Midterm Exam
 (7:00 PM - 8:15 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.
- There are three (3) questions, worth 75 points in total. Please answer all of them in the spaces provided.
- There are 16 pages including five (5) blank pages and two (2) pages of appendices. Please use the blank pages if you need additional space for your answers.
- The exam is open slides and open notes. But no books and no computers.

Good Luck!

Question	Pages	Score	Maximum
1. Moving Average	$2-3$		25
2. SuperStoogeSort	$5-6$		25
3. Fast Fib	$8-11$		25
Total			75

Name: \qquad

Question 1. [25 Points] Moving Average. A moving average can reveal longer-term trends in time series data by smoothing out short-term fluctuations. They are widely used in economics and financial applications as well as in science and engineering.

This question asks you to efficiently compute a moving average of a given time series data.
$1(a)$ [7 Points] Suppose you are given a sequence of n values $v_{1}, v_{2}, \ldots, v_{n}$, where v_{t} is the data value at time step $t \in[1, n]$. We assume that $v_{t}=v_{0}$ for all time steps $t<1$.
An m-point simple moving average (SMA) at time step $t \in[1, n]$, where $m \in[1, n]$, is:

$$
S M A_{m}(t)=\frac{v_{t-(m-1)}+v_{t-(m-2)}+\ldots+v_{t-1}+v_{t}}{m}=\frac{\sum_{i=t-(m-1)}^{t} v_{i}}{m} .
$$

Given $m \in[1, n]$, show that $S M A_{m}(t)$ for all time steps $t \in[1, n]$ can be computed in $\Theta(n)$ time.

1(b) [$\mathbf{1 8}$ Points] Consider the time series data from part $1(a)$.
An m-point weighted moving average (WMA) at time step $t \in[1, n]$ is:

$$
W M A_{m}(t)=\frac{v_{t-(m-1)} w_{m-1}+v_{t-(m-2)} w_{m-2}+\ldots+v_{t-1} w_{1}+v_{t} w_{0}}{w_{m-1}+w_{m-2}+\ldots+w_{1}+w_{0}}=\frac{\sum_{i=t-(m-1)}^{t} w_{t-i} v_{i}}{\sum_{i=0}^{m-1} w_{i}}
$$

where $m \in[1, n]$, and w_{i} is the weight given to the data point located $i \in[0, m-1]$ times steps to the left of time step t.
Give an algorithm to compute $W M A_{m}(t)$ for all time steps $t \in[1, n]$ in $\Theta(n \log n)$ time.

Use this page if you need additional space for your answers.

Figure 1: "The Three Stooges" Curly, Larry, and Moe produced more than 90 hugely popular short comedy films between 1934 and 1946.

```
SuperStoogeSort( A[1:n]) {Sort the numbers in array A[1:n]
    in nondecreasing order of value.}
if n<30 then
    sort A[1:n] using any standard sorting algorithm
else
    SuperStoogeSort(A[1:\lceil\frac{4n}{9}\rceil]) {Larry sorts}
    SuperStoogeSort(A[1:\lceil\frac{2n}{3}\rceil]) {Moe sorts}
    SuperStoogeSort( }A[n-\lceil\frac{8n}{27}\rceil+1:n]) {Curly sorts
    SuperStoogeSort( }A[n-\lceil\frac{4n}{9}\rceil+1:n]) {Larry sorts
    SuperStoogeSort( }A[n-\lceil\frac{2n}{3}\rceil+1:n])\quad{Moe sorts
    SuperStoogeSort( A[1:\lceil\frac{4n}{9}\rceil]) {Larry sorts}
    SuperStoogeSort( }A[1:\lceil\frac{2n}{3}\rceil]) {Moe sorts
```

Figure 2: Sort the numbers in $A[1: n]$ in nondecreasing order of value.

Question 2. [25 Points] SuperStoogeSort. The SuperStoogeSort algorithm shown in Figure 2 sorts an array $A[1: n]$ of n numbers in nondecreasing order of value. The algorithm is correct though more inefficient than the already inefficient StoogeSort ${ }^{1}$ algorithm from which it is derived. Each of the steps $4-10$ is associated with either Moe or Larry or Curly from the comedy "The Three Stooges" (see Figure 1). It turns out that the algorithm will still be correct if the steps associated with Larry and Curly are dropped, but one cannot say that for any of the steps associated with Moe.

Now answer the following questions.
2(a) [7 Points] Write the recurrence relation describing the running time $T(n)$ of SUPERStoogeSort ($A[1: n]$). Ignore all ceilings for simplicity (that is, replace $\lceil x\rceil$ with x for every $\left.x \in\left\{\frac{2 n}{3}, \frac{4 n}{9}, \frac{8 n}{27}\right\}\right)$.

[^0]2(b) [18 Points] Solve your recurrence from part $2(a)$ to show that $T(n)=\Theta\left(n^{\log _{1.5}\left(\frac{1}{\sqrt[3]{2}-1}\right)}\right)$. Use the Akra-Bazzi method ${ }^{2}$.

[^1]Use this page if you need additional space for your answers.

Question 3. [25 Points] Fast Fib. Fibonacci numbers are defined by the following recurrence, where f_{n} is the $n^{\text {th }}$ Fibonacci number:

$$
f_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f_{n-1}+f_{n-2} & \text { if } n>1\end{cases}
$$

This question asks you to analyze the performance of two algorithms for computing f_{n} for large n.
3(a) [5 Points] Show that the binary representation of f_{n} has $\Theta(n)$ bits.
$3(b)$ [5 Points] Argue that the SlowFib algorithm shown in Figure 3 takes $\Theta\left(n^{2}\right)$ time to compute the $n^{\text {th }}$ Fibonacci number.

$$
\operatorname{SlOWFIB}(n) \quad\left\{\text { Return the } n^{\text {th }} \text { Fibonacci number. }\right\}
$$

1. if $n<2$ then
2. return $\max \{0, n\}$
3. else
4. $\quad f^{\prime \prime} \leftarrow 0, f^{\prime} \leftarrow 1 \quad\left\{f^{\prime \prime}=f_{0}\right.$ and $\left.f^{\prime}=f_{1}\right\}$
5. for $i \leftarrow 2$ to n do
6. $\quad f \leftarrow f^{\prime}+f^{\prime \prime} \quad\left\{f_{i}=f_{i-1}+f_{i-2}\right\}$
7. $\quad f^{\prime \prime} \leftarrow f^{\prime}$
8. $\quad f^{\prime} \leftarrow f$
9. return $f \quad\left\{f=f_{n}\right\}$

Figure 3: Compute the $n^{\text {th }}$ Fibonacci number.

3(c) [5 Points] The FastFib algorithm in Figure 4 is based on the observation that $f_{1}=f_{1}$ and $f_{2}=f_{0}+f_{1}$ can be written in matrix form as follows: $\left[\begin{array}{c}f_{1} \\ f_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}f_{0} \\ f_{1}\end{array}\right]$.
Then $\left[\begin{array}{l}f_{2} \\ f_{3}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}f_{1} \\ f_{2}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]^{2}\left[\begin{array}{l}f_{0} \\ f_{1}\end{array}\right]$, and $\left[\begin{array}{l}f_{3} \\ f_{4}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]^{3}\left[\begin{array}{l}f_{0} \\ f_{1}\end{array}\right]$, etc. In general, $\left[\begin{array}{c}f_{n} \\ f_{n+1}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]^{n}\left[\begin{array}{l}f_{0} \\ f_{1}\end{array}\right]$.
$\operatorname{FastFib}(n) \quad\left\{\right.$ Return the $n^{\text {th }}$ Fibonacci number. $\}$

1. if $n<2$ then
2. return $\max \{0, n\}$
3. else
4. $\quad f_{0} \leftarrow 0, f_{1} \leftarrow 1$
5. $\left[\begin{array}{c}f_{n} \\ f_{n+1}\end{array}\right] \leftarrow\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]^{n}\left[\begin{array}{l}f_{0} \\ f_{1}\end{array}\right]$
6. return f_{n}

Figure 4: Compute the $n^{\text {th }}$ Fibonacci number.

Show that $\operatorname{FASTFIB}(n)$ can compute f_{n} for $n>1$ using no more than $14 \log _{2} n$ integer multiplications.

3(d) [$\mathbf{1 0}$ Points] Prove that the FASTFIB algorithm shown in Figure 4 can compute f_{n} in $\Theta\left(n^{\log _{2} 3}\right)$ time.

Use this page if you need additional space for your answers.

Use this page if you need additional space for your answers.

Use this page if you need additional space for your answers.

Appendix: Recurrences

Master Theorem. Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1, \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise },
\end{array}\right.
$$

where, $\frac{n}{b}$ is interpreted to mean either $\left\lfloor\frac{n}{b}\right\rfloor$ or $\left\lceil\frac{n}{b}\right\rceil$. Then $T(n)$ has the following bounds:
Case 1: If $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
Case 2: If $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ for some constant $k \geq 0$, then $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$.
Case 3: If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

Akra-Bazzi Recurrences. Consider the following recurrence:

$$
T(x)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } 1 \leq x \leq x_{0}, \\
\sum_{i=1}^{k} a_{i} T\left(b_{i} x\right)+g(x), & \text { otherwise }
\end{array}\right.
$$

where,

1. $k \geq 1$ is an integer constant,
2. $a_{i}>0$ is a constant for $1 \leq i \leq k$,
3. $b_{i} \in(0,1)$ is a constant for $1 \leq i \leq k$,
4. $x \geq 1$ is a real number,
5. x_{0} is a constant and $\geq \max \left\{\frac{1}{b_{i}}, \frac{1}{1-b_{i}}\right\}$ for $1 \leq i \leq k$, and
6. $g(x)$ is a nonnegative function that satisfies a polynomial growth condition (e.g., $g(x)=$ $x^{\alpha} \log ^{\beta} x$ satisfies the polynomial growth condition for any constants $\left.\alpha, \beta \in \Re\right)$.

Let p be the unique real number for which $\sum_{i=1}^{k} a_{i} b_{i}^{p}=1$. Then

$$
T(x)=\Theta\left(x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right)\right) .
$$

Appendix: Computing Products

Integer Multiplication. Karatsuba's algorithm can multiply two n-bit integers in $\Theta\left(n^{\log _{2} 3}\right)=$ $\mathcal{O}\left(n^{1.6}\right)$ time (improving over the standard $\Theta\left(n^{2}\right)$ time algorithm).

Matrix Multiplication. Strassen's algorithm can multiply two 2×2 matrices using 7 multiplications, and two $n \times n$ matrices in $\Theta\left(n^{\log _{2} 7}\right)=\mathcal{O}\left(n^{2.81}\right)$ time (improving over the standard $\Theta\left(n^{3}\right)$ time algorithm).

Polynomial Multiplication. One can multiply two n-degree polynomials in $\Theta(n \log n)$ time using the FFT (Fast Fourier Transform) algorithm (improving over the standard $\Theta\left(n^{2}\right)$ time algorithm).

Appendix: Closed Form for the $n^{\text {th }}$ Fibonacci $\operatorname{Number}\left(f_{n}\right)$

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Appendix: Computing Powers using Repeated Squaring

```
Pow( X,n)
    {Return X }\mp@subsup{X}{}{n}\mathrm{ for integer n>0.}
    1. if }n=1\mathrm{ then
    2. return }
    3. else
    4. }m\leftarrow\lfloor\frac{n}{2}
    5. }Y\leftarrow\operatorname{Pow}(X,m)\quad{recursively compute Y = X ' }
    6. }Y\leftarrowY\cdotY\quad{multiply Y=\mp@subsup{X}{}{m}\mathrm{ and }Y=\mp@subsup{X}{}{m}\mathrm{ to get }Y=\mp@subsup{X}{}{2m}
    7. if 2m\not=n then {ifn is odd (i.e., n=2m+1)}
    8. Y}\leftarrowX\cdotY\quad{multiply X and Y= X 2m to get Y=\mp@subsup{X}{}{2m+1}
    9. return Y {return Y= X n
```

Figure 5: Compute X^{n} by repeated squaring.

[^0]: ${ }^{1}$ Problem 7-3, "Introduction to Algorithms," 2nd edition, by Cormen, Leiserson, Rivest, and Stein

[^1]: ${ }^{2}$ Turns out that $T(n)=\omega\left(n^{3.3}\right)$ and $T(n)=o\left(n^{3.33}\right)$.

