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Approximation Ratio

Consider an optimization problem � in which each potential 

solution has a positive cost.

An algorithm � for solving � has approximation ratio of � � if, for 

any input of size �, the cost � of the solution produced by � is 

within a factor � � of the cost �∗ of an optimal solution: 

max �
�∗ ,
�∗
� � � � .

We call � a � � -approximation algorithm.  



Approximation Ratio

max �
�∗ ,
�∗
� � � �

Maximization problem: 0 � � � �∗, and the ratio 
�∗
� gives the 

factor by which the cost of an optimal solution is larger than the 

cost of the approximate solution. 

Minimization problem: 0 � �∗ � �, and the ratio 
�
�∗ gives the 

factor by which the cost of the approximate solution is larger than 

the cost of an optimal solution. 



Approximation Scheme

An approximation scheme for an optimization problem is an 

approximation algorithm that takes as input not only an instance of 

the problem, but also a value � � 0 such that for any fixed �, the 

scheme is a 1 � � -approximation algorithm.

An approximation scheme is a polynomial-time approximation 

scheme if for any fixed � � 0, the scheme runs in time polynomial 

in the size � of its input instance.

An approximation scheme is a fully polynomial-time approximation 

scheme if it is an approximation scheme and its running time is 

polynomial in both 
�
� and the size � of the input instance.



Vertex Cover

A vertex cover of an undirected graph � � �, � is a subset �� ⊆ �
such that if �, � ∈ �, then either � ∈ �′ or � ∈ �′ (or both). 

The size of a vertex cover is the number of vertices in it.

The vertex-cover problem is to find a vertex cover of minimum size 

in a given undirected graph. We call such a vertex cover an optimal 

vertex cover.  This problem is the optimization version of an NP-

complete decision problem. 

Even though we do not know how to find an optimal vertex cover 

in polynomial time, we can efficiently find one that is near-optimal. 



Vertex Cover

APPROX-VERTEX-COVER ( � � �, � )

1. � ← ∅
2. �� ← �. �
3. while �′ " ∅ do

4. let �, � be an arbitrary edge of �′
5. � ← � ∪ �, �
6. remove from �′	 every edge incident on either � or �	
7. return �

Input: Undirected graph � � �, � with vertex set � and edge set �. 

Output: A vertex cover � ⊆ �. � which is not necessarily optimal.



Vertex Cover

Source: “Introduction to Algorithms” (3rd edition) by Cormen, Leiserson, Rivest and Stein.



Vertex Cover

Theorem 1: APPROX-VERTEX-COVER is a polynomial-time 

2-approximation algorithm for the Vertex Cover problem.

Proof: Let � � |�. �| and ' � |�. �|. Then running time is clearly 

()� �'* assuming �′ is represented as an adjacency list.

Since lines 3—6 iterate until every edge in �. � is covered by some 

vertex in �, the algorithm returns a vertex cover of � in �. 

Let � be the set of edges that was picked by line 4. In order to 

cover the edges in �, any vertex cover — in particular, an optimal 

cover �∗ — must include at least one endpoint of each edge in �. 

But once an edge is picked in line 4, all other edges incident on its 

endpoints are removed from �′ in line 6. Thus, no two edges in �
are covered by the same vertex from �∗, and hence,

�∗ + � .



Vertex Cover

Proof: … … … no two edges in � are covered by the same vertex 

from �∗, and hence,

�∗ + � .

Each execution of line 4 picks an edge for which neither of its 

endpoints are already in �, and hence, 

� � 2 � .

Combining the two relationships above, we get:

� � 2 � � 2 �∗ .

Theorem 1: APPROX-VERTEX-COVER is a polynomial-time 

2-approximation algorithm for the Vertex Cover problem.



The Traveling Salesman Problem

In the Traveling Salesman Problem (TSP) we are given a complete 

undirected graph � � �, � with a nonnegative integer cost , �, �
associated with each edge �, � ∈ �. �.

The goal is to find a Hamiltonian cycle (a tour) of �	with minimum cost.

We say that the cost function , satisfies the triangle inequality provided 

the following holds for ∀�, �, . ∈ �. �: 

, �, . � , �, � � , �,. .
The TSP problem is NP-complete even if we require the cost function to 

satisfy the triangle inequality.



The Traveling Salesman Problem 

with Triangle Inequality

APPROX-TSP-TOUR ( � � �, � , c )

1. select a vertex / ∈ �. � to be a “root” vertex

2. compute a minimum spanning tree 0 for � from root /
3. let 1 be a list of vertices, ordered according to when they are 

first visited in a preorder tree walk of 0
4. return the Hamiltonian cycle 1

Input: Complete undirected graph � � �, � with nonnegative integer cost , �, � associated with each edge �, � ∈ �. �. The cost function , satisfies 

the triangle inequality, i.e., for ∀�, �, . ∈ �. �: , �, . � , �, � � , �,. .
Output: A TSP tour of �. � with cost at most 2 times that of optimal.



The Traveling Salesman Problem 

with Triangle Inequality

Source: “Introduction to Algorithms” (3rd edition) by Cormen, Leiserson, Rivest and Stein.

The operation of APPROX-TSP-TOUR:

(a) A complete undirected graph. Vertices lie on intersections of integer grid lines. For example, 2 is

one unit to the right and two units up from 3. The cost function between two points is the

ordinary Euclidean distance.

(b) A minimum spanning tree 0 of the complete graph. Vertex 4 is the root vertex. Only edges in

the minimum spanning tree are shown.

(c) A walk of 0 , starting at a. A full walk of the tree visits the vertices in the order4, 5, ,, 5, 3, 5, 4, 6, 7, 2, 7, 8, 7, 6, 4. A preorder walk of 0 lists a vertex just when it is first

encountered, as indicated by the dot next to each vertex, yielding the ordering4, 5, ,, 3, 6, 7, 2, 8.

(d) A tour obtained by visiting the vertices in the order given by the preorder walk, which is the

tour 1 returned by APPROX-TSP-TOUR. Its total cost is approximately 19.074.

(e) An optimal tour 1∗ for the original complete graph. Its total cost is approximately 14.715.



The Traveling Salesman Problem 

with Triangle Inequality

Theorem 2: APPROX-TSP-TOUR is a polynomial-time 2-approximation 

algorithm for the TSP problem with triangle inequality.

Proof: Since a minimum spanning tree 0 and its preorder traversal 

can be found in polynomial time, APPROX-TSP-TOUR is a polynomial-

time algorithm.

Let 1∗ be an optimal tour of the given set of vertices. We obtain a 

spanning tree by deleting any edge from a tour, and each edge cost 

is nonnegative. Hence, assuming that , � denotes the total cost 

of the edges in any given subset � ∈ �. �, we have:

, 0 � , 1∗ (1)



The Traveling Salesman Problem 

with Triangle Inequality

Theorem 2: APPROX-TSP-TOUR is a polynomial-time 2-approximation 

algorithm for the TSP problem with triangle inequality.

Proof: … … … 

A full walk of 0 lists the vertices when they are first visited and also 

whenever they are returned to after a visit to a subtree. Let us call 

this full walk 9 . The full walk of our example gives the order

4, 5, ,, 5, 3, 5, 4, 6, 7, 2, 7, 8, 7, 6, 4.

Since the full walk traverses every edge of 0 exactly twice, we have 

(extending our definition of the cost , in the natural manner to 

handle multisets of edges): 

, 9 � 2, 0 (2)  



The Traveling Salesman Problem 

with Triangle Inequality

Theorem 2: APPROX-TSP-TOUR is a polynomial-time 2-approximation 

algorithm for the TSP problem with triangle inequality.

Proof: … … … 

Combining (1) and (2), we have: 

, 9 � 2, 1∗ (3)  

Unfortunately, 9 is generally not a tour, since it visits some 

vertices more than once. By the triangle inequality, however, we 

can delete a visit to any vertex from 9 and the cost does not 

increase. By repeatedly applying this operation, we can remove 

from 9 all but the first visit to each vertex. In our example, this 

leaves the ordering:

4, 5, ,, 3, 6, 7, 2, 8.



The Traveling Salesman Problem 

with Triangle Inequality

Theorem 2: APPROX-TSP-TOUR is a polynomial-time 2-approximation 

algorithm for the TSP problem with triangle inequality.

Proof: … … … 

This ordering is the same as that obtained by a preorder walk of 

the tree 0. Let 1	be the cycle corresponding to this preorder walk. 

It is a Hamiltonian cycle, since every vertex is visited exactly once, 

and in fact it is the cycle computed by APPROX-TSP-TOUR. Since 1 is 

obtained by deleting vertices from the full walk 9, we have

, 1 � , 9 (4)

Combining inequalities (3) and (4) gives:

, 1 � 2, 1∗ .



The General Traveling Salesman Problem 

(i.e., without Triangle Inequality)

Theorem 3: If � " :�, then for any constant � + 1, there is no 

polynomial-time approximation algorithm with approximation ratio 

� for the general traveling-salesman problem.

Proof: The proof is by contradiction.  

Suppose to the contrary that for some number � + 1, there is a 

polynomial-time approximation algorithm � with approximation

ratio �. Without loss of generality, we assume that � is an integer, by 

rounding it up if necessary. 

We will show how to use � to solve instances of the Hamiltonian-cycle 

problem in polynomial time. Since we know that Hamiltonian-cycle 

problem is NP-complete (see Theorem 34.13 of CLRS, 3rd ed), Theorem 

3 implies that if we can solve it in polynomial time, then � � :�. 



The General Traveling Salesman Problem 

(i.e., without Triangle Inequality)

Theorem 3: If � " :�, then for any constant � + 1, there is no 

polynomial-time approximation algorithm with approximation ratio 

� for the general traveling-salesman problem.

Proof: … … …  

Let � � �, � be an instance of the Hamiltonian-cycle problem. We 

wish to determine efficiently whether � contains a Hamiltonian cycle 

by making use of the hypothesized approximation algorithm �. 

We turn � into an instance of the traveling-salesman problem as 

follows. Let �� � �, �′ be the complete graph on �; that is,

�� � �, � : �, � ∈ �	4�6	� " � .



The General Traveling Salesman Problem 

(i.e., without Triangle Inequality)

Theorem 3: If � " :�, then for any constant � + 1, there is no 

polynomial-time approximation algorithm with approximation ratio 

� for the general traveling-salesman problem.

Proof: … … …  

Assign an integer cost to each edge in �′ as follows:

, �, � � <1															 =2	 �, � ∈ �,
� � � 1 >?37/.=@7.				

We can create representations of �′ and , from a representation of �
in time polynomial in � and � . 



The General Traveling Salesman Problem 

(i.e., without Triangle Inequality)

Theorem 3: If � " :�, then for any constant � + 1, there is no 

polynomial-time approximation algorithm with approximation ratio 

� for the general traveling-salesman problem.

Proof: … … …  

Now, consider the traveling-salesman problem ��, , . If the original 

graph � has a Hamiltonian cycle 1, then the cost function , assigns to 

each edge of 1 a cost of 1, and so ��, , contains a tour of cost � . 

On the other hand, if � does not contain a Hamiltonian cycle, then any 

tour of �′must use some edge not in �. But any tour that uses an edge 

not in � has a cost of at least

� � � 1 � � A 1 � � � � � � � � .



The General Traveling Salesman Problem 

(i.e., without Triangle Inequality)

Theorem 3: If � " :�, then for any constant � + 1, there is no 

polynomial-time approximation algorithm with approximation ratio 

� for the general traveling-salesman problem.

Proof: … … …  

Because edges not in � are so costly, there is a gap of at least � �
between the cost of a tour that is a Hamiltonian cycle in � (cost � ) 

and the cost of any other tour (cost at least � � � � ). Therefore, the 

cost of a tour that is not a Hamiltonian cycle in � is at least a factor of 

� � 1 greater than the cost of a tour that is a Hamiltonian cycle in �. 



The General Traveling Salesman Problem 

(i.e., without Triangle Inequality)

Theorem 3: If � " :�, then for any constant � + 1, there is no 

polynomial-time approximation algorithm with approximation ratio 

� for the general traveling-salesman problem.

Proof: … … …  

Now, suppose that we apply the approximation algorithm � to the 

traveling salesman problem ��, , . Because � is guaranteed to return 

a tour of cost no more than � times the cost of an optimal tour, if �
contains a Hamiltonian cycle, then � must return it. If � has no 

Hamiltonian cycle, then � returns a tour of cost more than � � . 

Therefore, we can use � to solve the Hamiltonian-cycle problem

in polynomial time. 



Set Covering Problem

An instance B, C of the set-covering problem consists of a finite set B
and a family C of subsets of B, such that every element of B belongs to 

at least one subset in C:

B �DE
F

G∈H
.

We say that a subset E ∈ C covers its elements. The problem is to find a 

minimum size subset � ⊆ C whose members cover all of B:

B �DE
F

G∈�
.

We say that any � satisfying the equation above covers B.



Set Covering Problem

An instance B, C of the set-covering problem, where B consists of the 

12 black points and C � E�, EI, EJ, EK, EL, EM . A minimum-size set cover 

is � � EJ, EK, EL with size 3. The greedy algorithm produces a cover of 

size 4 by selecting either the sets E�, EK, EL, and EJ or the sets E�, EK, EL,
and EM, in order.

Source: “Introduction to Algorithms” (3rd edition) by Cormen, Leiserson, Rivest and Stein.



Set Covering Problem

GREEDY-SET-COVER ( B, C )

1. N ← B
2. � ← ∅
3. while N " ∅ do

4. select an E ∈ C that maximizes E ∩ N
5. N ← N A E
6. � ← � ∪ E 	
7. return �

Input: A finite set B and a family C of subsets of B, such that every element 

of B belongs to at least one subset in C. 

Output: A set � ⊆ C covering B which is not necessarily optimal.



Set Covering Problem

Theorem 4: GREEDY-SET-COVER is a polynomial-time � � -approximation 

algorithm, where � � � 1 max E : E ∈ C ,  1 6 � ∑ �
QRQS� and 

1 0 � 0.

Proof: GREEDY-SET-COVER clearly runs in polynomial time.  

To show that GREEDY-SET-COVER is a � � -approximation algorithm, we 

assign a cost of 1 to each set selected by the algorithm, distribute this 

cost over the elements covered for the first time, and then use these 

costs to derive the desired relationship between the size of an optimal 

set cover �∗ and the size of the set cover � returned by the algorithm. 

Let EQ denote the =-th subset selected by GREEDY-SET-COVER; a cost of 1 

is incurred when EQ is added to �. We spread this cost of selecting EQ
evenly among the elements covered for the first time by EQ. 



Set Covering Problem

Theorem 4: GREEDY-SET-COVER is a polynomial-time � � -approximation 

algorithm, where � � � 1 max E : E ∈ C ,  1 6 � ∑ �
QRQS� and 

1 0 � 0.

Proof: … … …

Let ,T denote the cost allocated to element U, for each U ∈ B. Each 

element is assigned a cost only once, when it is covered for the first 

time. If U is covered for the first time by EQ, then

,T � 1
EQ A E� ∪ EI ∪⋯∪ EQW�

Each step of the algorithm assigns 1 unit of cost, and so

� � X,T
F

T∈Y
																																														)1*



Set Covering Problem

Theorem 4: GREEDY-SET-COVER is a polynomial-time � � -approximation 

algorithm, where � � � 1 max E : E ∈ C ,  1 6 � ∑ �
QRQS� and 

1 0 � 0.

Proof: … … …

Each U ∈ B is in at least one set in the optimal cover �∗, and so

XX,T
F

T∈G

F

G∈�∗
+ X,T

F

T∈Y
																																			)2*

Combining (1) and (2) we have

� � X X,T
F

T∈G

F

G∈�∗
																																					)3*



Set Covering Problem

Theorem 4: GREEDY-SET-COVER is a polynomial-time � � -approximation 

algorithm, where � � � 1 max E : E ∈ C ,  1 6 � ∑ �
QRQS� and 

1 0 � 0.

Proof: … … …

The remainder of the proof rests on the following key inequality, which 

we will prove shortly. For any set E belonging to the family C,

X,T
F

T∈G
� 1 E 																																								)4*

From (3) and (4) we get the following which proves the theorem.

� � X 1 E
F

G∈�∗
� �∗ ⋅ 1 max E : E ∈ C



Set Covering Problem

Theorem 4: GREEDY-SET-COVER is a polynomial-time � � -approximation 

algorithm, where � � � 1 max E : E ∈ C ,  1 6 � ∑ �
QRQS� and 

1 0 � 0.

Proof: … … …

All that remains is to prove inequality (4). Consider any set E ∈ C and 

any = � 1,2,… , � , and let

�Q � E A E� ∪ EI ∪⋯∪ EQ
be the number of elements in E that remain uncovered after the 

algorithm has selected sets E�, EI, … , EQ.
We define �^ � E to be the number of elements of E, which are all 

initially uncovered. 



Set Covering Problem

Theorem 4: GREEDY-SET-COVER is a polynomial-time � � -approximation 

algorithm, where � � � 1 max E : E ∈ C ,  1 6 � ∑ �
QRQS� and 

1 0 � 0.

Proof: … … …

Let _ be the least index such that �` � 0, so that every element in E is 

covered by at least one of the sets E�, EI, … , E` and some element in E
is uncovered by E� ∪ EI ∪⋯∪ E`W�. Then, �QW� + �Q, and �QW� A �Q
elements of E are covered for the first time by EQ, for = � 1,2, … , _.

Thus,

X,T
F

T∈G
�X �QW� A �Q ⋅

`

QS�
1

EQ A E� ∪ EI ∪⋯∪ EQW� .



Set Covering Problem

Theorem 4: GREEDY-SET-COVER is a polynomial-time � � -approximation 

algorithm, where � � � 1 max E : E ∈ C ,  1 6 � ∑ �
QRQS� and 

1 0 � 0.

Proof: … … …

Observe that

EQ A E� ∪ EI ∪⋯∪ EQW� + E A E� ∪ EI ∪⋯∪ EQW� � �QW�,
because the greedy choice of EQ guarantees that E cannot cover more 

new elements than EQ does (otherwise, the algorithm would have 

chosen E instead of EQ ). Consequently, we obtain

X,T
F

T∈G
�X �QW� A �Q ⋅

`

QS�
1
�QW� .



Set Covering Problem

Theorem 4: GREEDY-SET-COVER is a polynomial-time � � -approximation 

algorithm, where � � � 1 max E : E ∈ C ,  1 6 � ∑ �
QRQS� and 

1 0 � 0.

Proof: … … …

X,T
F

T∈G
�X �QW� A �Q ⋅

`

QS�
1
�QW� �X X 1

�QW�
abcd

eSabf�

`

QS�
�X X 1

g
abcd

eSabf�

`

QS�

�X X 1
g

abcd

eS�
AX1

g
ab

eS�

`

QS�
�X 1 �QW� A1 �Q

`

QS�
� 1 �^ A1 �`

� 1 �^ A1 0 � 1 �^ � 1 E ,
which completes the proof of inequality (4).



Set Covering Problem

Corollary 4: GREEDY-SET-COVER is a polynomial-time ln B � 1 -

approximation algorithm.

Proof: Since we know ∑ �
`jQS� � ln� � 1, corollary 4 directly follows 

from Theorem 4.



Subset Sum Problem

An instance E, ? of the subset sum problem consists of a set E �U�, UI, … , Uj of positive integers, and a positive integer ?. This 

decision  problem asks whether there exists a subset of E that adds up 

exactly to the target value ?. This problem is NP-complete.

The optimization problem associated with this decision problem asks 

you to find a subset of E � U�, UI, … , Uj whose sum is as large as 

possible but not larger than ?. 



Subset Sum: An Exponential-Time Exact Algorithm

EXACT-SUBSET-SUM ( E, ? )

1. � ← E
2. k^ 	← 0
3. for = ← 1 to �	do

4. kQ ← MERGE-LISTS ( kQW�, kQW� � UQ )

5. remove from kQ every element that is greater than ?
6. return the largest element in kj

Input: A set E � U�, UI, … , Uj of positive integers, and a positive integer ?. 
Output: Sum of the elements of a subset of E whose elements sum up to the 

largest value not exceeding ?.

If k is a list of positive integers and U is another positive integer, then we let k � U denote the list of integers derived from k by increasing each element 

of k by U. For example, if k � 1,2,3,5,9 , then k � 2 � 3,4,5,7,11 .

MERGEALISTS)k, k′* returns the sorted list by merging its two sorted input 

lists k and k′ with duplicates removed. It runs in time ( k � k′ .



Subset Sum:

A Fully Polynomial-Time Approximation Scheme

TRIM ( k, w )

1. ' ← k
2. k′	 ← x�
3. y4@?	 ← x�
4. for = ← 2 to '	do

5. if xQ � y4@? ⋅ 1 � w then

6. append xQ onto the end of k′
7. y4@?	 ← xQ
8. return k′

Input: A list k � 〈x�, xI, … , x{〉 of numbers sorted into monotonically 

increasing order, and a trimming parameter w with 0 � w � 1. 

Output: A list k′ obtained by removing as many elements from k as possible 

such that for every element x that is removed from k there is an item } still 

in k′ satisfying 
~
�f� � } � x.

Example: If w � 0.1 and k � 〈10,11,12,15,20,21,22,23,24,29〉 then k′ �〈10,12,15,20,23,29〉. 



Subset Sum:

A Fully Polynomial-Time Approximation Scheme

APPROX-SUBSET-SUM ( E, ?, � )

1. � ← E
2. k^ 	← 0
3. for = ← 1 to �	do

4. kQ ← MERGE-LISTS ( kQW�, kQW� � UQ )

5. kQ ← TRIM ( kQ , �Ij )

6. remove from kQ every element that is greater than ?
7. let }∗ be the largest value in kj
8. return }∗

Input: A set E � U�, UI, … , Uj of � integers (in arbitrary order), a target 

integer ?, and an “approximation parameter” �, where 0 � � � 1.  

Output: It returns a subset sum whose value is within a 1 � � factor of the 

optimal.



Subset Sum:

A Fully Polynomial-Time Approximation Scheme

APPROX-SUBSET-SUM ( E, ?, � )

1. � ← E
2. k^ 	← 0
3. for = ← 1 to �	do

4. kQ ← MERGE-LISTS ( kQW�, kQW� � UQ )

5. kQ ← TRIM ( kQ , �Ij )

6. remove from kQ every element that is greater than ?
7. let }∗ be the largest value in kj
8. return }∗

Example Instance: E � 104, 102, 201, 101 ,

? � 308, � � 0.4, and w � �
Ij � ^.K

� .  

Execution:

line 2: k^ � 0 ,
line 4: k� � 0, 104 ,
line 5: k� � 0, 104 ,
line 6: k� � 0, 104 ,
line 4: kI � 0, 102, 104, 206 ,
line 5: kI � 0, 102, 206 ,
line 6: kI � 0, 102, 206 ,
line 4: kJ � 0, 102, 201, 206, 303, 407 ,
line 5: kJ � 0, 102, 201, 303, 407 ,
line 6: kJ � 0, 102, 201, 303 ,
line 4: kK � 0, 101, 102, 201, 203, 302, 303, 404 ,
line 5: kK � 0, 101, 201, 302, 404 ,
line 6: kK � 0, 101, 201, 302 .

The algorithm returns }∗ � 302 as 

the answer which within � � 40%
of the optimal 

307 � 104 � 102 � 101; 

in fact, it is within 2%.



Subset Sum
Theorem 4: APPROX-SUBSET-SUM is a fully polynomial-time 

approximation scheme for the subset sum problem.

Proof: Let �Q denote the set of all values obtained by selecting a 

(possibly empty) subset of U�, UI, … , UQ and summing its members.  

The operations of trimming kQ in line 5 and removing from kQ every 

element that is greater than ? maintain the property that every 

element of kQ is also a member of �Q . Therefore, the value }∗ returned 

in line 8 is indeed the sum of some subset of E. 

Let x∗ ∈ �j denote an optimal solution to the subset-sum problem.

Then, from line 6, we know that }∗ � x∗. Now we need to show:

)=* ~∗�∗ � 1 � �, and  

)==*	running time of this algorithm is polynomial in both 
�
� and the 

size of the input. 



Subset Sum
Theorem 4: APPROX-SUBSET-SUM is a fully polynomial-time 

approximation scheme for the subset sum problem.

Proof: … … … 

One can show that (see Exercise 35.5-2 of CLRS), for every element x in 

�Q that is at most ?, there exists an element } ∈ kQ such that 

x
1 � �2�

Q � } � x																																					)1*

Inequality (1) must hold for x∗ ∈ �j, and therefore there exists an 

element } ∈ kj such that

x∗
1 � �2�

j � } � x∗																																						)2*



Subset Sum
Theorem 4: APPROX-SUBSET-SUM is a fully polynomial-time 

approximation scheme for the subset sum problem.

Proof: … … … 

Thus

x∗
} � 1 � �

2�
j 																																										)3*

Since there exists an element } ∈ kj fulfilling inequality (3), the 

inequality must hold for }∗, which is the largest value in kj; that is,

x∗
}∗ � 1 � �

2�
j 																																										)4*

But

limj→� 1 � �
2�

j � 7�I																																										)5*



Subset Sum
Theorem 4: APPROX-SUBSET-SUM is a fully polynomial-time 

approximation scheme for the subset sum problem.

Proof: … … … 

One can also show that (see Exercise 35.5-3 of CLRS)

6
6� 1 �

�
2�

j � 0																																										)6*

Therefore, we have

1 � �
2�

j � 7�I � 1 � �2 �
�
2
I � 1 � �

Hence, combining with inequality (4), we get

x∗
}∗ � 1 � �

2�
j � 1 � �



Subset Sum
Theorem 4: APPROX-SUBSET-SUM is a fully polynomial-time 

approximation scheme for the subset sum problem.

Proof: … … … 

To show that APPROX-SUBSET-SUM is a fully polynomial-time 

approximation scheme, we derive a bound on the length of kQ. After 

trimming, successive elements }′ and } of kQ must have the 

relationship 
��
� � 1 � �

Ij. Each list, therefore, contains the value 0,

possibly the value 1, and up to log�f ��� ? additional values. The 

number of elements in each list kQ is at most

2 � log�f�/Ij ? � 2 � ln ?
ln 1 � �2�

� 2 � 2� 1 �
�2� ln ?� � 3� ln ?� � 2



Subset Sum
Theorem 4: APPROX-SUBSET-SUM is a fully polynomial-time 

approximation scheme for the subset sum problem.

Proof: … … … 

The bound is polynomial in the size of the input—which is the 

number of bits lg ? needed to represent t plus the number of bits 

needed to represent the set E, which is in turn polynomial in �—

and in 
�
�. Since the running time of APPROX-SUBSET-SUM is polynomial 

in the lengths of the kQ , we conclude that APPROX-SUBSET-SUM

is a fully polynomial-time approximation scheme.








