$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$

	$A(x_0)$	=	a_0	+	$a_1 x_0$	+	$a_2(x_0)^2$	+	$a_3(x_0)^3$	+	$a_4(x_0)^4$	+	$a_5(x_0)^5$	+	$a_6(x_0)^6$	+	$a_7(x_0)^7$
	$A(x_1)$	=	a_0	+	$a_1 x_1$	+	$a_2(x_1)^2$	+	$a_3(x_1)^3$	+	$a_4(x_1)^4$	+	$a_5(x_1)^5$	+	$a_6(x_1)^6$	+	$a_7(x_1)^7$
	$A(x_2)$	=	a_0	+	$a_1 x_2$	+	$a_2(x_2)^2$	+	$a_3(x_2)^3$	+	$a_4(x_2)^4$	+	$a_5(x_2)^5$	+	$a_6(x_2)^6$	+	$a_7(x_2)^7$
	$A(x_3)$	=	a_0	+	$a_1 x_3$	+	$a_2(x_3)^2$	+	$a_3(x_3)^3$	+	$a_4(x_3)^4$	+	$a_5(x_3)^5$	+	$a_6(x_3)^6$	+	$a_7(x_3)^7$
$x_4 = -x_0$	$A(x_4)$	=	a_0	+	$a_1 x_4$	+	$a_2(x_4)^2$	+	$a_3(x_4)^3$	+	$a_4(x_4)^4$	+	$a_5(x_4)^5$	+	$a_6(x_4)^6$	+	$a_7(x_4)^7$
$x_5 = -x_1$	$A(x_5)$	=	a_0	+	$a_1 x_5$	+	$a_2(x_5)^2$	+	$a_3(x_5)^3$	+	$a_4(x_5)^4$	+	$a_5(x_5)^5$	+	$a_6(x_5)^6$	+	$a_7(x_5)^7$
$x_6 = -x_2$	$A(x_6)$	=	a_0	+	$a_1 x_c$	+	$a_{2}(x_{6})^{2}$	+	$a_{3}(x_{6})^{3}$	+	$a_4(x_6)^4$	+	$a_{5}(x_{6})^{5}$	+	$a_6(x_6)^6$	+	$a_7(x_6)^7$
	(**6)		•••0	•			2(10)		3 (0)		4 (0)		5 (0)		0 (0/		/ (0/

 $A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$

	$A(x_0)$	=	a_0	+	$a_1 x_0$	+	$a_2(x_0)^2$	+	$a_3(x_0)^3$	+	$a_4(x_0)^4$	+	$a_5(x_0)^5$	+	$a_6(x_0)^6$	+	$a_7(x_0)^7$
	$A(x_1)$	=	a_0	+	$a_1 x_1$	+	$a_2(x_1)^2$	+	$a_3(x_1)^3$	+	$a_4(x_1)^4$	+	$a_5(x_1)^5$	+	$a_6(x_1)^6$	+	$a_7(x_1)^7$
	$A(x_2)$	=	a_0	+	$a_1 x_2$	+	$a_2(x_2)^2$	+	$a_3(x_2)^3$	+	$a_4(x_2)^4$	+	$a_5(x_2)^5$	+	$a_6(x_2)^6$	+	$a_7(x_2)^7$
	$A(x_3)$	=	<i>a</i> ₀	+	a_1x_3	+	$a_2(x_3)^2$	+	$a_3(x_3)^3$	+	$a_4(x_3)^4$	+	$a_5(x_3)^5$	+	$a_6(x_3)^6$	+	$a_7(x_3)^7$
$x_4 = -x_0$	$A(-x_0)$	=	a_0	_	$a_1 x_0$	+	$a_2(x_0)^2$	_	$a_3(x_0)^3$	+	$a_4(x_0)^4$	_	$a_5(x_0)^5$	+	$a_6(x_0)^6$	_	$a_7(x_0)^7$
$x_5 = -x_1$	$A(-x_1)$	=	a_0	_	a_1x_1	+	$a_2(x_1)^2$	_	$a_3(x_1)^3$	+	$a_4(x_1)^4$	_	$a_5(x_1)^5$	+	$a_6(x_1)^6$	_	$a_7(x_1)^7$
$x_6 = -x_2$	$A(-x_2)$	=	a_0	—	$a_1 x_2$	+	$a_2(x_2)^2$	—	$a_3(x_2)^3$	+	$a_4(x_2)^4$	—	$a_5(x_2)^5$	+	$a_6(x_2)^6$	_	$a_7(x_2)^7$
$x_7 = -x_3$	$A(-x_3)$	=	a_0	_	a_1x_3	+	$a_2(x_3)^2$	_	$a_3(x_3)^3$	+	$a_4(x_3)^4$	_	$a_5(x_3)^5$	+	$a_6(x_3)^6$	_	$a_7(x_3)^7$

 $A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$

	$A(x_0)$	=	a_0	+	$a_2(x_0)^2$	+	$a_4(x_0)^4$	+	$a_6(x_0)^6 +$	$a_1 x_0$	$+ a_3(x_0)^3 + a_5(x_0)^5 + a_7(x_0)^7$
	$A(x_1)$	=	a_0	+	$a_2(x_1)^2$	+	$a_4(x_1)^4$	+	$a_6(x_1)^6 +$	a_1x_1	+ $a_3(x_1)^3$ + $a_5(x_1)^5$ + $a_7(x_1)^7$
	$A(x_2)$	=	a_0	+	$a_2(x_2)^2$	+	$a_4(x_2)^4$	+	$a_6(x_2)^6 +$	a_1x_2	+ $a_3(x_2)^3$ + $a_5(x_2)^5$ + $a_7(x_2)^7$
	$A(x_3)$	=	a_0	+	$a_2(x_3)^2$	+	$a_4(x_3)^4$	+	$a_6(x_3)^6$ +	a_1x_3	+ $a_3(x_3)^3$ + $a_5(x_3)^5$ + $a_7(x_3)^7$
$x_4 = -x_0$	$A(-x_0)$	=	a_0	+	$a_2(x_0)^2$	+	$a_4(x_0)^4$	+	$a_6(x_0)^6$ –	$a_1 x_0$	$- a_3(x_0)^3 - a_5(x_0)^5 - a_7(x_0)^7$
$x_5 = -x_1$	$A(-x_1)$	=	a_0	+	$a_2(x_1)^2$	+	$a_4(x_1)^4$	+	$a_6(x_1)^6$ –	a_1x_1	$- a_3(x_1)^3 - a_5(x_1)^5 - a_7(x_1)^7$
$x_6 = -x_2$	$A(-x_2)$	=	a_0	+	$a_2(x_2)^2$	+	$a_4(x_2)^4$	+	$a_6(x_2)^6$ –	a_1x_2	$- a_3(x_2)^3 - a_5(x_2)^5 - a_7(x_2)^7$
$x_7 = -x_3$	$A(-x_3)$	=	a_0	+	$a_2(x_3)^2$	+	$a_4(x_3)^4$	+	$a_6(x_3)^6$ –	a_1x_3	$- a_3(x_3)^3 - a_5(x_3)^5 - a_7(x_3)^7$

 $A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$

	$A(x_0)$	=	(a_0	+	$a_2(x_0)^2$	+	$a_4(x_0)^4$	+	$a_6(x_0)^6$)	+	<i>x</i> ₀ (<i>a</i> ₁	+	$a_3(x_0)^2$	+	$a_5(x_0)^4$	+	$a_7(x_0)^6$)
	$A(x_1)$	=	(a_0	+	$a_2(x_1)^2$	+	$a_4(x_1)^4$	+	$a_6(x_1)^6$)	+	<i>x</i> ₁ (<i>a</i> ₁	+	$a_3(x_1)^2$	+	$a_5(x_1)^4$	+	$a_7(x_1)^6$)
	$A(x_2)$	=	(a_0	+	$a_2(x_2)^2$	+	$a_4(x_2)^4$	+	$a_6(x_2)^6$)	+	<i>x</i> ₂ (<i>a</i> ₁	+	$a_3(x_2)^2$	+	$a_5(x_2)^4$	+	$a_7(x_2)^6$)
	$A(x_3)$	=	(<i>a</i> ₀	+	$a_2(x_3)^2$	+	$a_4(x_3)^4$	+	$a_6(x_3)^6$)	+	<i>x</i> ₃ (<i>a</i> ₁	+	$a_3(x_3)^2$	+	$a_5(x_3)^4$	+	$a_7(x_3)^6$)
$x_4 = -x_0$	$A(-x_0)$	=	(a_0	+	$a_2(x_0)^2$	+	$a_4(x_0)^4$	+	$a_6(x_0)^6$)	_	<i>x</i> ₀ (<i>a</i> ₁	+	$a_3(x_0)^2$	+	$a_5(x_0)^4$	+	$a_7(x_0)^6$)
$x_5 = -x_1$	$A(-x_1)$	=	(a_0	+	$a_2(x_1)^2$	+	$a_4(x_1)^4$	+	$a_6(x_1)^6$)	-	<i>x</i> ₁ (<i>a</i> ₁	+	$a_3(x_1)^2$	+	$a_5(x_1)^4$	+	$a_7(x_1)^6$)
$x_6 = -x_2$	$A(-x_2)$	=	(a_0	+	$a_2(x_2)^2$	+	$a_4(x_2)^4$	+	$a_6(x_2)^6$)	-	<i>x</i> ₂ (<i>a</i> ₁	+	$a_3(x_2)^2$	+	$a_5(x_2)^4$	+	$a_7(x_2)^6$)
$x_7 = -x_3$	$A(-x_3)$	=	(a_0	+	$a_2(x_3)^2$	+	$a_4(x_3)^4$	+	$a_6(x_3)^6$)	_	<i>x</i> ₃ (<i>a</i> ₁	+	$a_3(x_3)^2$	+	$a_5(x_3)^4$	+	$a_7(x_3)^6$)

$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$$

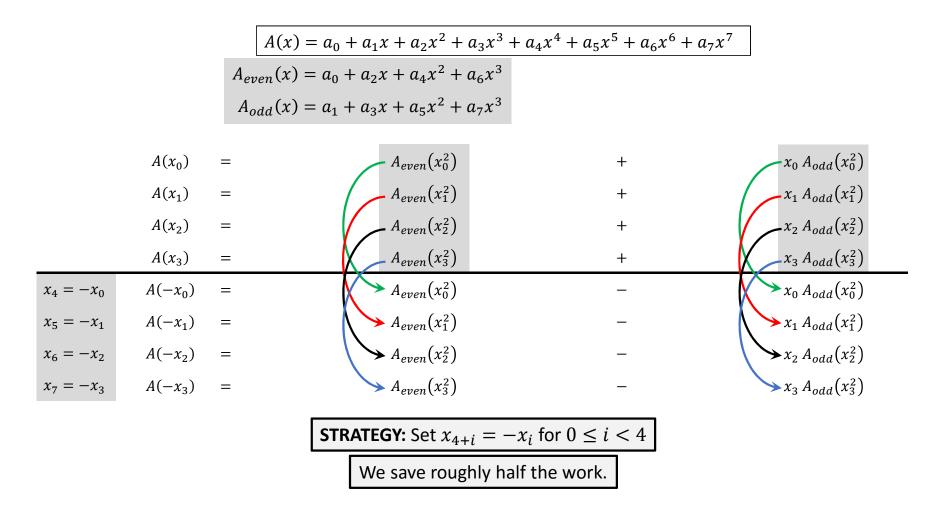
$$A_{even}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3$$

$$A_{odd}(x) = a_1 + a_3 x + a_5 x^2 + a_7 x^3$$

	$A(x_0)$	=	(a_0	+	$a_2(x_0^2)$	+	$a_4 \left(x_0^2\right)^2$	+	$a_6(x_0^2)^3$)	+	<i>x</i> ₀ (a_1	+	$a_3(x_0^2)$	+	$a_5(x_0^2)^2 + a_7(x_0^2)^3$)
	$A(x_1)$	=	(a_0	+	$a_2(x_1^2)$	+	$a_4(x_1^2)^2$	+	$a_6(x_1^2)^3$)	+	<i>x</i> ₁ (<i>a</i> ₁	+	$a_3(x_1^2)$	+	$a_5(x_1^2)^2 + a_7(x_1^2)^3$)
	$A(x_2)$	=	(a_0	+	$a_2(x_2^2)$	+	$a_4(x_2^2)^2$	+	$a_6(x_2^2)^3$)	+	<i>x</i> ₂ (a_1	+	$a_3(x_2^2)$	+	$a_5(x_2^2)^2 + a_7(x_2^2)^3$)
	$A(x_3)$	=	(a_0	+	$a_2(x_3^2)$	+	$a_4(x_3^2)^2$	+	$a_6(x_3^2)^3$)	+	<i>x</i> ₃ (<i>a</i> ₁	+	$a_3(x_3^2)$	+	$a_5(x_3^2)^2 + a_7(x_3^2)^3$)
$x_4 = -x_0$	$A(-x_0)$	=	(a_0	+	$a_2(x_0^2)$	+	$a_4(x_0^2)^2$	+	$a_6(x_0^2)^3$)	_	<i>x</i> ₀ (a_1	+	$a_3(x_0^2)$	+	$a_5(x_0^2)^2 + a_7(x_0^2)^3$)
$x_5 = -x_1$	$A(-x_1)$	=	(a_0	+	$a_2(x_1^2)$	+	$a_4(x_1^2)^2$	+	$a_6(x_1^2)^3$)	_	<i>x</i> ₁ (a_1	+	$a_3(x_1^2)$	+	$a_5(x_1^2)^2 + a_7(x_1^2)^3$)
$x_6 = -x_2$	$A(-x_2)$	=	(a_0	+	$a_2(x_2^2)$	+	$a_4(x_2^2)^2$	+	$a_6(x_2^2)^3$)	_	<i>x</i> ₂ (<i>a</i> ₁	+	$a_3(x_2^2)$	+	$a_5(x_2^2)^2 + a_7(x_2^2)^3$)
$x_7 = -x_3$	$A(-x_3)$	=	(a_0	+	$a_2(x_3^2)$	+	$a_4(x_3^2)^2$	+	$a_6(x_3^2)^3$)	_	<i>x</i> ₃ (a_1	+	$a_3(x_3^2)$	+	$a_5(x_3^2)^2 + a_7(x_3^2)^3$)

 $A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$ $A_{even}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3$ $A_{odd}(x) = a_1 + a_3 x + a_5 x^2 + a_7 x^3$

	$A(x_0)$	=	$A_{even}(x_0^2)$	+	$x_0 A_{odd}(x_0^2)$
	$A(x_1)$	=	$A_{even}(x_1^2)$	+	$x_1 A_{odd}(x_1^2)$
	$A(x_2)$	=	$A_{even}(x_2^2)$	+	$x_2 A_{odd}(x_2^2)$
	$A(x_3)$	=	$A_{even}(x_3^2)$	+	$x_3 A_{odd} \left(x_3^2 \right)$
$x_4 = -x_0$	$A(-x_0)$	=	$A_{even}(x_0^2)$	_	$x_0 A_{odd} \left(x_0^2 \right)$
$x_5 = -x_1$	$A(-x_1)$	=	$A_{even}(x_1^2)$	-	$x_1 A_{odd} \left(x_1^2 \right)$
$x_6 = -x_2$	$A(-x_2)$	=	$A_{even}(x_2^2)$	_	$x_2 A_{odd}(x_2^2)$
$x_7 = -x_3$	$A(-x_3)$	=	$A_{even}(x_3^2)$	_	$x_3 A_{odd}(x_3^2)$
			STRATEGY: Set $x_{4+i} = -x_i$	for $0 \le i < 4$	



 $A(x) = a_0 + a_1 x$

$$A(x_0) = a_0 + a_1 x_0$$
$$x_1 = -x_0 \qquad A(x_1) = a_0 + a_1 x_1$$

 $A(x) = a_0 + a_1 x$

$$A(x_0) = a_0 + a_1 x_0$$
$$x_1 = -x_0 \quad A(-x_0) = a_0 - a_1 x_0$$

 $A(x) = a_0 + a_1 x$

STRATEGY: We will evaluate any polynomial of degree bound 2 at
$x_0 = 1$
$x_1 = -1$

 $A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$

	$A(x_0)$	=	a_0	+	$a_1 x_0$	+	$a_2(x_0)^2$	+	$a_3(x_0)^3$
	$A(x_1)$	=	a_0	+	$a_1 x_1$	+	$a_2(x_1)^2$	+	$a_3(x_1)^3$
$x_2 = -x_0$	$A(x_2)$		a		<i>a u</i>		~ (~)?		~ (~) ³
<i>M2 M</i> 0	$\Pi(x_2)$	—	u_0	Ŧ	$a_1 x_2$	+	$a_2(x_2)^2$	+	$a_3(x_2)^{\circ}$

 $A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$

	$A(x_0)$	=	a_0	+	$a_1 x_0$	+ $a_2(x_0)^2$ + $a_3(x_0)^3$	
	$A(x_1)$	=	a_0	+	$a_1 x_1$	+ $a_2(x_1)^2$ + $a_3(x_1)^3$	
$x_2 = -x_0$	$A(-x_0)$	=	a_0	_	$a_1 x_0$	+ $a_2(x_0)^2$ - $a_3(x_0)^3$	
$x_3 = -x_1$	$A(-x_1)$	=	a_0	_	$a_1 x_1$	+ $a_2(x_1)^2$ - $a_3(x_1)^3$	

 $A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$

	$A(x_0)$	=	a_0	+ $a_2(x_0)^2$ +	$a_1 x_0 +$	$a_3(x_0)^3$
	$A(x_1)$	=	a_0	+ $a_2(x_1)^2$ +	<i>a</i> ₁ <i>x</i> ₁ +	$a_3(x_1)^3$
$x_2 = -x_0$	$A(-x_0)$	=	a_0	+ $a_2(x_0)^2$ -	$a_1 x_0 -$	$a_3(x_0)^3$
$x_3 = -x_1$	$A(-x_1)$	=	a_0	+ $a_2(x_1)^2$ -	$a_1 x_1 -$	$a_3(x_1)^3$

 $A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$

	$A(x_0)$	=	(a_0	+ $a_2(x_0)^2$)	+	<i>x</i> ₀ (a_1	+ $a_3(x_0)^2$)
	$A(x_1)$	=	(a_0	+ $a_2(x_1)^2$)	+	<i>x</i> ₁ (<i>a</i> ₁	+ $a_3(x_1)^2$)
$x_2 = -x_0$	$A(-x_0)$	=	(a_0	+ $a_2(x_0)^2$)	_	<i>x</i> ₀ (<i>a</i> ₁	+ $a_3(x_0)^2$)
$x_3 = -x_1$	$A(-x_1)$	=	(a_0	+ $a_2(x_1)^2$)	_	<i>x</i> ₁ (a_1	+ $a_3(x_1)^2$)

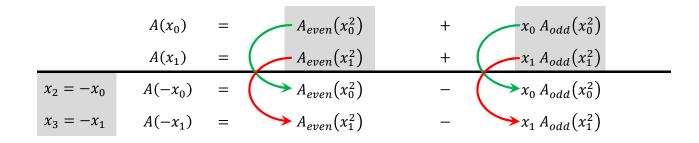
$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
$$A_{even}(x) = a_0 + a_2 x$$
$$A_{odd}(x) = a_1 + a_3 x$$

	$A(x_0)$	=	(a_0	+	$a_2(x_0^2)$)	+	<i>x</i> ₀ (<i>a</i> ₁	+	$a_3(x_0^2)$)
	$A(x_1)$	=	(a_0	+	$a_2(x_1^2)$)	+	<i>x</i> ₁ (<i>a</i> ₁	+	$a_3(x_1^2)$)
$x_2 = -x_0$	$A(-x_0)$	=	(a_0	+	$a_2(x_0^2)$)	_	<i>x</i> ₀ (<i>a</i> ₁	+	$a_3(x_0^2)$)
$x_3 = -x_1$	$A(-x_1)$	=	(a_0	+	$a_2(x_1^2)$)	_	<i>x</i> ₁ (<i>a</i> ₁	+	$a_3(x_1^2)$)

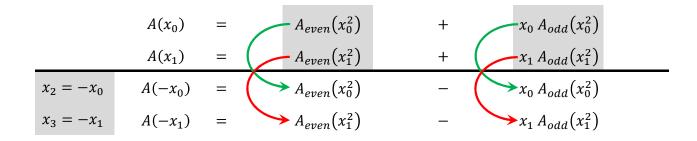
$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
$$A_{even}(x) = a_0 + a_2 x$$
$$A_{odd}(x) = a_1 + a_3 x$$

	$A(x_0)$	=	$A_{even}(x_0^2)$	+	$x_0 A_{odd} \left(x_0^2 \right)$
	$A(x_1)$	=	$A_{even}(x_1^2)$	+	$x_1 A_{odd} \left(x_1^2 \right)$
$x_2 = -x_0$	$A(-x_0)$	=	$A_{even}(x_0^2)$	_	$x_0 A_{odd} \left(x_0^2 \right)$
$x_3 = -x_1$	$A(-x_1)$	=	$A_{even}(x_1^2)$	_	$x_1 A_{odd} \left(x_1^2 \right)$

$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
$$A_{even}(x) = a_0 + a_2 x$$
$$A_{odd}(x) = a_1 + a_3 x$$



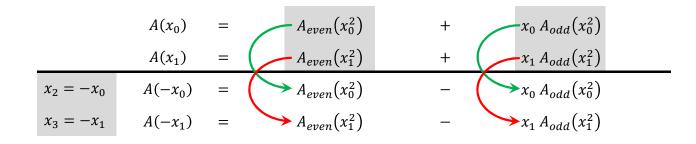
$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
$$A_{even}(x) = a_0 + a_2 x$$
$$A_{odd}(x) = a_1 + a_3 x$$



Observe that we evaluate both $A_{even}(x)$ and $A_{odd}(x)$ at $x = x_0^2$ and $x = x_1^2$. But we decided to always evaluate polynomials of degree bound 2 at x = 1 and x = -1.

So,
$$x_0^2 = 1 \Rightarrow x_0 = 1$$
 and $x_1^2 = -1 \Rightarrow x_1 = \sqrt{-1} = i$.

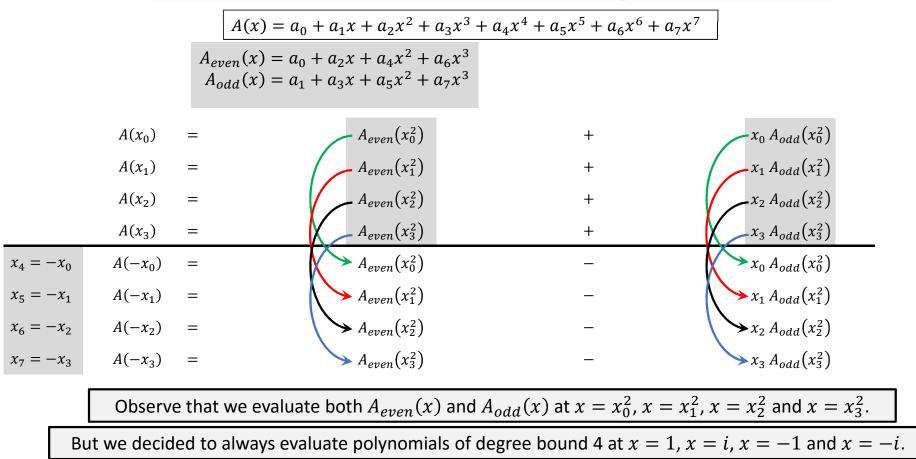
$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
$$A_{even}(x) = a_0 + a_2 x$$
$$A_{odd}(x) = a_1 + a_3 x$$



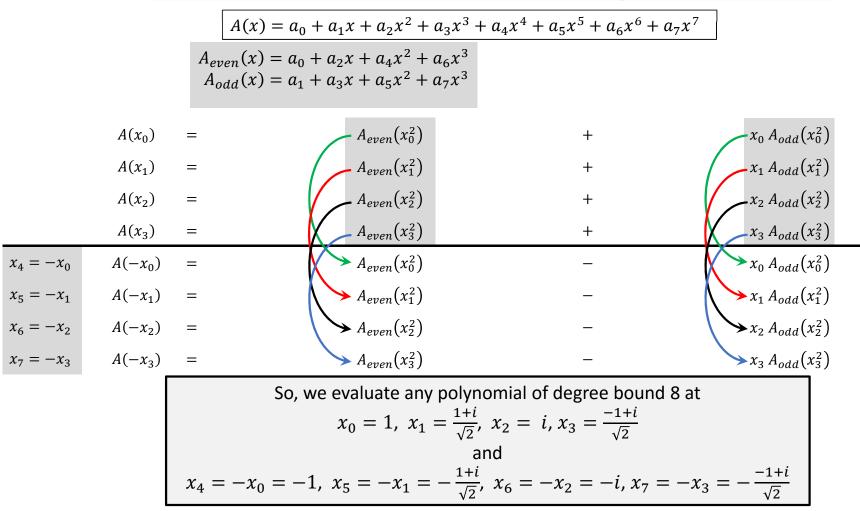
So, we evaluate any polynomial of degree bound 4 at

$$x_0 = 1, x_1 = i$$

and
 $x_2 = -x_0 = -1, x_3 = -x_1 = -i$



So,
$$x_0^2 = 1 \Rightarrow x_0 = 1$$
, $x_1^2 = i \Rightarrow x_1 = \frac{1+i}{\sqrt{2}}$, $x_2^2 = -1 \Rightarrow x_2 = i$, and $x_3^2 = -i \Rightarrow x_3 = \frac{-1+i}{\sqrt{2}}$.



degree bound	how did we find the points to evaluate the polynomial at?	the points	point property
21		1, -1	all 2 nd roots of unity
2 ²	take positive and negative square roots of points used for degree bound 2 ¹ which are already the 2 nd roots of unity	$\begin{array}{ccc} 1, & i, \\ -1, & -i \end{array}$	all 4 th roots of unity
2 ³	take positive and negative square roots of points used for degree bound 2 ² which are already the 4 th roots of unity	1, $\frac{1+i}{\sqrt{2}}$, i , $\frac{-1+i}{\sqrt{2}}$, -1, $-\frac{1+i}{\sqrt{2}}$, $-i$, $-\frac{-1+i}{\sqrt{2}}$	all 8 th roots of unity
2 ⁴	take positive and negative square roots of points used for degree bound 2 ³ which are already the 8 th roots of unity	1, $\frac{\sqrt{2+\sqrt{2}}}{2} + i\frac{\sqrt{2-\sqrt{2}}}{2}$,,, -1, $-\left(\frac{\sqrt{2+\sqrt{2}}}{2} + i\frac{\sqrt{2-\sqrt{2}}}{2}\right)$,	all 16 th roots of unity
, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
2 ^{<i>k</i>-1}	take positive and negative square roots of points used for degree bound 2^{k-2} which are already the 2^{k-2} th roots of unity		all 2^{k-1} th roots of unity
$n = 2^k$	take positive and negative square roots of points used for degree bound 2^{k-1} which are already the 2^{k-1} th roots of unity		all 2^k th roots of unity (i.e., n^{th} roots of unity)

How to Find all n^{th} Roots of Unity

The n^{th} roots of unity are: 1, ω_n , $(\omega_n)^2$, $(\omega_n)^3$,, $(\omega_n)^{n-1}$,

where $\omega_n = \cos \frac{2\Pi}{n} + i \sin \frac{2\Pi}{n} = e^{\frac{2\Pi i}{n}}$ is known as the primitive n^{th} roots of unity.

The result above can be derived using Euler's Formula.

Euler's Formula: For any real number α , $\cos \alpha + i \sin \alpha = e^{i\alpha}$

Euler's formula follows very easily from the following three power series each of which holds for $-\infty < \alpha < +\infty$:

$$\cos \alpha = 1 - \frac{\alpha^2}{2!} + \frac{\alpha^4}{4!} - \frac{\alpha^6}{6!} + \frac{\alpha^8}{8!} - \cdots$$
$$\sin \alpha = \alpha - \frac{\alpha^3}{3!} + \frac{\alpha^5}{5!} - \frac{\alpha^7}{7!} + \frac{\alpha^9}{9!} - \cdots$$
$$e^{\alpha} = 1 + \alpha + \frac{\alpha^2}{2!} + \frac{\alpha^3}{3!} + \frac{\alpha^4}{4!} + \frac{\alpha^5}{5!} + \frac{\alpha^6}{6!} + \frac{\alpha^7}{7!} + \frac{\alpha^8}{8!} + \cdots$$

How to Find all n^{th} Roots of Unity

Observe that for (any) real numbers α and p,

$$(\cos \alpha + i \sin \alpha)^p = (e^{i\alpha})^p = e^{i(p\alpha)} = \cos(p\alpha) + i \sin(p\alpha)$$

Also observe that for any integer k, $\cos(k \times 2\Pi) + i \sin(k \times 2\Pi) = 1 + i \times 0 = 1$

Then the n^{th} root of 1 (unity) is $=1^{\frac{1}{n}} = (\cos(k \times 2\Pi) + i\sin(k \times 2\Pi))^{\frac{1}{n}} = \cos\left(k \times \frac{2\Pi}{n}\right) + i\sin\left(k \times \frac{2\Pi}{n}\right)$

Observe that $\cos\left(k \times \frac{2\Pi}{n}\right) + i \sin\left(k \times \frac{2\Pi}{n}\right)$ takes *n* distinct values for $0 \le k < n$, and then simply repeats those values for k < 0 and $k \ge n$.

When k = 1, we have $\cos\left(k \times \frac{2\Pi}{n}\right) + i \sin\left(k \times \frac{2\Pi}{n}\right) = \cos\left(\frac{2\Pi}{n}\right) + i \sin\left(\frac{2\Pi}{n}\right) = \omega_n$ = primitive n^{th} root of 1.

Clearly, for any k, $\cos\left(k \times \frac{2\Pi}{n}\right) + i \sin\left(k \times \frac{2\Pi}{n}\right) = \left(\cos\left(\frac{2\Pi}{n}\right) + i \sin\left(\frac{2\Pi}{n}\right)\right)^k = (\omega_n)^k$

Hence, $1^{\frac{1}{n}} = \cos\left(k \times \frac{2\Pi}{n}\right) + i \sin\left(k \times \frac{2\Pi}{n}\right) = (\omega_n)^k$, for k = 0, 1, 2, ..., n - 1.

In other words, the n^{th} roots of 1 (unity) are: 1, ω_n , $(\omega_n)^2$, $(\omega_n)^3$, ..., $(\omega_n)^{n-1}$

<u>Coefficient Form ⇒ Point-Value Form</u>

```
Rec-FFT ((a_0, a_1, ..., a_{n-1})) { n = 2^k for integer k \ge 0 }

1. if n = 1 then

2. return (a_0)

3. \omega_n \leftarrow e^{2\pi i/n}

4. \omega \leftarrow 1

5. y^{\text{even}} \leftarrow \text{Rec-FFT}((a_0, a_2, ..., a_{n-2}))

6. y^{\text{odd}} \leftarrow \text{Rec-FFT}((a_1, a_3, ..., a_{n-1}))

7. for j \leftarrow 0 to n/2 - 1 do

8. y_j \leftarrow y_j^{\text{even}} + \omega y_j^{\text{odd}}

9. y_{n/2+j} \leftarrow y_j^{\text{even}} - \omega y_j^{\text{odd}}

10. \omega \leftarrow \omega \omega_n

11. return y
```

Running time:

$$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 2T\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise.} \end{cases}$$
$$= \Theta(n \log n)$$