑ >2O2MN for 0 ! = ! � � 1.

Then >'IB � >'IA � >' � >' � 1 � ∑ >2'0A2MN � 1 � ∑ >2'2MN .

Proof: By induction on �. 

Base case: >B � 1 � 1 � 0 � 1 � >N � 1 � ∑ >2'2MN .

Analysis of Fibonacci Heap Operations



Lemma 2: For all integers � K 0, >'IB K �'.

Inductive hypothesis:  >OIB K �O for 0 ! = ! � � 1.

Then >'IB � >'IA � >'K �'0A � �'0B� � � 1 �'0B� �B�'0B� �'

Proof: By induction on �. 

Base case: >B � 1 � �N and >P � 2 � �A.

Analysis of Fibonacci Heap Operations



Lemma 3: Let < be any node in a Fibonacci heap, and suppose that = � ER�= < .  Let SA, SB, … , SO be the children of < in the order in 

which they were linked to <, from the earliest to the latest. Then ER�= S2 K max 0, @ � 2 for 1 ! @ ! =.

Proof: Obviously, ER�= SA K 0. 

For @ � 1, when S2 was linked to <, all of SA, SB, … , S20A were children 

of <. So, ER�= < K @ � 1. 

Because S2 is linked to < only if ER�= S2 � ER�= < , we must have 

had ER�= S2 K @ � 1 at that time.

Since then, S2 has lost at most one child, and hence ER�= S2 K @ � 2.

<
SASBSPSO0ASO

Analysis of Fibonacci Heap Operations



Lemma 4: Let J be any node in a Fibonacci heap with � � @JD J
and E � ER�= J . Then E ! logX �.

Proof: Let O be the minimum possible size of any node of rank = in 

any Fibonacci heap. 

Trivially, N � 1 and A � 2.

Since adding children to a node cannot decrease its size, O increases 

monotonically with =.

Let < be a node in any Fibonacci heap with ER�= < � E and @JD < � *.

Analysis of Fibonacci Heap Operations



Proof ( continued ): Let SA, SB, … , S* be the children of < in the order 

in which they were linked to <, from the earliest to the latest. 

Then * K 1 � ∑ *.'O 5Y*2MA K 1 � ∑ Z[\ N,20B*2MA � 2 � ∑ 20B*2MB
We now show by induction on E that * K >*IB for all integer E K 0.

Base case: N � 1 � >B and A � 2 � >P.

Inductive hypothesis:  O K >OIB for 0 ! = ! E � 1.

Then * K 2 � ∑ 20B*2MB K 2 � ∑ >2*2MB � 1 � ∑ >2*2MA � >*IB.
Hence � K * K >*IB K �* ⇒ E ! logX � .

Lemma 4: Let J be any node in a Fibonacci heap with � � @JD J
and E � ER�= J . Then E ! logX �.

Analysis of Fibonacci Heap Operations



Proof: Let J be any node in the heap. 

Then from Lemma 4, 							�D^EDD J � ER�= J ! logX @JD J ! logX � � Ο log � .

Corollary: The maximum degree of any node in an � node Fibonacci 

heap is Ο log � .

Analysis of Fibonacci Heap Operations



We extend the potential function used for binomial heaps:

Φ 2̀ � 2% 2̀ � 3 2̀ ,

where 2̀ is the state of the data structure after the @+b operation,% 2̀ is the number of trees in the root list, and 2̀ is the number of marked nodes. 

Analysis of Fibonacci Heap Operations

We mark a node when

− it loses its first child

We unmark a node when

− it loses its second child, or

− becomes the child of another node ( e.g., LINKed )

All nodes are initially unmarked.



∴ overall actual cost, #2 � 1 � =

DECREASE-KEY( 8, 9, :9 ): Let = � #cascading cuts performed. 

We extend the potential function used for binomial heaps:

Φ 2̀ � 2% 2̀ � 3 2̀ ,

where 2̀ is the state of the data structure after the @+b operation,% 2̀ is the number of trees in the root list, and 2̀ is the number of marked nodes. 

Then the actual cost of cutting the tree rooted at < is 1, and

the actual cost of each of the cascading cuts is also 1.

Analysis of Fibonacci Heap Operations



Fibonacci Heaps from Binomial Heaps

∴ % 2̀ � % 2̀0A � 1 � =

DECREASE-KEY( 8, 9, :9 ):

Potential function: Φ 2̀ � 2% 2̀ � 3 2̀

New trees: 1 tree rooted at <, and

1 tree produced by each of the = cascading cuts.

∴  2̀ � 2̀0A ! �= � 1
Marked nodes: 1 node unmarked by each cascading cut, and

at most 1 node marked by the last cut/cascading cut.

Potential drop, Δ2 � Φ 2̀ �Φ 2̀0A� 2 % 2̀ � % 2̀0A � 3  2̀ � 2̀0A! 2 1 � = � 3 �= � 1� �= � 5



Fibonacci Heaps from Binomial Heaps

Amortized cost, #̂2 � #2 � Δ2! 1 � = � �= � 5� 6� Ο 1

Potential function: Φ 2̀ � 2% 2̀ � 3 2̀
DECREASE-KEY( 8, 9, :9 ):



Fibonacci Heaps from Binomial Heaps

Potential function: Φ 2̀ � 2% 2̀ � 3 2̀
EXTRACT-MIN( 8 ):

Let �' be the max degree of any node in an �-node Fibonacci heap. 

Cost of creating the array of pointers is ! �' �1.

Suppose we start with = trees in the doubly linked list, and perform g
link operations during the conversion from linked list to array version.  

So we perform = � g work, and end up with = � g trees.

Cost of converting to the linked list version is = � g.
actual cost, #2 ! �' � 1 � = � g � = � g � 2= � �' � 1
Since no node is marked, and each link reduces the #trees by 1,

potential change, Δ2 � Φ 2̀ �Φ 2̀0A K �2g



Fibonacci Heaps from Binomial Heaps

Potential function: Φ 2̀ � 2% 2̀ � 3 2̀
EXTRACT-MIN( 8 ):

actual cost, #2 ! �' � 1 � = � g � = � g � 2= � �' � 1
potential change, Δ2 � Φ 2̀ �Φ 2̀0A K �2g
amortized cost, #̂2 � #2 � Δ2 ! 2 = � g � �' � 1
But  = � g ! �' � 1 ( as we have at most one tree of each rank )

So, #̂2 ! 3�' � 3 � Ο log � .



Fibonacci Heaps from Binomial Heaps

Potential function: Φ 2̀ � 2% 2̀ � 3 2̀
DELETE( 8, 9 ):

STEP 1: DECREASE-KEY( �, <,�∞)

STEP 2: EXTRACT-MIN( � )

amortized cost, #̂2 � amortized cost of DECREASE-KEY� amortized cost of EXTRACT-MIN� Ο 1 � Ο log �� Ο log �


