CSE 548: Analysis of Algorithms

Lecture 6
 (Divide-and-Conquer Algorithms: Akra-Bazzi Recurrences)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2019

Deterministic Select

Input: An array $A[q: r$] of distinct elements, and integer $k \in[1, r-q+1]$. Output: An element x of $A[q: r]$ such that $\operatorname{rank}(x, A[q: r])=k$.

```
Select (A[q:r],k)
    1. }n\leftarrowr-q+
    2. if }n\leq140\mathrm{ then
    3. sort A[q:r] and return A[q+k-1]
    4. else
    5. divide A[q:r] into blocks B,'s each containing 5 consecutive elements
                            ( last block may contain fewer than 5 elements )
6. for }i\leftarrow1\mathrm{ to }\n/5\rceild
7. M[i]}\leftarrow\mathrm{ median of Bi using sorting
    8. }x\leftarrow\operatorname{Select (M[1:\lceiln/5\rceil],L(「n/5\rceil+1)/2\rfloor) {median of medians }
    9. }t\leftarrow\operatorname{Partition (A[q:r],x) {partition around x}\mathrm{ which ends up at }A[t]
10. if k =t-q+1 then return }A[t
11. else if k<t-q+1 then return Select (A[q:t-1],k)
12. else return Select (A[t+1:r],k-t+q-1)
```


Deterministic Select

Select (A, k) : Given an unsorted set A of $n(=|A|)$ items, find the $k^{\text {th }}$ smallest item in the set

Deterministic Select

Select (A, k) : Given an unsorted set A of $n(=|A|)$ items, find the $k^{t h}$ smallest item in the set
items definitely smaller
than the group median

item smaller than
the group median
\bigcirc group median
item larger than
the group median
(X) median of
\#items definitely smaller than x is
\#items definitely larger than x is

$$
\begin{aligned}
& \geq 3\left(\left\lfloor\frac{1}{2}\left[\frac{n}{5}\right]\right\rfloor-1\right) \geq \frac{3 n}{10}-6 \\
& \geq 3\left(\left\lfloor\frac{1}{2}\left[\frac{n}{5}\right]\right]-1\right) \geq \frac{3 n}{10}-6
\end{aligned}
$$

\#items in any recursive call $($ lines $11 / 12) \leq n-\left(\frac{3 n}{10}-6\right)=\frac{7 n}{10}+6$

Deterministic Select

The following recurrence describes the worst-case running time of the deterministic selection algorithm (given in Section 9.3 of CLRS):

$$
T(n) \leq \begin{cases}\Theta(1), & \text { if } n<140 \\ T\left(\left[\frac{n}{5}\right\rceil\right)+T\left(\frac{7 n}{10}+6\right)+\Theta(n), & \text { if } n \geq 140\end{cases}
$$

Dropping the ceiling for simplicity, and observing that $\frac{7 n}{10}+6 \leq \frac{8 n}{10}$ when $n \geq 60$, we obtain the following upper bound on $T(n)$.

$$
T^{\prime}(n)= \begin{cases}\Theta(1), & \text { if } n<140 \\ T^{\prime}\left(\frac{n}{5}\right)+T^{\prime}\left(\frac{4 n}{5}\right)+\Theta(n), & \text { if } n \geq 140\end{cases}
$$

How do you solve for $T^{\prime}(n)$?

Deterministic Select

The following recurrence describes the worst-case running time of the deterministic selection algorithm (given in Section 9.3 of CLRS):

$$
T(n) \leq \begin{cases}\Theta(1), & \text { if } n<140 \\ T\left(\left[\frac{n}{5}\right\rceil\right)+T\left(\frac{7 n}{10}+6\right)+\Theta(n), & \text { if } n \geq 140\end{cases}
$$

Dropping the ceiling for simplicity, and observing that $\frac{7 n}{10}+6 \leq \frac{7.5 n}{10}$ when $n \geq 120$, we obtain the following upper bound on $T(n)$.

$$
T^{\prime \prime}(n)= \begin{cases}\Theta(1), & \text { if } n<140 \\ T^{\prime \prime}\left(\frac{n}{5}\right)+T^{\prime \prime}\left(\frac{3 n}{4}\right)+\Theta(n), & \text { if } n \geq 140\end{cases}
$$

How do you solve for $T^{\prime \prime}(n)$?

Akra-Bazzi Recurrences

Consider the following recurrence:

$$
T(x)= \begin{cases}\Theta(1), & \text { if } 1 \leq x \leq x_{0} \\ \sum_{i=1}^{k} a_{i} T\left(b_{i} x\right)+g(x), & \text { if } x>x_{0}\end{cases}
$$

where,

1. $k \geq 1$ is an integer constant
2. $\quad a_{i}>0$ is a constant for $1 \leq i \leq k$
3. $\quad b_{i} \in(0,1)$ is a constant for $1 \leq i \leq k$
4. $x \geq 1$ is a real number
5. $\quad x_{0} \geq \max \left\{\frac{1}{b_{i}}, \frac{1}{1-b_{i}}\right\}$ is a constant for $1 \leq i \leq k$
6. $g(x)$ is a nonnegative function that satisfies a polynomial-growth condition (to be specified soon)

Polynomial-Growth Condition

We say that $g(x)$ satisfies the polynomial-growth condition if there exist positive constants c_{1} and c_{2} such that for all $x \geq 1$, for all $1 \leq i \leq k$, and for all $u \in\left[b_{i} x, x\right]$,

$$
c_{1} g(x) \leq g(u) \leq c_{2} g(x)
$$

where x, k, b_{i} and $g(x)$ are as defined in the previous slide.

The Akra-Bazzi Solution

Consider the recurrence given in the previous two slides under the conditions specified there:

$$
T(x)= \begin{cases}\Theta(1), & \text { if } 1 \leq x \leq x_{0} \\ \sum_{i=1}^{k} a_{i} T\left(b_{i} x\right)+g(x), & \text { if } x>x_{0}\end{cases}
$$

Let p be the unique real number for which $\sum_{i=1}^{k} a_{i} b_{i}^{p}=1$. Then

$$
T(x)=\Theta\left(x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right)\right)
$$

Deterministic Select

$T^{\prime}(n)= \begin{cases}\Theta(1), & \text { if } n<140, \\ T^{\prime}\left(\frac{n}{5}\right)+T^{\prime}\left(\frac{4 n}{5}\right)+\Theta(n), & \text { if } n \geq 140 .\end{cases}$
From $\left(\frac{1}{5}\right)^{p}+\left(\frac{4}{5}\right)^{p}=1$ we get $p=1$.

Hence, $T^{\prime}(n)=\Theta\left(n^{p}\left(1+\int_{1}^{n} \frac{u}{u^{p+1}} d u\right)\right)$

$$
\begin{aligned}
& =\Theta\left(n\left(1+\int_{1}^{n} \frac{d u}{u}\right)\right) \\
& =\Theta(n \ln n)
\end{aligned}
$$

Deterministic Select

$T^{\prime \prime}(n)= \begin{cases}\Theta(1), & \text { if } n<140, \\ T^{\prime \prime}\left(\frac{n}{5}\right)+T^{\prime \prime}\left(\frac{3 n}{4}\right)+\Theta(n), & \text { if } n \geq 140 .\end{cases}$
From $\left(\frac{1}{5}\right)^{p}+\left(\frac{3}{4}\right)^{p}=1$ we get $p<1$.

Hence, $T^{\prime \prime}(n)=\Theta\left(n^{p}\left(1+\int_{1}^{n} \frac{u}{u^{p+1}} d u\right)\right)$

$$
\begin{aligned}
& =\Theta\left(n^{p}\left(1+\int_{1}^{n} \frac{d u}{u^{p}}\right)\right) \\
& =\Theta\left(\left(\frac{1}{1-p}\right) n-\left(\frac{p}{1-p}\right) n^{p}\right) \\
& =\Theta(n)
\end{aligned}
$$

Examples of Akra-Bazzi Recurrences

Example 1: $T(x)=2 T\left(\frac{x}{4}\right)+3 T\left(\frac{x}{6}\right)+\Theta(x \log x)$
Then $p=1$ and $T(x)=\Theta\left(x\left(1+\int_{1}^{x} \frac{u \log u}{u^{2}} d u\right)\right)=\Theta\left(x \log ^{2} x\right)$
Example 2: $T(x)=2 T\left(\frac{x}{2}\right)+\frac{8}{9} T\left(\frac{3 x}{4}\right)+\Theta\left(\frac{x^{2}}{\log x}\right)$
Then $p=2$ and $T(x)=\Theta\left(x^{2}\left(1+\int_{1}^{x} \frac{u^{2} / \log u}{u^{3}} d u\right)\right)=\Theta\left(x^{2} \log \log x\right)$
Example 3: $T(x)=T\left(\frac{x}{2}\right)+\Theta(\log x)$
Then $p=0$ and $T(x)=\Theta\left(1+\int_{1}^{x} \frac{\log u}{u} d u\right)=\Theta\left(\log ^{2} x\right)$
Example 4: $T(x)=\frac{1}{2} T\left(\frac{x}{2}\right)+\Theta\left(\frac{1}{x}\right)$
Then $p=-1$ and $T(x)=\Theta\left(\frac{1}{x}\left(1+\int_{1}^{x} \frac{1}{u} d u\right)\right)=\Theta\left(\frac{\log x}{x}\right)$

A Helping Lemma

Lemma: If $g(x)$ is a nonnegative function that satisfies the polynomial-growth condition, then there exist positive constants c_{3} and c_{4} such that for $1 \leq i \leq k$ and all $x \geq 1$,

$$
c_{3} g(x) \leq x^{p} \int_{b_{i}}^{x} \frac{g(u)}{u^{p+1}} d u \leq c_{4} g(x) .
$$

Proof:

$$
b_{i} x \leq u \leq x
$$

$$
\begin{gathered}
\Rightarrow \frac{1}{\max \left\{\left(b_{i} x\right)^{p+1}, x^{p+1}\right\}} \leq \frac{1}{u^{p+1}} \leq \frac{1}{\min \left\{\left(b_{i} x\right)^{p+1}, x^{p+1}\right\}} \\
\Rightarrow \frac{x^{p} c_{1} g(x)}{\max \left\{\left(b_{i} x\right)^{p+1}, x^{p+1}\right\}} \int_{b_{i} x}^{x} d u \leq x^{p} \int_{b_{i} x}^{x} \frac{g(u)}{u^{p+1}} d u \leq \frac{x^{p} c_{2} g(x)}{\min \left\{\left(b_{i} x\right)^{p+1}, x^{p+1}\right\}} \int_{b_{i} x}^{x} d u \\
\Rightarrow \frac{\left(1-b_{i}\right) c_{1}}{\max \left\{1, b_{i}^{p+1}\right\}} g(x) \leq x^{p} \int_{b_{i} x}^{x} \frac{g(u)}{u^{p+1}} d u \leq \frac{\left(1-b_{i}\right) c_{2}}{\min \left\{1, b_{i}^{p+1}\right\}} g(x) \\
\quad \Rightarrow c_{3} g(x) \leq x^{p} \int_{b_{i} x}^{x} \frac{g(u)}{u^{p+1}} d u \leq c_{4} g(x)
\end{gathered}
$$

Partitioning the Domain of x

$$
\text { Let } I_{0}=\left[1, x_{0}\right] \text { and } I_{j}=\left(x_{0}+j-1, x_{0}+j\right] \text { for } j \geq 1
$$

then $b_{i} x$ must be somewhere here

That allows us to use induction in the proof of:

$$
T(x)= \begin{cases}\Theta(1), & \text { if } 1 \leq x \leq x_{0} \\ \sum_{i=1}^{k} a_{i} T\left(b_{i} x\right)+g(x), & \text { if } x>x_{0}\end{cases}
$$

Partitioning the Domain of x

Let $I_{0}=\left[1, x_{0}\right]$ and $I_{j}=\left(x_{0}+j-1, x_{0}+j\right]$ for $j \geq 1$.
if x is here

I_{0}	I_{1}	I_{2}

then $b_{i} x$ must be somewhere here
Proof:

$$
\begin{aligned}
& x_{0}+j-1<x \leq x_{0}+j \\
\Rightarrow & b_{i}\left(x_{0}+j-1\right)<b_{i} x \leq b_{i}\left(x_{0}+j\right) \\
\Rightarrow & b_{i} x_{0}<b_{i} x \leq b_{i} x_{0}+j \\
\Rightarrow & 1<b_{i} x \leq x_{0}+j-\left(1-b_{i}\right) x_{0} \\
\Rightarrow & 1<b_{i} x \leq x_{0}+j-1
\end{aligned}
$$

Derivation of the Akra-Bazzi Solution

Lower Bound: There exists a constant $c_{5}>0$ such that for all $x>x_{0}$,

$$
T(x) \geq c_{5} x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right)
$$

Proof: By induction on the interval I_{j} containing x. Base case ($j=0$) follows since $T(x)=\Theta(1)$ when $x \in I_{0}=\left[1, x_{0}\right]$.
Induction: $T(x)=\sum_{i=1}^{k} a_{i} T\left(b_{i} x\right)+g(x) \geq \sum_{i=1}^{k} a_{i} c_{5}\left(b_{i} x\right)^{p}\left(1+\int_{1}^{b_{i} x} \frac{g(u)}{u^{p+1}} d u\right)+g(x)$
$=c_{5} x^{p} \sum_{i=1}^{k} a_{i} b_{i}^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u-\int_{b_{i} x}^{x} \frac{g(u)}{u^{p+1}} d u\right)+g(x)$
$\geq c_{5} x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u-\frac{c_{4}}{x^{p}} g(x)\right) \sum_{i=1}^{k} a_{i} b_{i}^{p}+g(x)$
$c_{5} x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right)+\left(1-c_{4} c_{5}\right) g(x) \geq c_{5} x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right)$
\quad (assuming $\left.c_{4} c_{5} \leq 1\right)$

Derivation of the Akra-Bazzi Solution

Upper Bound: There exists a constant $c_{6}>0$ such that for all $x>x_{0}$,

$$
T(x) \leq c_{6} x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right)
$$

Proof: Similar to the lower bound proof.

