CSE 548: Analysis of Algorithms

Lecture 4
 (Divide-and-Conquer Algorithms: Polynomial Multiplication)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2017

Coefficient Representation of Polynomials

$$
\begin{aligned}
A(x) & =\sum_{j=0}^{n-1} a_{j} x^{j} \\
& =a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
\end{aligned}
$$

$A(x)$ is a polynomial of degree bound n represented as a vector $a=\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ of coefficients.

The degree of $A(x)$ is k provided it is the largest integer such that a_{k} is nonzero. Clearly, $0 \leq k \leq n-1$.

Evaluating $\boldsymbol{A}(\boldsymbol{x})$ at a given point:
Takes $\Theta(n)$ time using Horner's rule:

$$
\begin{aligned}
A\left(x_{0}\right) & =a_{0}+a_{1} x_{0}+a_{2}\left(x_{0}\right)^{2}+\cdots+a_{n-1}\left(x_{0}\right)^{n-1} \\
& =a_{0}+x_{0}\left(a_{1}+x_{0}\left(a_{2}+\cdots+x_{0}\left(a_{n-2}+x_{0}\left(a_{n-1}\right)\right) \cdots\right)\right)
\end{aligned}
$$

Coefficient Representation of Polynomials

Adding Two Polynomials:
Adding two polynomials of degree bound n takes $\Theta(n)$ time.

$$
C(x)=A(x)+B(x)
$$

where, $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$ and $B(x)=\sum_{j=0}^{n-1} b_{j} x^{j}$.
Then $C(x)=\sum_{j=0}^{n-1} c_{j} x^{j}$, where, $c_{j}=a_{j}+b_{j}$ for $0 \leq j \leq n-1$.

Coefficient Representation of Polynomials

Multiplying Two Polynomials:

The product of two polynomials of degree bound n is another polynomial of degree bound $2 n-1$.

$$
C(x)=A(x) B(x)
$$

where, $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$ and $B(x)=\sum_{j=0}^{n-1} b_{j} x^{j}$.
Then $C(x)=\sum_{j=0}^{2 n-2} c_{j} x^{j}$ where, $c_{j}=\sum_{k=0}^{j} a_{k} b_{j-k}$ for $0 \leq j \leq 2 n-2$.
The coefficient vector $c=\left(c_{0}, c_{1}, \cdots, c_{2 n-2}\right)$, denoted by $c=a \otimes b$, is also called the convolution of vectors $a=\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ and $b=\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)$.
Clearly, straightforward evaluation of c takes $\Theta\left(n^{2}\right)$ time.

Convolution

$$
\begin{aligned}
b_{3} x^{3} & +\boxed{a_{0}}+\boxed{b_{1} x}+\boxed{a_{1} x}+\boxed{a_{2} x^{2}}+\boxed{a_{3} x^{3}} \\
& +\boxed{b_{0}} \\
&
\end{aligned}
$$

Convolution

Convolution

Convolution

Convolution

Convolution

Convolution

Coefficient Representation of Polynomials

Multiplying Two Polynomials:

We can use Karatsuba's algorithm (assume n to be a power of 2):

$$
\begin{aligned}
& A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}=\sum_{j=0}^{\frac{n}{2}-1} a_{j} x^{j}+x^{\frac{n}{2}} \sum_{j=0}^{\frac{n}{2}-1} a_{\frac{n}{2}+j} x^{j}=A_{1}(x)+x^{\frac{n}{2}} A_{2}(x) \\
& B(x)=\sum_{j=0}^{n-1} b_{j} x^{j}=\sum_{j=0}^{\frac{n}{2}-1} b_{j} x^{j}+x^{\frac{n}{2}} \sum_{j=0}^{\frac{n}{2}-1} b_{\frac{n}{2}+j} x^{j}=B_{1}(x)+x^{\frac{n}{2}} B_{2}(x)
\end{aligned}
$$

Then $C(x)=A(x) B(x)$

$$
=A_{1}(x) B_{1}(x)+x^{\frac{n}{2}}\left[A_{1}(x) B_{2}(x)+A_{2}(x) B_{1}(x)\right]+x^{n} A_{2}(x) B_{2}(x)
$$

But $A_{1}(x) B_{2}(x)+A_{2}(x) B_{1}(x)$

$$
=\left[A_{1}(x)+A_{2}(x)\right]\left[B_{1}(x)+B_{2}(x)\right]-A_{1}(x) B_{1}(x)-A_{2}(x) B_{2}(x)
$$

3 recursive multiplications of polynomials of degree bound $\frac{n}{2}$.
Similar recurrence as in Karatsuba's integer multiplication algorithm leading to a complexity of $\mathrm{O}\left(n^{\log _{2} 3}\right)=\mathrm{O}\left(n^{1.59}\right)$.

Point-Value Representation of Polynomials

A point-value representation of a polynomial $A(x)$ is a set of n pointvalue pairs $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$ such that all x_{k} are distinct and $y_{k}=A\left(x_{k}\right)$ for $0 \leq k \leq n-1$.

A polynomial has many point-value representations.

Adding Two Polynomials:

Suppose we have point-value representations of two polynomials of degree bound n using the same set of n points.

$$
\begin{gathered}
A:\left\{\left(x_{0}, y_{0}^{a}\right),\left(x_{1}, y_{1}^{a}\right), \ldots,\left(x_{n-1}, y_{n-1}^{a}\right)\right\} \\
B:\left\{\left(x_{0}, y_{0}^{b}\right),\left(x_{1}, y_{1}^{b}\right), \ldots,\left(x_{n-1}, y_{n-1}^{b}\right)\right\} \\
\text { If } C(x)=A(x)+B(x) \text { then } \\
C:\left\{\left(x_{0}, y_{0}^{a}+y_{0}^{b}\right),\left(x_{1}, y_{1}^{a}+y_{1}^{b}\right), \ldots,\left(x_{n-1}, y_{n-1}^{a}+y_{n-1}^{b}\right)\right\}
\end{gathered}
$$

Thus polynomial addition takes $\Theta(n)$ time.

Point-Value Representation of Polynomials

Multiplying Two Polynomials:
Suppose we have extended (why?) point-value representations of two polynomials of degree bound n using the same set of $2 n$ points.

$$
\begin{aligned}
& A:\left\{\left(x_{0}, y_{0}^{a}\right),\left(x_{1}, y_{1}^{a}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}^{a}\right)\right\} \\
& B:\left\{\left(x_{0}, y_{0}^{b}\right),\left(x_{1}, y_{1}^{b}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}^{b}\right)\right\}
\end{aligned}
$$

If $C(x)=A(x) B(x)$ then

$$
C:\left\{\left(x_{0}, y_{0}^{a} y_{0}^{b}\right),\left(x_{1}, y_{1}^{a} y_{1}^{b}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}^{a} y_{2 n-1}^{b}\right)\right\}
$$

Thus polynomial multiplication also takes only $\Theta(n)$ time!
(compare this with the $\Theta\left(n^{2}\right)$ time needed in the coefficient form)

Faster Polynomial Multiplication? (in Coefficient Form)

ordinary

Faster Polynomial Multiplication? (in Coefficient Form)

Coefficient Representation \Rightarrow Point-Value Representation:
We select any set of n distinct points $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$, and evaluate $A\left(x_{k}\right)$ for $0 \leq k \leq n-1$.

Using Horner's rule this approach takes $\Theta\left(n^{2}\right)$ time.

Point-Value Representation \Rightarrow Coefficient Representation:
We can interpolate using Lagrange's formula:

$$
A(x)=\sum_{k=0}^{n-1} \frac{\prod_{j \neq k}\left(x-x_{j}\right)}{\prod_{j \neq k}\left(x_{k}-x_{j}\right)} y_{k}
$$

This again takes $\Theta\left(n^{2}\right)$ time.
In both cases we need to do much better!

Coefficient Form \Rightarrow Point-Value Form

A polynomial of degree bound $n: A(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$
A set of n distinct points: $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$
Compute point-value form: $\left\{\left(x_{0}, A\left(x_{0}\right)\right),\left(x_{1}, A\left(x_{1}\right)\right), \ldots,\left(x_{n-1}, A\left(x_{n-1}\right)\right)\right\}$
Using matrix notation: $\left[\begin{array}{c}A\left(x_{0}\right) \\ A\left(x_{1}\right) \\ \cdot \\ \cdot \\ \cdot \\ A\left(x_{n-1}\right)\end{array}\right]=\left[\begin{array}{ccccc}1 & x_{0} & \left(x_{0}\right)^{2} & \cdots & \left(x_{0}\right)^{n-1} \\ 1 & x_{1} & \left(x_{1}\right)^{2} & \cdots & \left(x_{1}\right)^{n-1} \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ 1 & x_{n-1} & \left(x_{n-1}\right)^{2} & \cdots & \left(x_{n-1}\right)^{n-1}\end{array}\right]\left[\begin{array}{c}a_{0} \\ a_{1} \\ \cdot \\ \cdot \\ \cdot \\ a_{n-1}\end{array}\right]$
We want to choose the set of points in a way that simplifies the multiplication.

In the rest of the lecture on this topic we will assume:
\boldsymbol{n} is a power of 2.

Coefficient Form \Rightarrow Point-Value Form

Let's choose $x_{n / 2+j}=-x_{j}$ for $0 \leq j \leq n / 2-1$. Then

$$
\left[\begin{array}{c}
A\left(x_{0}\right) \\
A\left(x_{1}\right) \\
\cdot \\
A\left(x_{n / 2-1}\right) \\
A\left(x_{n / 2+0}\right) \\
A\left(x_{n / 2+1}\right) \\
\cdot \\
A\left(x_{n / 2+(n / 2-1)}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{0} & \left(x_{0}\right)^{2} & \cdots & \left(x_{0}\right)^{n-1} \\
1 & x_{1} & \left(x_{1}\right)^{2} & \cdots & \left(x_{1}\right)^{n-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & x_{n / 2-1} & \left(x_{n / 2-1}\right)^{2} & \cdots & \left(x_{n / 2-1}\right)^{n-1} \\
1 & -x_{0} & \left(-x_{0}\right)^{2} & \cdots & \left(-x_{0}\right)^{n-1} \\
1 & -x_{1} & \left(-x_{1}\right)^{2} & \cdots & \left(-x_{1}\right)^{n-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & -x_{n / 2-1} & \left(-x_{n / 2-1}\right)^{2} & \cdots & \left(-x_{n / 2-1}\right)^{n-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
a_{n-1}
\end{array}\right]
$$

Observe that for $\left.0 \leq j \leq n / 2-1:\left(x_{n / 2}+\right)^{k}\right)^{k}= \begin{cases}\left(x_{j}\right)^{k}, & \text { if } k=\text { even, } \\ -\left(x_{j}\right)^{k}, & \text { if } k=\text { odd. }\end{cases}$
Thus we have just split the original $n \times n$ matrix into two almost similar $\frac{n}{2} \times n$ matrices!

Coefficient Form \Rightarrow Point-Value Form

How and how much do we save?

$$
\begin{aligned}
A(x) & =\sum_{l=0}^{n-1} a_{l} x^{l}=\sum_{l=0}^{n / 2-1} a_{2 l} x^{2 l}+\sum_{l=0}^{n / 2-1} a_{2 l+1} x^{2 l+1} \\
& =\sum_{l=0}^{n / 2-1} a_{2 l}\left(x^{2}\right)^{l}+x \sum_{l=0}^{n / 2-1} a_{2 l+1}\left(x^{2}\right)^{l}=A_{\text {even }}\left(x^{2}\right)+x A_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

where, $A_{\text {even }}(x)=\sum_{l=0}^{n / 2-1} a_{2 l} x^{l}$ and $A_{\text {odd }}(x)=\sum_{l=0}^{n / 2-1} a_{2 l+1} x^{l}$.
Observe that for $0 \leq j \leq n / 2-1: \quad A\left(x_{j}\right)=A_{\text {even }}\left(x_{j}^{2}\right)+x_{j} A_{\text {odd }}\left(x_{j}^{2}\right)$

$$
A\left(x_{n / 2+j}\right)=A\left(-x_{j}\right)=A_{\text {even }}\left(x_{j}^{2}\right)-x_{j} A_{\text {odd }}\left(x_{j}^{2}\right)
$$

So in order to evaluate $A\left(x_{j}\right)$ for all $0 \leq j \leq n-1$, we need:
$n / 2$ evaluations of $A_{\text {even }}$ and $n / 2$ evaluations of $A_{\text {odd }}$ n multiplications
$n / 2$ additions and $n / 2$ subtractions
Thus we save about half the computation!

Coefficient Form \Rightarrow Point-Value Form

If we can recursively evaluate $A_{\text {even }}$ and $A_{o d d}$ using the same approach, we get the following recurrence relation for the running time of the algorithm:

$$
\begin{aligned}
T(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1 \\
2 T\left(\frac{n}{2}\right)+\Theta(n), & \text { otherwise }
\end{array}\right. \\
& =\Theta(n \log n)
\end{aligned}
$$

Our trick was to evaluate A at x (positive) and $-x$ (negative).
But inputs to $A_{\text {even }}$ and $A_{o d d}$ are always of the form x^{2} (positive)!
How can we apply the same trick?

Coefficient Form \Rightarrow Point-Value Form

Let us consider the evaluation of $A_{\text {even }}\left(x_{j}\right)$ for $0 \leq j \leq n / 2-1$:

$$
\left[\begin{array}{c}
A_{\text {even }}\left(x_{0}\right) \\
A_{\text {even }}\left(x_{1}\right) \\
\cdot \\
\cdot \\
\cdot \\
A_{\text {even }}\left(x_{n / 2-1}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & \left(x_{0}\right)^{2} & \left(x_{0}\right)^{4} & \cdots & \left(x_{0}\right)^{n-2} \\
1 & \left(x_{1}\right)^{2} & \left(x_{1}\right)^{4} & \cdots & \left(x_{1}\right)^{n-2} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & \left(x_{n / 2-1}\right)^{2} & \left(x_{n / 2-1}\right)^{4} & \cdots & \left(x_{n / 2-1}\right)^{n-2}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{2} \\
a_{4} \\
\cdot \\
\cdot \\
a_{n-2}
\end{array}\right]
$$

In order to apply the same trick on $A_{\text {even }}$ we must set:

$$
\left(x_{n / 4+j}\right)^{2}=-\left(x_{j}\right)^{2} \text { for } 0 \leq j \leq n / 4-1
$$

Coefficient Form \Rightarrow Point-Value Form

In $A_{\text {even }}$ we set: $x_{n / 4+j}^{2}=-x_{j}^{2}$ for $0 \leq j \leq n / 4-1$. Then

$$
\left[\begin{array}{c}
A_{\text {even }}\left(x_{0}\right) \\
A_{\text {even }}\left(x_{1}\right) \\
A_{\text {even }}\left(x_{n / 4-1}\right) \\
A_{\text {even }}\left(x_{n / 4+0}\right) \\
A_{\text {even }}\left(x_{n / 4+1}\right) \\
\cdot \\
A_{\text {even }}\left(x_{n / 4+(n / 4-1)}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{0}^{2} & \left(x_{0}^{2}\right)^{2} & \cdots & \left(x_{0}^{2}\right)^{\frac{n}{2}-1} \\
1 & x_{1}^{2} & \left(x_{1}^{2}\right)^{2} & \cdots & \left(x_{1}^{2}\right)^{\frac{n}{2}-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & x_{n / 4-1}^{2} & \left(x_{n / 4-1}^{2}\right)^{2} & \cdots & \left(x_{n / 4-1}^{2}\right)^{\frac{n}{2}-1} \\
1 & -x_{0}^{2} & \left(-x_{0}^{2}\right)^{2} & \cdots & \left(-x_{0}^{2}\right)^{\frac{n}{2}-1} \\
1 & -x_{1}^{2} & \left(-x_{1}^{2}\right)^{2} & \cdots & \left(-x_{1}^{2}\right)^{\frac{n}{2}-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & -x_{n / 4-1}^{2} & \left(-x_{n / 2-1}^{2}\right)^{2} & \cdots & \left(-x_{n / 4-1}^{2}\right)^{\frac{n}{2}-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{2} \\
a_{4} \\
\cdot \\
\cdot \\
\cdot \\
a_{n-2}
\end{array}\right]
$$

This means setting $x_{n / 4+j}=i x_{j}$, where $i=\sqrt{-1}$ (imaginary)!
This also allows us to apply the same trick on $A_{\text {odd }}$.

Coefficient Form \Rightarrow Point-Value Form

We can apply the trick once if we set:

$$
x_{n / 2+j}=-x_{j} \text { for } 0 \leq j \leq n / 2-1
$$

We can apply the trick (recursively) 2 times if we also set:

$$
\left(x_{n / 2^{2}+j}\right)^{2}=-\left(x_{j}\right)^{2} \text { for } 0 \leq j \leq n / 2^{2}-1
$$

We can apply the trick (recursively) 3 times if we also set:

$$
\left(x_{n / 2^{3}+j}\right)^{2^{2}}=-\left(x_{j}\right)^{2^{2}} \text { for } 0 \leq j \leq n / 2^{3}-1
$$

We can apply the trick (recursively) k times if we also set:

$$
\left(x_{n / 2^{k}+j}\right)^{2^{k-1}}=-\left(x_{j}\right)^{2^{k-1}} \text { for } 0 \leq j \leq n / 2^{k}-1
$$

Coefficient Form \Rightarrow Point-Value Form

Consider the $t^{\text {th }}$ primitive root of unity:

$$
\omega_{t}=e^{\frac{2 \pi i}{t}}=\cos \frac{2 \pi}{t}+i \cdot \sin \frac{2 \pi}{t} \quad(i=\sqrt{-1})
$$

Then

$$
\begin{array}{r}
x_{n / 2+j}=-x_{j} \Rightarrow x_{n / 2^{1}+j}=\omega_{2^{1}} \cdot x_{j} \\
\left(x_{n / 2^{2}+j}\right)^{2}=-\left(x_{j}\right)^{2} \Rightarrow x_{n / 2^{2}+j}=\omega_{2^{2}} \cdot x_{j} \\
\left(x_{n / 2^{3}+j}\right)^{2^{2}}=-\left(x_{j}\right)^{2^{2}} \Rightarrow x_{n / 2^{3}+j}=\omega_{2^{3}} \cdot x_{j} \\
\left(x_{n / 2^{k}+j}\right)^{2^{k-1}}=-\left(x_{j}\right)^{2^{k-1}} \Rightarrow x_{n / 2^{k}+j}=\omega_{2^{k}} \cdot x_{j}
\end{array}
$$

Coefficient Form \Rightarrow Point-Value Form

If $n=2^{k}$ we would like to apply the trick k times recursively. What values should we choose for $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$?

Example: For $n=2^{3}$ we need to choose $\left\{x_{0}, x_{1}, \ldots, x_{7}\right\}$.
Choose: $x_{0}=1$

$$
\begin{aligned}
& k=3: x_{1}=\omega_{2^{3}} \cdot x_{0} \quad=\omega_{8}^{1} \\
& k=2: x_{2}=\omega_{2^{2}} \cdot x_{0}=\omega_{8}^{2} \\
& x_{3}=\omega_{2^{2}} \cdot x_{1}=\omega_{8}^{3} \\
& k=1: x_{4}=\omega_{2^{1}} \cdot x_{0}=\omega_{8}^{4} \\
& x_{5}=\omega_{2^{1}} \cdot x_{1}=\omega_{8}^{5} \\
& x_{6}=\omega_{2^{1}} \cdot x_{2}=\omega_{8}^{6} \\
& x_{7}=\omega_{2^{1}} \cdot x_{3}=\omega_{8}^{7}
\end{aligned}
$$

complex $8^{\text {th }}$ roots of unity

Coefficient Form \Rightarrow Point-Value Form

For a polynomial of degree bound $n=2^{k}$, we need to apply the trick recursively at most $\log n=k$ times.
We choose $x_{0}=1=\omega_{n}^{0}$ and set $x_{j}=\omega_{n}^{j}$ for $1 \leq j \leq n-1$.
Then we compute the following product:

$$
\left[\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{n-1}
\end{array}\right]=\left[\begin{array}{c}
A(1) \\
A\left(\omega_{n}\right) \\
A\left(\omega_{n}^{2}\right) \\
\cdot \\
\cdot \\
A\left(\omega_{n}^{n-1}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{n} & \left(\omega_{n}\right)^{2} & \cdots & \left(\omega_{n}\right)^{n-1} \\
1 & \omega_{n}^{2} & \left(\omega_{n}^{2}\right)^{2} & \cdots & \left(\omega_{n}^{2}\right)^{n-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & \omega_{n}^{n-1} & \left(\omega_{n}^{n-1}\right)^{2} & \cdots & \left(\omega_{n}^{n-1}\right)^{n-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\cdot \\
\cdot \\
a_{n-1}
\end{array}\right]
$$

The vector $y=\left(y_{0}, y_{1}, \cdots, y_{n-1}\right)$ is called the discrete Fourier transform (DFT) of ($a_{0}, a_{1}, \cdots, a_{n-1}$).
This method of computing DFT is called the fast Fourier transform (FFT) method.

Coefficient Form \Rightarrow Point-Value Form

Example: For $n=2^{3}=8$:
$A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}$
We need to evaluate $A(x)$ at $x=\omega_{8}^{i}$ for $0 \leq i<8$.

complex $8^{\text {th }}$ roots of unity
Now $A(x)=A_{\text {even }}\left(x^{2}\right)+x \cdot A_{\text {odd }}\left(x^{2}\right)$,
where $A_{\text {even }}(y)=a_{0}+a_{2} y+a_{4} y^{2}+a_{6} y^{3}$ and $A_{o d d}(y)=a_{1}+a_{3} y+a_{5} y^{2}+a_{7} y^{3}$

Coefficient Form \Rightarrow Point-Value Form

Observe that:

$$
\begin{aligned}
& \omega_{8}^{0}=\omega_{8}^{8}=\omega_{4}^{0} \\
& \omega_{8}^{2}=\omega_{8}^{10}=\omega_{4}^{1} \\
& \omega_{8}^{4}=\omega_{8}^{12}=\omega_{4}^{2} \\
& \omega_{8}^{6}=\omega_{8}^{14}=\omega_{4}^{3}
\end{aligned}
$$

Also:

$$
\begin{gathered}
\omega_{8}^{4}=-\omega_{8}^{0} \\
\omega_{8}^{5}=-\omega_{8}^{1} \\
\omega_{8}^{6}=-\omega_{8}^{2} \\
\omega_{8}^{7}=-\omega_{8}^{3}
\end{gathered}
$$

$A\left(\omega_{8}^{0}\right)=A_{\text {even }}\left(\omega_{8}^{0}\right)+\omega_{8}^{0} \cdot A_{\text {odd }}\left(\omega_{8}^{0}\right)=A_{\text {even }}\left(\omega_{4}^{0}\right)+\omega_{8}^{0} \cdot A_{\text {odd }}\left(\omega_{4}^{0}\right)$,
$A\left(\omega_{8}^{1}\right)=A_{\text {even }}\left(\omega_{8}^{2}\right)+\omega_{8}^{1} \cdot A_{\text {odd }}\left(\omega_{8}^{2}\right)=A_{\text {even }}\left(\omega_{4}^{1}\right)+\omega_{8}^{1} \cdot A_{\text {odd }}\left(\omega_{4}^{1}\right)$,
$A\left(\omega_{8}^{2}\right)=A_{\text {even }}\left(\omega_{8}^{4}\right)+\omega_{8}^{2} \cdot A_{\text {odd }}\left(\omega_{8}^{4}\right)=A_{\text {even }}\left(\omega_{4}^{2}\right)+\omega_{8}^{2} \cdot A_{\text {odd }}\left(\omega_{4}^{2}\right)$,
$A\left(\omega_{8}^{3}\right)=A_{\text {even }}\left(\omega_{8}^{6}\right)+\omega_{8}^{3} \cdot A_{\text {odd }}\left(\omega_{8}^{6}\right)=A_{\text {even }}\left(\omega_{4}^{3}\right)+\omega_{8}^{3} \cdot A_{\text {odd }}\left(\omega_{4}^{3}\right)$,
$A\left(\omega_{8}^{4}\right)=A_{\text {even }}\left(\omega_{8}^{8}\right)+\omega_{8}^{4} \cdot A_{\text {odd }}\left(\omega_{8}^{8}\right)=A_{\text {even }}\left(\omega_{4}^{0}\right)-\omega_{8}^{0} \cdot A_{\text {odd }}\left(\omega_{4}^{0}\right)$,
$A\left(\omega_{8}^{5}\right)=A_{\text {even }}\left(\omega_{8}^{10}\right)+\omega_{8}^{5} \cdot A_{\text {odd }}\left(\omega_{8}^{10}\right)=A_{\text {even }}\left(\omega_{4}^{1}\right)-\omega_{8}^{1} \cdot A_{\text {odd }}\left(\omega_{4}^{1}\right)$,
$A\left(\omega_{8}^{6}\right)=A_{\text {even }}\left(\omega_{8}^{12}\right)+\omega_{8}^{6} \cdot A_{\text {odd }}\left(\omega_{8}^{12}\right)=A_{\text {even }}\left(\omega_{4}^{2}\right)-\omega_{8}^{2} \cdot A_{\text {odd }}\left(\omega_{4}^{2}\right)$,
$A\left(\omega_{8}^{7}\right)=A_{\text {even }}\left(\omega_{8}^{14}\right)+\omega_{8}^{7} \cdot A_{\text {odd }}\left(\omega_{8}^{14}\right)=A_{\text {even }}\left(\omega_{4}^{3}\right)-\omega_{8}^{3} \cdot A_{\text {odd }}\left(\omega_{4}^{3}\right)$,

Coefficient Form \Rightarrow Point-Value Form

$\operatorname{Rec}-\operatorname{FFT}\left(\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\right) \quad\left\{n=2^{k}\right.$ for integer $\left.k \geq 0\right\}$

1. if $n=1$ then
2. return $\left(a_{0}\right)$
3. $\omega_{n} \leftarrow e^{2 \pi i / n}$
4. $\omega \leftarrow 1$
5. $y^{\text {even }} \leftarrow \operatorname{Rec}-\operatorname{FFT}\left(\left(a_{0}, a_{2}, \ldots, a_{n-2}\right)\right)$
6. $\mathrm{y}^{\text {odd }} \leftarrow \operatorname{Rec}-\operatorname{FFT}\left(\left(a_{1}, a_{3}, \ldots, a_{n-1}\right)\right)$
7. for $j \leftarrow 0$ to $n / 2-1$ do
8. $y_{j} \leftarrow y_{j}{ }^{\text {even }}+\omega y_{j}^{\text {odd }}$
9. $\quad y_{n / 2+j} \leftarrow y_{j}^{\text {even }}-\omega y_{j}^{\text {odd }}$
10. $\omega \leftarrow \omega \omega_{n}$
11. return y

Running time:

$$
\begin{aligned}
T(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1 \\
2 T\left(\frac{n}{2}\right)+\Theta(n), & \text { otherwise }
\end{array}\right. \\
& =\Theta(n \log n)
\end{aligned}
$$

Faster Polynomial Multiplication? (in Coefficient Form)

ordinary

Point-Value Form \Rightarrow Coefficient Form

$$
\begin{aligned}
& \text { Given: } \underbrace{\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{n} & \left(\omega_{n}\right)^{2} & \cdots & \left(\omega_{n}\right)^{n-1} \\
1 & \omega_{n}^{2} & \left(\omega_{n}^{2}\right)^{2} & \cdots & \left(\omega_{n}^{2}\right)^{n-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & \omega_{n}^{n-1} & \left(\omega_{n}^{n-1}\right)^{2} & \cdots & \left(\omega_{n}^{n-1}\right)^{n-1}
\end{array}\right]}_{V\left(\omega_{n}\right)} \underbrace{\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\cdot \\
\cdot \\
a_{n-1}
\end{array}\right]}_{\tilde{a}}=\underbrace{\left[\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{n-1}
\end{array}\right]}_{\tilde{\bar{y}}} \\
& \text { Vandermonde Matrix } \\
& \Rightarrow V\left(\omega_{n}\right) \cdot \bar{a}=\bar{y}
\end{aligned}
$$

We want to solve: $\bar{a}=\left[V\left(\omega_{n}\right)\right]^{-1} \cdot \bar{y}$
It turns out that: $\left[V\left(\omega_{n}\right)\right]^{-1}=\frac{1}{n} V\left(\frac{1}{\omega_{n}}\right)$
That means $\left[V\left(\omega_{n}\right)\right]^{-1}$ looks almost similar to $V\left(\omega_{n}\right)$!

Point-Value Form \Rightarrow Coefficient Form

Show that: $\left[V\left(\omega_{n}\right)\right]^{-1}=\frac{1}{n} V\left(\frac{1}{\omega_{n}}\right)$
Let $U\left(\omega_{n}\right)=\frac{1}{n} V\left(\frac{1}{\omega_{n}}\right)$
We want to show that $U\left(\omega_{n}\right) V\left(\omega_{n}\right)=I_{n}$,
where I_{n} is the $n \times n$ identity matrix.
Observe that for $0 \leq j, k \leq n-1$, the $(j, k)^{t h}$ entries are:

$$
\left[V\left(\omega_{n}\right)\right]_{j k}=\omega_{n}^{j k} \quad \text { and } \quad\left[U\left(\omega_{n}\right)\right]_{j k}=\frac{1}{n} \omega_{n}^{-j k}
$$

Then entry (p, q) of $U\left(\omega_{n}\right) V\left(\omega_{n}\right)$,

$$
\left[U\left(\omega_{n}\right) V\left(\omega_{n}\right)\right]_{p q}=\sum_{k=0}^{n-1}\left[U\left(\omega_{n}\right)\right]_{p k}\left[V\left(\omega_{n}\right)\right]_{k q}=\frac{1}{n} \sum_{k=0}^{n-1} \omega_{n}^{k(q-p)}
$$

Point-Value Form \Rightarrow Coefficient Form

$$
\left[U\left(\omega_{n}\right) V\left(\omega_{n}\right)\right]_{p q}=\frac{1}{n} \sum_{k=0}^{n-1} \omega_{n}^{k(q-p)}
$$

CASE $p=q$:

$$
\left[U\left(\omega_{n}\right) V\left(\omega_{n}\right)\right]_{p q}=\frac{1}{n} \sum_{k=0}^{n-1} \omega_{n}^{0}=\frac{1}{n} \sum_{k=0}^{n-1} 1=\frac{1}{n} \times n=1
$$

CASE $p \neq q$:

$$
\begin{aligned}
{\left[U\left(\omega_{n}\right) V\left(\omega_{n}\right)\right]_{p q} } & =\frac{1}{n} \sum_{k=0}^{n-1}\left(\omega_{n}^{q-p}\right)^{k}=\frac{1}{n} \times \frac{\left(\omega_{n}^{q-p}\right)^{n}-1}{\omega_{n}^{q-p}-1} \\
& =\frac{1}{n} \times \frac{\left(\omega_{n}^{n}\right)^{q-p}-1}{\omega_{n}^{q-p}-1}=\frac{1}{n} \times \frac{(1)^{q-p}-1}{\omega_{n}^{q-p}-1}=0
\end{aligned}
$$

Hence $U\left(\omega_{n}\right) V\left(\omega_{n}\right)=I_{n}$

Point-Value Form \Rightarrow Coefficient Form

We need to compute the following matrix-vector product:

$$
\underbrace{\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\cdot \\
\cdot \\
a_{n-1}
\end{array}\right]}_{\bar{a}}=\frac{1}{n} \times \underbrace{\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \frac{1}{\omega_{n}} & \left(\frac{1}{\omega_{n}}\right)^{2} & \cdots & \left(\frac{1}{\omega_{n}}\right)^{n-1} \\
1 & \frac{1}{\omega_{n}^{2}} & \left(\frac{1}{\omega_{n}^{2}}\right)^{2} & \cdots & \left(\frac{1}{\omega_{n}^{2}}\right)^{n-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & \frac{1}{\omega_{n}^{n-1}} & \left(\frac{1}{\omega_{n}^{n-1}}\right)^{2} & \cdots & \left(\frac{1}{\omega_{n}^{n-1}}\right)^{n-1}
\end{array}\right]}_{\left[V\left(\omega_{n}\right)\right]^{-1}} \underbrace{\left[\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\cdot \\
y_{n-1}
\end{array}\right]}_{\tilde{\bar{y}}}
$$

This inverse problem is almost similar to the forward problem, and can be solved in $\Theta(n \log n)$ time using the same algorithm as the forward FFT with only minor modifications!

Faster Polynomial Multiplication? (in Coefficient Form)

Two polynomials of degree bound n given in the coefficient form can be multiplied in $\Theta(n \log n)$ time!

Some Applications of Fourier Transform and FFT

- Signal processing
- Image processing
- Noise reduction
- Data compression
- Solving partial differential equation
- Multiplication of large integers
- Polynomial multiplication
- Molecular docking

Some Applications of Fourier Transform and FFT

Any periodic signal can be represented as a sum of a series of sinusoidal (sine \& cosine) waves. [1807]

Spatial (Time) Domain \Leftrightarrow Frequency Domain

Frequency Domain

Source: The Scientist and Engineer's Guide to Digital Signal Processing by Steven W. Smith

Spatial (Time) Domain \Leftrightarrow Frequency Domain

$$
s_{6}(x)
$$

Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain \Leftrightarrow Frequency Domain

$$
s_{6}(x)
$$

$a_{n} \cos (n x)+b_{n} \sin (n x)$

Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

[^0]
Spatial (Time) Domain \Leftrightarrow Frequency Domain

Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

[^1]
Spatial (Time) Domain \Leftrightarrow Frequency Domain

$S(f)$

Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

[^2]
Spatial (Time) Domain \Leftrightarrow Frequency Domain

Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain \Leftrightarrow Frequency Domain (Fourier Transforms)

Let $s(t)$ be a signal specified in the time domain.

The strength of $s(t)$ at frequency f is given by:

$$
S(f)=\int_{-\infty}^{\infty} s(t) \cdot e^{-2 \pi i f t} d t
$$

Evaluating this integral for all values of f gives the frequency domain function.

Now $s(t)$ can be retrieved by summing up the signal strengths at all possible frequencies:

$$
s(t)=\int_{-\infty}^{\infty} S(f) \cdot e^{2 \pi i f t} d f
$$

Why do the Transforms Work?

Let's try to get a little intuition behind why the transforms work.
We will look at a very simple example.
Suppose: $s(t)=\cos (2 \pi h \cdot t)$

$$
\begin{aligned}
& \frac{1}{T} \int_{-T}^{T} s(t) \cdot e^{-2 \pi i f t} d t=\left\{\begin{array}{cc}
1+\frac{\sin (4 \pi f T)}{4 \pi f T}, & \text { if } f=h \\
\frac{\sin (2 \pi(h-f) T)}{2 \pi(h-f) T}+\frac{\sin (2 \pi(h+f) T)}{2 \pi(h+f) T}, & \text { otherwise. }
\end{array}\right. \\
& \Rightarrow \lim _{T \rightarrow \infty}\left(\frac{1}{T} \int_{-T}^{T} s(t) \cdot e^{-2 \pi i f t} d t\right)= \begin{cases}1, & \text { if } f=h \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

So, the transform can detect if $f=h$!

Noise Reduction

Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

Data Compression

- Discrete Cosine Transforms (DCT) are used for lossy data compression (e.g., MP3, JPEG, MPEG)
- DCT is a Fourier-related transform similar to DFT (Discrete Fourier Transform) but uses only real data (uses cosine waves only instead of both cosine and sine waves)
- Forward DCT transforms data from spatial to frequency domain
- Each frequency component is represented using a fewer number of bits (i.e., truncated / quantized)
- Low amplitude high frequency components are also removed
- Inverse DCT then transforms the data back to spatial domain
- The resulting image compresses better

Data Compression

Transformation to frequency domain using cosine transforms work in the same way as the Fourier transform.

Suppose: $s(t)=\cos (2 \pi h \cdot t)$

$$
\begin{aligned}
& \frac{1}{T} \int_{-T}^{T} s(t) \cdot \cos (2 \pi f t) d t=\left\{\begin{array}{cc}
1+\frac{\sin (4 \pi f T)}{4 \pi f T}, & \text { if } f=h \\
\frac{\sin (2 \pi(h-f) T)}{2 \pi(h-f) T}+\frac{\sin (2 \pi(h+f) T)}{2 \pi(h+f) T}, & \text { otherwise. }
\end{array}\right. \\
& \Rightarrow \lim _{T \rightarrow \infty}\left(\frac{1}{T} \int_{-T}^{T} s(t) \cdot \cos (2 \pi f t) d t\right)= \begin{cases}1, & \text { if } f=h \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

So, this transform can also detect if $f=h$.

Protein-Protein Docking

Knowledge of complexes is used in

- Drug design - Structure function analysis
- Studying molecular assemblies - Protein interactions
\square Protein-Protein Docking: Given two proteins, find the best relative transformation and conformations to obtain a stable complex.

\square Docking is a hard problem
- Search space is huge (6D for rigid proteins)
- Protein flexibility adds to the difficulty

Shape Complementarity

[Wang'91, Katchalski-Katzir et al.'92, Chen et al.'03]
Molecule A

a possible docking solution
To maximize skin-skin overlaps and minimize core-core overlaps

- assign positive real weights to skin atoms
- assign positive imaginary weights to core atoms

Let A^{\prime} denote molecule A with the pseudo skin atoms.
For $P \in\left\{A^{\prime}, B\right\}$ with M_{P} atoms, affinity function: $f_{P}(x)=\sum_{k=1}^{M_{P}} w_{k} \cdot g_{k}(x)$ Here $g_{k}(x)$ is a Gaussian representation of atom k, and w_{k} its weight.

Shape Complementarity

[Wang'91, Katchalski-Katzir et al.'92, Chen et al.'03]
Molecule A

a possible docking solution
Let A^{\prime} denote molecule A with the pseudo skin atoms.
For $P \in\left\{A^{\prime}, B\right\}$ with M_{P} atoms, affinity function:

$$
f_{P}(x)=\sum_{k=1}^{M_{P}} w_{k} \cdot g_{k}(x)
$$

For rotation r and translation t of molecule B (i.e., $B_{t, r}$), the interaction score, $F_{A, B}(t, r)=\int_{x} f_{A^{\prime}}(x) f_{B_{t, r}}(x) d x$

Shape Complementarity

[Wang'91, Katchalski-Katzir et al.'92, Chen et al.'03]
Molecule A

a possible docking solution
For rotation r and translation t of molecule B (i.e., $B_{t, r}$), the interaction score, $F_{A, B}(t, r)=\int_{x} f_{A^{\prime}}(x) f_{B_{t, r}}(x) d x$
$\operatorname{Re}\left(F_{A, B}(t, r)\right)=$ skin-skin overlap score - core-core overlap score $\operatorname{Im}\left(F_{A, B}(t, r)\right)=$ skin-core overlap score

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Translational Search using FFT

$$
\forall z \in \Omega=[-n, n]^{3}, \quad h(z)=\int_{x \in \Omega} f_{A^{\prime}}(x) f_{B_{r}}(z-x) d x
$$

x
x

[^0]: Source: http://en.wikipedia.org/wiki/Fourier series\#mediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)

[^1]: Source: http://en.wikipedia.org/wiki/Fourier series\#mediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)

[^2]: Source: http://en.wikipedia.org/wiki/Fourier series\#mediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)

