
CSE 548: Analysis of Algorithms

Lecture 10

(Dijkstra’s SSSP & Fibonacci Heaps)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2016

Fibonacci Heaps
(Fredman & Tarjan, 1984)

Heap Operation
Binary Heap

(worst-case)

Binomial Heap

(amortized)

MAKE-HEAP Θ 1 Θ 1
INSERT Ο log � Θ 1
MINIMUM Θ 1 Θ 1
EXTRACT-MIN Ο log � Ο log �
UNION Θ � Θ 1
DECREASE-KEY Ο log � �
DELETE Ο log � �

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

Fibonacci Heaps
(Fredman & Tarjan, 1984)

Heap Operation
Binary Heap

(worst-case)

Binomial Heap

(amortized)

MAKE-HEAP Θ 1 Θ 1
INSERT Ο log � Θ 1
MINIMUM Θ 1 Θ 1
EXTRACT-MIN Ο log � Ο log �
UNION Θ � Θ 1
DECREASE-KEY Ο log � Ο log �

(worst case)

DELETE Ο log � Ο log �
(worst case)

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

Fibonacci Heaps
(Fredman & Tarjan, 1984)

Heap Operation
Binary Heap

(worst-case)

Binomial Heap

(amortized)

Fibonacci Heap

(amortized)

MAKE-HEAP Θ 1 Θ 1 Θ 1
INSERT Ο log � Θ 1 Θ 1
MINIMUM Θ 1 Θ 1 Θ 1
EXTRACT-MIN Ο log � Ο log � Ο log �
UNION Θ � Θ 1 Θ 1
DECREASE-KEY Ο log � Ο log �

(worst case)
Θ 1

DELETE Ο log � Ο log �
(amortized)

Ο log �

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (� � 	, � , �,)

1. for each � ∈ � 	 do �. � ← ∞
2. . � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT(�, �)

5. while � � ∅ do

6. � ← EXTRACT-MIN(�)

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then

9. DECREASE-KEY(�, �, �. � � ��,�)

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a

weight function �, and a source vertex ∈ � 	 .

Output: For all � ∈ � 	 , �. � is set to the shortest distance from to �.

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (� � 	, � , �,)

1. for each � ∈ � 	 do �. � ← ∞
2. . � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT(�, �)

5. while � � ∅ do

6. � ← EXTRACT-MIN(�)

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then

9. DECREASE-KEY(�, �, �. � � ��,�)

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a

weight function �, and a source vertex ∈ � 	 .

Output: For all � ∈ � 	 , �. � is set to the shortest distance from to �.

Let � � � 	 and � � �
INSERTS � �
EXTRACT-MINS � �
DECREASE-KEYS !
Total cost! 	� #$%&'()*+ � #$%,-+*./+012'�	 #$%3)/*).()04)5

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (� � 	, � , �,)

1. for each � ∈ � 	 do �. � ← ∞
2. . � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT(�, �)

5. while � � ∅ do

6. � ← EXTRACT-MIN(�)

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then

9. DECREASE-KEY(�, �, �. � � ��,�)

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a

weight function �, and a source vertex ∈ � 	 .

Output: For all � ∈ � 	 , �. � is set to the shortest distance from to �.

Let � � � 	 and � � �
For Binary Heap (worst-case costs):#$%&'()*+ � Ο log � 	#$%,-+*./+012' � Ο log �#$%3)/*).()04)5 � Ο log �
∴ Total cost (worst-case) � Ο � � log �

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (� � 	, � , �,)

1. for each � ∈ � 	 do �. � ← ∞
2. . � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT(�, �)

5. while � � ∅ do

6. � ← EXTRACT-MIN(�)

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then

9. DECREASE-KEY(�, �, �. � � ��,�)

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a

weight function �, and a source vertex ∈ � 	 .

Output: For all � ∈ � 	 , �. � is set to the shortest distance from to �.

Let � � � 	 and � � �
For Binomial Heap (amortized costs):#$%&'()*+ � Ο 1 	#$%,-+*./+012' � Ο log �#$%3)/*).()04)5 � Ο log �

(worst-case)

∴ Total cost (worst-case) � Ο � � log �

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (� � 	, � , �,)

1. for each � ∈ � 	 do �. � ← ∞
2. . � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT(�, �)

5. while � � ∅ do

6. � ← EXTRACT-MIN(�)

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then

9. DECREASE-KEY(�, �, �. � � ��,�)

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a

weight function �, and a source vertex ∈ � 	 .

Output: For all � ∈ � 	 , �. � is set to the shortest distance from to �.

Let � � � 	 and � � �
Total cost! 	� #$%&'()*+ � #$%,-+*./+012'�	 #$%3)/*).()04)5
Observation:

Obtaining a worst-case bound for a

sequence of � INSERTS, � EXTRACT-MINS

and DECREASE-KEYS is enough.∴ Amortized bound per operation is

sufficient.

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (� � 	, � , �,)

1. for each � ∈ � 	 do �. � ← ∞
2. . � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT(�, �)

5. while � � ∅ do

6. � ← EXTRACT-MIN(�)

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then

9. DECREASE-KEY(�, �, �. � � ��,�)

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a

weight function �, and a source vertex ∈ � 	 .

Output: For all � ∈ � 	 , �. � is set to the shortest distance from to �.

Let � � � 	 and � � �
Total cost! 	� #$%&'()*+ � #$%,-+*./+012'�	 #$%3)/*).()04)5
Observation:

For � #$%&'()*+ � #$%,-+*./+012' 	
the best possible bound is Θ � log � .

(else violates sorting lower bound)

Perhaps #$%3)/*).()04)5 can be

improved to o log � .

Fibonacci Heaps from Binomial Heaps

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

But the trees in a Fibonacci heap are no longer binomial trees as we

will be cutting subtrees out of them.

However, all operations (except DECREASE-KEY and DELETE) are still

performed in the same way as in binomial heaps.

The rank of a tree is still defined as the number of children of the root,

and we still link two trees if they have the same rank.

Implementing DECREASE-KEY7	8, 9, :	;
DECREASE-KEY(8, 9, :): One possible approach is to cut out the

subtree rooted at < from �, reduce the value of < to =, and insert that

subtree into the root list of �.

Problem: If we cut out a lot of subtrees from a tree its size will no

longer be exponential in its rank. Since our analysis of EXTRACT-MIN in

binomial heaps was highly dependent on this exponential relationship,

that analysis will no longer hold.

Solution: Limit #cuts among the children of any node to 2. We will

show that the size of each tree will still remain exponential in its rank.

When a 2nd child is cut from a node <, we also cut < from its parent

leading to a possible sequence of cuts moving up towards the root.

Analysis of Fibonacci Heap Operations

>' � ? 0 @>	� � 0,1 @>	� � 1,>'0A � >'0B $%CDE�@D.Recurrence for Fibonacci numbers:

We showed in a pervious lecture: >' � AFG �' � �H' ,

where � � AI FGB and �H � AI FGB 	 are the roots JB � J � 1 � 0.

Lemma 1: For all integers � K 0, >'IB � 1 � ∑ >2'2MN .

Inductive hypothesis: >OIB � 1 � ∑ >2O2MN for 0 ! = ! � � 1.

Then >'IB � >'IA � >' � >' � 1 � ∑ >2'0A2MN � 1 � ∑ >2'2MN .

Proof: By induction on �.

Base case: >B � 1 � 1 � 0 � 1 � >N � 1 � ∑ >2'2MN .

Analysis of Fibonacci Heap Operations

Lemma 2: For all integers � K 0, >'IB K �'.

Inductive hypothesis: >OIB K �O for 0 ! = ! � � 1.

Then >'IB � >'IA � >'K �'0A � �'0B� � � 1 �'0B� �B�'0B� �'

Proof: By induction on �.

Base case: >B � 1 � �N and >P � 2 � �A.

Analysis of Fibonacci Heap Operations

Lemma 3: Let < be any node in a Fibonacci heap, and suppose that = � ER�= < . Let SA, SB, … , SO be the children of < in the order in

which they were linked to <, from the earliest to the latest. Then ER�= S2 K max 0, @ � 2 for 1 ! @ ! =.

Proof: Obviously, ER�= SA K 0.

For @ � 1, when S2 was linked to <, all of SA, SB, … , S20A were children

of <. So, ER�= < K @ � 1.

Because S2 is linked to < only if ER�= S2 � ER�= < , we must have

had ER�= S2 K @ � 1 at that time.

Since then, S2 has lost at most one child, and hence ER�= S2 K @ � 2.

<
SASBSPSO0ASO

Analysis of Fibonacci Heap Operations

Lemma 4: Let J be any node in a Fibonacci heap with � � @JD J
and E � ER�= J . Then E ! logX �.

Proof: Let O be the minimum possible size of any node of rank = in

any Fibonacci heap.

Trivially, N � 1 and A � 2.

Since adding children to a node cannot decrease its size, O increases

monotonically with =.

Let < be a node in any Fibonacci heap with ER�= < � E and @JD < � *.

Analysis of Fibonacci Heap Operations

Proof (continued): Let SA, SB, … , S* be the children of < in the order

in which they were linked to <, from the earliest to the latest.

Then * K 1 � ∑ *.'O 5Y*2MA K 1 � ∑ Z[\ N,20B*2MA � 2 � ∑ 20B*2MB
We now show by induction on E that * K >*IB for all integer E K 0.

Base case: N � 1 � >B and A � 2 � >P.

Inductive hypothesis: O K >OIB for 0 ! = ! E � 1.

Then * K 2 � ∑ 20B*2MB K 2 � ∑ >2*2MB � 1 � ∑ >2*2MA � >*IB.
Hence � K * K >*IB K �* ⇒ E ! logX � .

Lemma 4: Let J be any node in a Fibonacci heap with � � @JD J
and E � ER�= J . Then E ! logX �.

Analysis of Fibonacci Heap Operations

Proof: Let J be any node in the heap.

Then from Lemma 4, 							�D^EDD J � ER�= J ! logX @JD J ! logX � � Ο log � .

Corollary: The maximum degree of any node in an � node Fibonacci

heap is Ο log � .

Analysis of Fibonacci Heap Operations

We extend the potential function used for binomial heaps:

Φ 2̀ � 2% 2̀ � 3 2̀ ,

where 2̀ is the state of the data structure after the @+b operation,% 2̀ is the number of trees in the root list, and 2̀ is the number of marked nodes.

Analysis of Fibonacci Heap Operations

We mark a node when

− it loses its first child

We unmark a node when

− it loses its second child, or

− becomes the child of another node (e.g., LINKed)

All nodes are initially unmarked.

∴ overall actual cost, #2 � 1 � =

DECREASE-KEY(8, 9, :9): Let = � #cascading cuts performed.

We extend the potential function used for binomial heaps:

Φ 2̀ � 2% 2̀ � 3 2̀ ,

where 2̀ is the state of the data structure after the @+b operation,% 2̀ is the number of trees in the root list, and 2̀ is the number of marked nodes.

Then the actual cost of cutting the tree rooted at < is 1, and

the actual cost of each of the cascading cuts is also 1.

Analysis of Fibonacci Heap Operations

Fibonacci Heaps from Binomial Heaps

∴ % 2̀ � % 2̀0A � 1 � =

DECREASE-KEY(8, 9, :9):

Potential function: Φ 2̀ � 2% 2̀ � 3 2̀

New trees: 1 tree rooted at <, and

1 tree produced by each of the = cascading cuts.

∴ 2̀ � 2̀0A ! �= � 1
Marked nodes: 1 node unmarked by each cascading cut, and

at most 1 node marked by the last cut/cascading cut.

Potential drop, Δ2 � Φ 2̀ �Φ 2̀0A� 2 % 2̀ � % 2̀0A � 3 2̀ � 2̀0A! 2 1 � = � 3 �= � 1� �= � 5

Fibonacci Heaps from Binomial Heaps

Amortized cost, #̂2 � #2 � Δ2! 1 � = � �= � 5� 6� Ο 1

Potential function: Φ 2̀ � 2% 2̀ � 3 2̀
DECREASE-KEY(8, 9, :9):

Fibonacci Heaps from Binomial Heaps

Potential function: Φ 2̀ � 2% 2̀ � 3 2̀
EXTRACT-MIN(8):

Let �' be the max degree of any node in an �-node Fibonacci heap.

Cost of creating the array of pointers is ! �' �1.

Suppose we start with = trees in the doubly linked list, and perform g
link operations during the conversion from linked list to array version.

So we perform = � g work, and end up with = � g trees.

Cost of converting to the linked list version is = � g.
actual cost, #2 ! �' � 1 � = � g � = � g � 2= � �' � 1
Since no node is marked, and each link reduces the #trees by 1,

potential change, Δ2 � Φ 2̀ �Φ 2̀0A K �2g

Fibonacci Heaps from Binomial Heaps

Potential function: Φ 2̀ � 2% 2̀ � 3 2̀
EXTRACT-MIN(8):

actual cost, #2 ! �' � 1 � = � g � = � g � 2= � �' � 1
potential change, Δ2 � Φ 2̀ �Φ 2̀0A K �2g
amortized cost, #̂2 � #2 � Δ2 ! 2 = � g � �' � 1
But = � g ! �' � 1 (as we have at most one tree of each rank)

So, #̂2 ! 3�' � 3 � Ο log � .

Fibonacci Heaps from Binomial Heaps

Potential function: Φ 2̀ � 2% 2̀ � 3 2̀
DELETE(8, 9):

STEP 1: DECREASE-KEY(�, <,�∞)

STEP 2: EXTRACT-MIN(�)

amortized cost, #̂2 � amortized cost of DECREASE-KEY� amortized cost of EXTRACT-MIN� Ο 1 � Ο log �� Ο log �

