CSEb548, AMS542: Analysis of Algorithms, Fall 2017 Date: Dec 3

Homework #4
(Due: Dec 12)

Task 1. [80 Points | Selection in Parallel

Given an array of n distinct numbers and an integer k € [1,n], this task asks you to select and
return the k-th smallest number in the array efficiently in parallel.

Select (A[qg:r], k)

1. n<r—q+1

2. if n <140 then

3. sort Afg:r]landreturn Afg+k-1]
4. else
5

divide A[g : r] into blocks B;’s each containing 5 consecutive elements
(last block may contain fewer than 5 elements)

fori«1tol n/51do

e

7. M[i] « median of B;using sorting

8. x<« Select (M[1:[n/51,L(n/57+1)72]) { median of medians }
9. t « Partition (A[q:r], x) { partition around x which ends up at A[t]}
10. ifk =t—q+1thenreturn A[t]

1. elseif k <t —q+ 1 then return Select (A[q:t—11,k)

12. else return Select (A[t+1:r],k—t+qg—1)

Figure 1: The deterministic selection algorithm from lecture 6 (slide 2) which finds the k-th smallest
number in an array Alq:r] of n =r — g+ 1 distinct numbers, where 1 < k < n.

(a) [20 Points | Parallelize the deterministic selection algorithm shown in Figure 1 which is
taken from lecture 6 (slide 2). Write down the pseudocode of the parallel version. Analyze
its work, span and parallelism.

(b) [20 Points | Consider the parallel randomized quicksort algorithm shown in Figure 2 which
is taken from lecture 12 (slide 86). It sorts an array of n distinct numbers in increasing order
of value. How will you modify it so that it returns the k-th smallest number in the array
instead of sorting them, where k € [1,n]. Write down the pseudocode of the parallel selection
algorithm you obtain. Give high-probability bounds on its work, span and parallelism.

(c) [40 Points | Design a parallel selection algorithm that can return the smallest k& numbers
in an array of n distinct numbers in sorted order using © (nk) extra space, © (nk) work and
e (log2 n) span. Write down the pseudocode and show details of your analyses of work, span
and space usage.

Par-Randomized-QuickSort (A[gq:r])
1. ner—qg+1

. if n <30 then
sort A[g : r] using any sorting algorithm
. else

select a random element x from A[g : r]

spawn Par-Randomized-QuickSort (A[q:k—11)

2

3

4

5

6. k < Par-Partition (A[q:r], x)

7

8 Par-Randomized-QuickSort (A[k+1:r])
9

sync

Figure 2: The parallel randomized quicksort algorithm from lecture 12 (slide 86) which sorts an
array of distinct numbers in increasing order of value.

SELECT-CHOCOLATE-BOXES-TO-BUY(B = (B1, B2, ..., Bn), {(p1,p2,...,0n), C ={(C1,C2,...,Cn))

Input: A sequence of n chocolate boxes B = (B1, Bz, ..., B,) with p; giving the price of box B; for 1 < i < n,
and a sequence of m chocolate types C = (Cy, Ca,...,Cp) given in non-increasing order of my likeness for them.

Output: A subset of boxes to buy from B such that together they contain at least one chocolate of each type.

—_

. array f[l1:n]

for i<+ 1tondo
fli] = pi

for i<+ 1tom do

let exactly k' € [1, k] boxes from B contain C;, and let B;,, Bi,, ..., B;,, be those k' boxes

iy
let 4; be an index from {41, 12, ...,%, } such that f[i;] is the minimum among f[i1], f[é2], ..., flix]
r <+ flu]
for j < 1tok’ do
flig] < flig] —r
S0
. fori<+1ton do
if f[i] =0 then
S+ SU{B;}

. return S

© ® N s W N

e e e e
W = o

Figure 3: The algorithm I used to buy boxes of chocolates so that together they contain at least
one choclate of each type.

Task 2. [50 Points | Chocolates

The Life is a Box of Chocolates chocolatier sells m different types of chocolates in n different boxes

(i.e., assortments) By, B, ..., B,. Each box contains at most one chocolate of each type, and each
type of chocolate is included in at least one box and at most k& > 0 different boxes. If | B;| denotes
the number of chocolates in box B; then 1 < |B;| < m. However, |B;| = |B;| is not necessarily true
when i # j. The price of box B; is p;(> 0), where 1 < i <mn.

Though I like some types of chocolates much more than some other types, I still want to buy enough
boxes so that together they contain at least one chocolate of each type. But I want to select the
boxes in a way that minimizes the money I spend in buying them. Since I do not know how to do
that efficiently, I used the approximation algorithm shown in Figure 3 instead.

(a) [50 Points | Prove that the algorithm shown in Figure 3 is a k-approximation algorithm for
selecting boxes of the minimum total cost that include at least one chocolate of each type.
In other words, prove that I will not have to spend more than a factor of kK more money than
someone using an optimal algorithm for selecting the boxes.

‘ &
”

A

Figure 4: Celestial discs in a 2D universe.

Task 3. [50 Points | Approximating Pairwise Interactions

Suppose you are given n celestial objects in a two dimensional universe as in Task 2 of HW1.
However, each of them is of circular shape, i.e., a disc, as shown in Figure 4. Let m; and r; be
the mass and radius, respectively, of the i-th such disc, where 1 < ¢ < n. Let d;; denote the
distance between the i-th and the j-th object, where 1 < 4,5 < n. We assume that the discs are
nonoverlapping.

Suppose we want to compute the following interaction potential among the objects, where ¢; and

co are nonnegative constants:

n—1 n

p— mimj

. .
i=1 j=i+1 \/Cldij + coryry

Clearly, P can be computed in © (n2) time. However, in this task, we want to approximate P in
asymptotically faster than quadratic time.

(a) [15 Points | Suppose m; = m for all i € [1,n], and ¢; = 0, but ¢ > 0. Give an algorithm
for approximating P within a factor 14 ¢ of the exact value in O (log% te n) time, where € > 0.
You are allowed to spend up to © (n) time for preprocessing the input before you compute
the approximate value of P. Give pseudocode and show your analyses of approximation ratio
and running time.

(b) [15 Points | Suppose ¢; = 0 and ¢y > 0 as in part 3(a), but not all objects have the same
mass. Give an (14 €)-approximation algorithm for this case. Give pseudocode and show your
analyses of approximation ratio and running time.

(c) [20 Points | Repeat part 3(b) assuming c¢; is also positive (i.e., ¢; > 0).

