Homework \#4

(Due: Dec 12)

Task 1. [80 Points] Selection in Parallel

Given an array of n distinct numbers and an integer $k \in[1, n]$, this task asks you to select and return the k-th smallest number in the array efficiently in parallel.

```
Select ( \(A[q: r], k)\)
1. \(n \leftarrow r-q+1\)
2. if \(n \leq 140\) then
3. \(\operatorname{sort} A[q: r]\) and return \(A[q+k-1]\)
4. else
5. divide \(A\left[q: r\right.\) ] into blocks \(B_{i}\) 's each containing 5 consecutive elements
            ( last block may contain fewer than 5 elements )
    for \(i \leftarrow 1\) to \(\lceil n / 5\rceil d o\)
            \(M[i] \leftarrow\) median of \(B_{i}\) using sorting
        \(x \leftarrow \operatorname{Select}(M[1:\lceil n / 5\rceil],\lfloor(\lceil n / 5\rceil+1) / 2\rfloor)\) \{median of medians \}
        \(t \leftarrow \operatorname{Partition}(A[q: r], x) \quad\{\) partition around x which ends up at \(A[t]\}\)
        if \(k=t-q+1\) then return \(A[t]\)
        else if \(k<t-q+1\) then return \(\operatorname{Select}(A[q: t-1], k)\)
            else return Select ( \(A[t+1: r], k-t+q-1)\)
```

Figure 1: The deterministic selection algorithm from lecture 6 (slide 2) which finds the k-th smallest number in an array $A[q: r]$ of $n=r-q+1$ distinct numbers, where $1 \leq k \leq n$.
(a) [20 Points] Parallelize the deterministic selection algorithm shown in Figure 1 which is taken from lecture 6 (slide 2). Write down the pseudocode of the parallel version. Analyze its work, span and parallelism.
(b) [20 Points] Consider the parallel randomized quicksort algorithm shown in Figure 2 which is taken from lecture 12 (slide 86). It sorts an array of n distinct numbers in increasing order of value. How will you modify it so that it returns the k-th smallest number in the array instead of sorting them, where $k \in[1, n]$. Write down the pseudocode of the parallel selection algorithm you obtain. Give high-probability bounds on its work, span and parallelism.
(c) [40 Points] Design a parallel selection algorithm that can return the smallest k numbers in an array of n distinct numbers in sorted order using $\Theta(n k)$ extra space, $\Theta(n k)$ work and $\Theta\left(\log ^{2} n\right)$ span. Write down the pseudocode and show details of your analyses of work, span and space usage.

```
Par-Randomized-QuickSort ( A[ q:r])
1. }n\leftarrowr-q+
2. if n\leq30 then
3. sort A[q:r] using any sorting algorithm
4. else
5. select a random element x from A[q:r]
6. }k<\mathrm{ Par-Partition( A[q:r],x )
7. spawn Par-Randomized-QuickSort (A[q:k-1])
8. Par-Randomized-QuickSort ( A[k+1:r])
9. sync
```

Figure 2: The parallel randomized quicksort algorithm from lecture 12 (slide 86) which sorts an array of distinct numbers in increasing order of value.

```
\(\operatorname{Select-Chocolate-Boxes-to-Buy}\left(\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{n}\right\rangle,\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle, \mathcal{C}=\left\langle C_{1}, C_{2}, \ldots, C_{m}\right\rangle\right)\)
Input: A sequence of \(n\) chocolate boxes \(\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{n}\right\rangle\) with \(p_{i}\) giving the price of box \(B_{i}\) for \(1 \leq i \leq n\),
and a sequence of \(m\) chocolate types \(\mathcal{C}=\left\langle C_{1}, C_{2}, \ldots, C_{m}\right\rangle\) given in non-increasing order of my likeness for them.
Output: A subset of boxes to buy from \(\mathcal{B}\) such that together they contain at least one chocolate of each type.
    1. array \(f[1: n]\)
    2. for \(i \leftarrow 1\) to \(n\) do
        \(f[i] \leftarrow p_{i}\)
    for \(i \leftarrow 1\) to \(m\) do
    5. let exactly \(k^{\prime} \in[1, k]\) boxes from \(\mathcal{B}\) contain \(C_{i}\), and let \(B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{k^{\prime}}}\) be those \(k^{\prime}\) boxes
    6. let \(i_{l}\) be an index from \(\left\{i_{1}, i_{2}, \ldots, i_{k^{\prime}}\right\}\) such that \(f\left[i_{l}\right]\) is the minimum among \(f\left[i_{1}\right], f\left[i_{2}\right], \ldots, f\left[i_{k^{\prime}}\right]\)
    7. \(r \leftarrow f\left[i_{l}\right]\)
    8. \(\quad\) for \(j \leftarrow 1\) to \(k^{\prime}\) do
    9. \(f\left[i_{j}\right] \leftarrow f\left[i_{j}\right]-r\)
    \(S \leftarrow \emptyset\)
    for \(i \leftarrow 1\) to \(n d o\)
    if \(f[i]=0\) then
        \(S \leftarrow S \cup\left\{B_{i}\right\}\)
    return \(S\)
```

Figure 3: The algorithm I used to buy boxes of chocolates so that together they contain at least one choclate of each type.

Task 2. [50 Points] Chocolates

The Life is a Box of Chocolates chocolatier sells m different types of chocolates in n different boxes
(i.e., assortments) $B_{1}, B_{2}, \ldots, B_{n}$. Each box contains at most one chocolate of each type, and each type of chocolate is included in at least one box and at most $k>0$ different boxes. If $\left|B_{i}\right|$ denotes the number of chocolates in box B_{i} then $1 \leq\left|B_{i}\right| \leq m$. However, $\left|B_{i}\right|=\left|B_{j}\right|$ is not necessarily true when $i \neq j$. The price of box B_{i} is $p_{i}(>0)$, where $1 \leq i \leq n$.

Though I like some types of chocolates much more than some other types, I still want to buy enough boxes so that together they contain at least one chocolate of each type. But I want to select the boxes in a way that minimizes the money I spend in buying them. Since I do not know how to do that efficiently, I used the approximation algorithm shown in Figure 3 instead.
(a) [50 Points] Prove that the algorithm shown in Figure 3 is a k-approximation algorithm for selecting boxes of the minimum total cost that include at least one chocolate of each type. In other words, prove that I will not have to spend more than a factor of k more money than someone using an optimal algorithm for selecting the boxes.

Figure 4: Celestial discs in a 2D universe.

Task 3. [50 Points] Approximating Pairwise Interactions

Suppose you are given n celestial objects in a two dimensional universe as in Task 2 of HW1. However, each of them is of circular shape, i.e., a disc, as shown in Figure 4. Let m_{i} and r_{i} be the mass and radius, respectively, of the i-th such disc, where $1 \leq i \leq n$. Let $d_{i j}$ denote the distance between the i-th and the j-th object, where $1 \leq i, j \leq n$. We assume that the discs are nonoverlapping.
Suppose we want to compute the following interaction potential among the objects, where c_{1} and
c_{2} are nonnegative constants:

$$
P=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{m_{i} m_{j}}{\sqrt{c_{1} d_{i j}^{2}+c_{2} r_{i} r_{j}}} .
$$

Clearly, P can be computed in $\Theta\left(n^{2}\right)$ time. However, in this task, we want to approximate P in asymptotically faster than quadratic time.
(a) [15 Points] Suppose $m_{i}=m$ for all $i \in[1, n]$, and $c_{1}=0$, but $c_{2}>0$. Give an algorithm for approximating P within a factor $1+\epsilon$ of the exact value in $\mathcal{O}\left(\log _{1+\epsilon}^{2} n\right)$ time, where $\epsilon>0$. You are allowed to spend up to $\Theta(n)$ time for preprocessing the input before you compute the approximate value of P. Give pseudocode and show your analyses of approximation ratio and running time.
(b) [15 Points] Suppose $c_{1}=0$ and $c_{2}>0$ as in part 3(a), but not all objects have the same mass. Give an $(1+\epsilon)$-approximation algorithm for this case. Give pseudocode and show your analyses of approximation ratio and running time.
(c) [20 Points] Repeat part $3(b)$ assuming c_{1} is also positive (i.e., $c_{1}>0$).

