
CSE 548: Analysis of Algorithms

Lecture 2

(Divide-and-Conquer Algorithms:

Integer Multiplication)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2017

Tromino Cover

Puzzle: You are given a 2� � 2� board

with one missing square.

― you must cover all squares except

the missing one exactly using right

trominoes

― the trominoes must not overlap

A right tromino is an L-shaped tile

formed by three adjacent squares.

2� � 2� board

Tromino Cover
Steps

2� � 2� board

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

― This algorithm design technique is called recursive divide & conquer.

A Latin Phrase

The strategy is to break large power alliances into smaller ones that

are easier to manage (or subdue).

This is a combination of political, military and economic strategy of

gaining and maintaining power.

Unsurprisingly, this is also a very powerful problem solving strategy in

computer science.

“Divide et impera”

(meaning: “divide and rule” or “divide and conquer”)

— Philip II, king of Macedon (382-336 BC),

describing his policy toward the Greek city-states

(some say the Roman emperor Julius Caesar,

100-44 BC, is the source of this phrase)

Divide-and-Conquer

1. Divide: divide the original problem into smaller

subproblems that are easier are to solve

2. Conquer: solve the smaller subproblems

(perhaps recursively)

3. Merge: combine the solutions to the smaller subproblems

to obtain a solution for the original problem

Integer

Multiplication

Multiplying Two n-bit Numbers

So # �	-bit products: 4

bit shifts (by
 or
�� bits): 2

additions (at most 2
 bits long) : 3

We can compute the �	-bit products recursively.

Let �
 be the overall running time for
-bit inputs. Then

�
 � Θ 1 ��	
 1,4� �� �Θ
 ���������. Θ
� (how? derive)

�� 2�/��! � �" 2�/��! � �" 2��!�! � 2�/� �!�" � �"�! � �"�"

																				��	#$%& 																				��	#$%&

																																							�	#$%&
� 																																											 2�/��! � �"� 																																											 2�/��! � �"

�! �"�! �"

Multiplying Two n-bit Numbers Faster
(Karatsuba’s Algorithm)

Then the overall running time for
-bit inputs:

�
 � Θ 1 ��	
 1,3�
2 �Θ
 ���������.
 Θ
()*	 � Ο
�.+, (how? derive)

�� 2�/��! � �" 2�/��! � �" 2��!�! � 2�/� �!�" � �"�! � �"�" 2��!�! � 2�/� �! � �" �! � �" - �!�! - �"�" � �"�"
So # �	- or �	 � 1 -bit products: 3

																				��	#$%& 																				��	#$%&

																																							�	#$%&
� 																																											 2�/��! � �"� 																																											 2�/��! � �"

�! �"�! �"

Algorithms for Multiplying Two n-bit Numbers

Inventor Year Complexity

Classical ― Θ
�
Anatolii Karatsuba 1960 Θ
()*	 �
Andrei Toom & Stephen Cook

(generalization of Karatsuba’s algorithm)
1963 – 66 Θ
2 � ()*	 � log

Arnold Schönhage & Volker Strassen

(Fast Fourier Transform)
1971 Θ
 log
 log log

Martin Fürer

(Fast Fourier Transform)
2005
 log
 2Ο ()*∗�

Lower bound: Ω
 (why?)

