CSE 548: Analysis of Algorithms

Lecture 6.5
 (Linear Recurrences with Constant Coefficients)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2019

Linear Homogeneous Recurrence

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form:

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k},
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real constants, and $c_{k} \neq 0$.

For constant $r, a_{n}=r^{n}$ is a solution of the recurrence relation iff:

$$
\begin{gathered}
r^{n}=c_{1} r^{n-1}+c_{2} r^{n-2}+\cdots+c_{k} r^{n-k} \\
\Rightarrow r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0
\end{gathered}
$$

The equation above is called the characteristic equation of the recurrence, and its roots are called characteristic roots.

Linear Homogeneous Recurrence

Recurrence: $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$,
Characteristic Equation: $r^{k}-c_{1} r^{k-1}-\cdots-c_{k-1} r-c_{k}=0$

If the characteristic equation has k distinct roots $r_{1}, r_{2}, \ldots, r_{k}$, then a sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation iff

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\cdots+\alpha_{k} r_{k}^{n} \text { for integers } n \geq 0
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are constants.

Linear Homogeneous Recurrence

Recurrence: $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$
Characteristic Equation: $r^{2}-c_{1} r-c_{2}=0$
$a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n} \Rightarrow\left\{a_{n}\right\}$ is a solution to the recurrence:

$$
\begin{aligned}
& r_{1}^{2}=c_{1} r_{1}+c_{2} \text { and } r_{2}^{2}=c_{1} r_{2}+c_{2} \\
& c_{1} a_{n-1}+c_{2} a_{n-2}=c_{1}\left(\alpha_{1} r_{1}^{n-1}+\alpha_{2} r_{2}^{n-1}\right)+c_{2}\left(\alpha_{1} r_{1}^{n-2}+\alpha_{2} r_{2}^{n-2}\right) \\
& =\alpha_{1} r_{1}^{n-2}\left(c_{1} r_{1}+c_{2}\right)+\alpha_{2} r_{2}^{n-2}\left(c_{1} r_{2}+c_{2}\right) \\
& =\alpha_{1} r_{1}^{n-2} r_{1}^{2}+\alpha_{2} r_{2}^{n-2} r_{2}^{2} \\
& =\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n} \\
& =a_{n}
\end{aligned}
$$

Linear Homogeneous Recurrence

Recurrence: $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$
Characteristic Equation: $r^{2}-c_{1} r-c_{2}=0$
$\left\{a_{n}\right\}$ is a solution to the recurrence $\Rightarrow a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$:
Assume initial conditions: $a_{0}=C_{0}$ and $a_{1}=C_{1}$

$$
\begin{aligned}
& a_{0}=C_{0}=\alpha_{1}+\alpha_{2} \\
& a_{1}=C_{1}=\alpha_{1} r_{1}+\alpha_{2} r_{2}
\end{aligned}
$$

Solving: $\alpha_{1}=\frac{C_{1}-C_{0} r_{2}}{r_{1}-r_{2}}$ and $\alpha_{2}=\frac{C_{0} r_{1}-C_{1}}{r_{1}-r_{2}}$
Since the initial conditions uniquely determine the sequence, it follows that $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$.

Linear Homogeneous Recurrence

Recurrence for Fibonacci numbers:

$$
f_{n}=\left\{\begin{array}{cc}
0 & \text { if } n=0 \\
1 & \text { if } n=1 \\
f_{n-1}+f_{n-2} & \text { otherwise }
\end{array}\right.
$$

Characteristic equation: $r^{2}-r-1=0$
Characteristic roots: $r_{1}=\frac{1+\sqrt{5}}{2}$ and $r_{2}=\frac{1-\sqrt{5}}{2}$
Then for constants α_{1} and $\alpha_{2}: f_{n}=\alpha_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\alpha_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
Initial conditions: $f_{0}=\alpha_{1}+\alpha_{2}=0$

$$
f_{1}=\alpha_{1}\left(\frac{1+\sqrt{ } 5}{2}\right)+\alpha_{2}\left(\frac{1-\sqrt{ } 5}{2}\right)=1
$$

Constants: $\quad \alpha_{1}=\frac{1}{\sqrt{5}}$ and $\alpha_{2}=-\frac{1}{\sqrt{5}}$
Solution: $f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$

Linear Homogeneous Recurrence

Recurrence: $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$,
Characteristic Equation: $r^{k}-c_{1} r^{k-1}-\cdots-c_{k-1} r-c_{k}=0$

If the characteristic equation has t distinct roots $r_{1}, r_{2}, \ldots, r_{t}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{t}$, respectively, so that all m_{i} 's are positive and $\sum_{1 \leq i \leq t} m_{i}=k$, then a sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation iff

$$
\begin{aligned}
a_{n} & =\left(\alpha_{1,0}+\alpha_{1,1} n+\cdots+\alpha_{1, m_{1}-1} n^{m_{1}-1}\right) r_{1}^{n} \\
& +\left(\alpha_{2,0}+\alpha_{2,1} n+\cdots+\alpha_{2, m_{2}-1} n^{m_{2}-1}\right) r_{2}^{n} \\
& +\cdots+\left(\alpha_{t, 0}+\alpha_{t, 1} n+\cdots+\alpha_{t, m_{t}-1} n^{m_{t}-1}\right) r_{t}^{n} \text { for integers } n \geq 0,
\end{aligned}
$$

where $\alpha_{i, j}$ are constants for $1 \leq i \leq t$ and $0 \leq j \leq m_{i}-1$.

Linear Homogeneous Recurrence

$$
a_{n}=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
6 & \text { if } n=1 \\
6 a_{n-1}-9 a_{n-2} & \text { otherwise }
\end{array}\right.
$$

Characteristic equation: $r^{2}-6 r+9=0$
Characteristic root: $r=3$
Then for constants α_{1} and $\alpha_{2}: a_{n}=\alpha_{1} 3^{n}+\alpha_{2} n 3^{n}$
Initial conditions: $a_{0}=\alpha_{1}=1$

$$
a_{1}=3 \alpha_{1}+3 \alpha_{2}=6
$$

Constants: $\alpha_{1}=1$ and $\alpha_{2}=1$
Solution: $a_{n}=3^{n}(n+1)$

Linear Homogeneous Recurrence

$$
\begin{aligned}
a_{n} & =\left\{\begin{array}{cc}
2 & \text { if } n=0 \\
7 & \text { if } n=1 \\
a_{n-1}+2 a_{n-2} & \text { otherwise }
\end{array}\right. \\
& =3 \cdot 2^{n}-(-1)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\left\{\begin{array}{cc}
2 & \text { if } n=0 \\
5 & \text { if } n=1 \\
15 & \text { if } n=2 \\
6 a_{n-1}-11 a_{n-2}+6 a_{n-3} & \text { otherwise }
\end{array}\right. \\
& \quad=1-2^{n+2 \cdot 3^{n}}
\end{aligned}
$$

$$
a_{n}=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
-2 & \text { if } n=1 \\
-1 & \text { if } n=2 \\
-3 a_{n-1}-3 a_{n-2}-a_{n-3} & \text { otherwise }
\end{array}\right.
$$

$$
=\left(1+3 n-2 n^{2}\right)(-1)^{n}
$$

Linear Nonhomogeneous Recurrence

A linear nonhomogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form:

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real constants, $c_{k} \neq 0$, and $F(n)$ is a function not identically zero depending only on n.

The recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

is called the associated homogeneous recurrence relation.

Linear Nonhomogeneous Recurrence

Recurrence: $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)$,

Suppose $\left\{a_{n}^{(p)}\right\}$ is a particular solution of the recurrence above,
and $\left\{a_{n}^{(h)}\right\}$ is a solution of the associated homogeneous recurrence.

Then every solution of the given nonhomogeneous recurrence is of the form $\left\{a_{n}^{(p)}+a_{n}^{(h)}\right\}$.

Linear Nonhomogeneous Recurrence

Recurrence: $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)$,

Suppose $F(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\cdots+b_{1} n+b_{0}\right) s^{n}$,
where $b_{0}, b_{1}, \ldots, b_{t}$ and s are real numbers.
If s is not a solution of the characteristic equation of the associated homogeneous recurrence, then there is an $a_{n}^{(p)}$ of the form:

$$
\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\cdots+p_{1} n+p_{0}\right) s^{n} .
$$

If s is a solution of the characteristic equation and its multiplicity is m, then there is an $a_{n}^{(p)}$ of the form:

$$
n^{m}\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\cdots+p_{1} n+p_{0}\right) s^{n} .
$$

Linear Nonhomogeneous Recurrence

$$
a_{n}=\left\{\begin{array}{cc}
3 & \text { if } n=1 \\
3 a_{n-1}+2 n & \text { otherwise }
\end{array}\right.
$$

Associated homogeneous equation: $a_{n}=3 a_{n-1}$
Homogeneous solution: $a_{n}^{(h)}=\alpha 3^{n}$
Particular solution of nonhomogeneous recurrence: $a_{n}^{(p)}=p_{1} n+p_{0}$
Then $p_{1} n+p_{0}=3\left(p_{1}(n-1)+p_{0}\right)+2 n$

$$
\Rightarrow\left(2+2 p_{1}\right) n+\left(2 p_{0}-3 p_{1}\right)=0 \Rightarrow p_{1}=-1, p_{0}=-\frac{3}{2}
$$

Solution: $a_{n}=a_{n}^{(p)}+a_{n}^{(h)}=-n-\frac{3}{2}+\alpha \cdot 3^{n}$

$$
a_{1}=3 \Rightarrow \alpha=\frac{11}{6}
$$

Hence

$$
a_{n}=-n-\frac{3}{2}+\frac{11}{6} \cdot 3^{n}
$$

