
CSE 548: Analysis of Algorithms

Lecture 2

( Divide-and-Conquer Algorithms:

Integer Multiplication )

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2017



Tromino Cover

Puzzle: You are given a 2� � 2� board 

with one missing square.

― you must cover all squares except 

the missing one exactly using right 

trominoes

― the trominoes must not overlap

A right tromino is an L-shaped tile 

formed by three adjacent squares.
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― Place a tromino at the center so  

that it fully covers one square from 

each of the three ( 3 ) subboards

with no missing square, and misses 

the fourth subboard completely.
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Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem 

into 4 smaller instances of the 

same problem!

― Place a tromino at the center so  

that it fully covers one square from 

each of the three ( 3 ) subboards

with no missing square, and misses 

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

― This algorithm design technique is called recursive divide & conquer.



A Latin Phrase

The strategy is to break large power alliances into smaller ones that 

are easier to manage ( or subdue ). 

This is a combination of political, military and economic strategy of 

gaining and maintaining power. 

Unsurprisingly, this is also a very powerful problem solving strategy in 

computer science.

“Divide et impera”

( meaning: “divide and rule” or “divide and conquer” )

— Philip II, king of Macedon (382-336 BC), 

describing his policy toward the Greek city-states

( some say the Roman emperor  Julius Caesar, 

100-44 BC, is the source of this phrase  )



Divide-and-Conquer

1. Divide: divide the original problem into smaller 

subproblems that are easier are to solve

2. Conquer: solve the smaller subproblems

( perhaps recursively )

3. Merge: combine the solutions to the smaller subproblems

to obtain a solution for the original problem



Integer 

Multiplication



Multiplying Two n-bit Numbers

So # �	-bit products: 4 

# bit shifts (by 
 or 
�� bits): 2

# additions (at most 2
 bits long) : 3

We can compute the �	-bit products recursively.
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Multiplying Two n-bit Numbers Faster
( Karatsuba’s Algorithm )

Then the overall running time for 
-bit inputs:
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Algorithms for Multiplying Two n-bit Numbers

Inventor Year Complexity

Classical ― Θ 
�
Anatolii Karatsuba 1960 Θ 
()*	 �
Andrei Toom & Stephen Cook

( generalization of Karatsuba’s algorithm )
1963 – 66 Θ 
2 � ()*	 � log 


Arnold Schönhage & Volker Strassen

( Fast Fourier Transform )
1971 Θ 
 log 
 log log 


Martin Fürer

( Fast Fourier Transform )
2005 
 log 
 2Ο ()*∗�

Lower bound: Ω 
 ( why? )


