
CSE548, AMS542: Analysis of Algorithms, Fall 2019 Date: October 16, 2019

Midterm Exam
(7:00 PM – 8:15 PM : 75 Minutes)

• This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 30% of your grade, and the lower one 15%.

• There are three (3) questions, worth 75 points in total. Please answer all of them in the
spaces provided.

• There are 16 pages including five (5) blank pages and two (2) pages of appendices. Please
use the blank pages if you need additional space for your answers.

• The exam is open slides and open notes. But no books and no computers.

Good Luck!

Question Pages Score Maximum

1. Moving Average 2–3 25

2. SuperStoogeSort 5–6 25

3. Fast Fib 8–11 25

Total 75

Name:

1

Question 1. [25 Points] Moving Average. A moving average can reveal longer-term trends
in time series data by smoothing out short-term fluctuations. They are widely used in economics
and financial applications as well as in science and engineering.

This question asks you to efficiently compute a moving average of a given time series data.

1(a) [7 Points] Suppose you are given a sequence of n values v1, v2, . . . , vn, where vt is the data
value at time step t ∈ [1, n]. We assume that vt = v0 for all time steps t < 1.

An m-point simple moving average (SMA) at time step t ∈ [1, n], where m ∈ [1, n], is:

SMAm(t) =
vt−(m−1) + vt−(m−2) + . . .+ vt−1 + vt

m
=

∑t
i=t−(m−1) vi

m
.

Given m ∈ [1, n], show that SMAm(t) for all time steps t ∈ [1, n] can be computed in Θ (n)
time.

2

1(b) [18 Points] Consider the time series data from part 1(a).

An m-point weighted moving average (WMA) at time step t ∈ [1, n] is:

WMAm(t) =
vt−(m−1)wm−1 + vt−(m−2)wm−2 + . . .+ vt−1w1 + vtw0

wm−1 + wm−2 + . . .+ w1 + w0
=

∑t
i=t−(m−1)wt−ivi∑m−1

i=0 wi
,

where m ∈ [1, n], and wi is the weight given to the data point located i ∈ [0,m − 1] times
steps to the left of time step t.

Give an algorithm to compute WMAm(t) for all time steps t ∈ [1, n] in Θ (n log n) time.

3

Use this page if you need additional space for your answers.

4

Figure 1: “The Three Stooges” Curly, Larry,
and Moe produced more than 90 hugely popu-
lar short comedy films between 1934 and 1946.

SuperStoogeSort(A[1 : n]) {Sort the numbers in array A[1 : n]
in nondecreasing order of value.}

1. if n < 30 then

2. sort A[1 : n] using any standard sorting algorithm

3. else

4. SuperStoogeSort
(
A[1 :

⌈
4n
9

⌉
]
)

{Larry sorts}
5. SuperStoogeSort

(
A[1 :

⌈
2n
3

⌉
]
)

{Moe sorts}

6. SuperStoogeSort
(
A[n−

⌈
8n
27

⌉
+ 1 : n]

)
{Curly sorts}

7. SuperStoogeSort
(
A[n−

⌈
4n
9

⌉
+ 1 : n]

)
{Larry sorts}

8. SuperStoogeSort
(
A[n−

⌈
2n
3

⌉
+ 1 : n]

)
{Moe sorts}

9. SuperStoogeSort
(
A[1 :

⌈
4n
9

⌉
]
)

{Larry sorts}
10. SuperStoogeSort

(
A[1 :

⌈
2n
3

⌉
]
)

{Moe sorts}

Figure 2: Sort the numbers in A[1 : n] in nonde-
creasing order of value.

Question 2. [25 Points] SuperStoogeSort. The SuperStoogeSort algorithm shown in
Figure 2 sorts an array A[1 : n] of n numbers in nondecreasing order of value. The algorithm is
correct though more inefficient than the already inefficient StoogeSort1 algorithm from which it
is derived. Each of the steps 4–10 is associated with either Moe or Larry or Curly from the comedy
“The Three Stooges” (see Figure 1). It turns out that the algorithm will still be correct if the
steps associated with Larry and Curly are dropped, but one cannot say that for any of the steps
associated with Moe.

Now answer the following questions.

2(a) [7 Points] Write the recurrence relation describing the running time T (n) of Super-
StoogeSort(A[1 : n]). Ignore all ceilings for simplicity (that is, replace dxe with x for
every x ∈

{
2n
3 ,

4n
9 ,

8n
27

}
).

1Problem 7-3, “Introduction to Algorithms,” 2nd edition, by Cormen, Leiserson, Rivest, and Stein

5

2(b) [18 Points] Solve your recurrence from part 2(a) to show that T (n) = Θ

(
n
log1.5

(
1

3√2−1

))
.

Use the Akra-Bazzi method2.

2Turns out that T (n) = ω
(
n3.3

)
and T (n) = o

(
n3.33

)
.

6

Use this page if you need additional space for your answers.

7

Question 3. [25 Points] Fast Fib. Fibonacci numbers are defined by the following recurrence,
where fn is the nth Fibonacci number:

fn =


0 if n = 0,
1 if n = 1,
fn−1 + fn−2 if n > 1.

This question asks you to analyze the performance of two algorithms for computing fn for large n.

3(a) [5 Points] Show that the binary representation of fn has Θ (n) bits.

8

3(b) [5 Points] Argue that the SlowFib algorithm shown in Figure 3 takes Θ
(
n2
)

time to
compute the nth Fibonacci number.

SlowFib(n)
{
Return the nth Fibonacci number.

}
1. if n < 2 then

2. return max{0, n}
3. else

4. f ′′ ← 0, f ′ ← 1 {f ′′ = f0 and f ′ = f1}
5. for i← 2 to n do

6. f ← f ′ + f ′′ {fi = fi−1 + fi−2}
7. f ′′ ← f ′

8. f ′ ← f

9. return f {f = fn}

Figure 3: Compute the nth Fibonacci number.

9

3(c) [5 Points] The FastFib algorithm in Figure 4 is based on the observation that f1 = f1

and f2 = f0 + f1 can be written in matrix form as follows:

[
f1
f2

]
=

[
0 1
1 1

] [
f0
f1

]
.

Then

[
f2
f3

]
=

[
0 1
1 1

] [
f1
f2

]
=

[
0 1
1 1

]2 [
f0
f1

]
, and

[
f3
f4

]
=

[
0 1
1 1

]3 [
f0
f1

]
, etc.

In general,

[
fn
fn+1

]
=

[
0 1
1 1

]n [
f0
f1

]
.

FastFib(n)
{
Return the nth Fibonacci number.

}
1. if n < 2 then

2. return max{0, n}
3. else

4. f0 ← 0, f1 ← 1

5.

[
fn

fn+1

]
←

[
0 1
1 1

]n [
f0
f1

]
6. return fn

Figure 4: Compute the nth Fibonacci number.

Show that FastFib(n) can compute fn for n > 1 using no more than 14 log2 n integer
multiplications.

10

3(d) [10 Points] Prove that the FastFib algorithm shown in Figure 4 can compute fn in
Θ
(
nlog2 3

)
time.

11

Use this page if you need additional space for your answers.

12

Use this page if you need additional space for your answers.

13

Use this page if you need additional space for your answers.

14

Appendix: Recurrences

Master Theorem. Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T (n) be
defined on the nonnegative integers by the recurrence

T (n) =

{
Θ (1) , if n ≤ 1,
aT
(
n
b

)
+ f(n), otherwise,

where, n
b is interpreted to mean either

⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) has the following bounds:

Case 1: If f(n) = O
(
nlogb a−ε

)
for some constant ε > 0, then T (n) = Θ

(
nlogb a

)
.

Case 2: If f(n) = Θ
(
nlogb a logk n

)
for some constant k ≥ 0, then T (n) = Θ

(
nlogb a logk+1 n

)
.

Case 3: If f(n) = Ω
(
nlogb a+ε

)
for some constant ε > 0, and af

(
n
b

)
≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T (n) = Θ (f(n)).

Akra-Bazzi Recurrences. Consider the following recurrence:

T (x) =

{
Θ (1) , if 1 ≤ x ≤ x0,∑k

i=1 aiT (bix) + g(x), otherwise,

where,

1. k ≥ 1 is an integer constant,

2. ai > 0 is a constant for 1 ≤ i ≤ k,

3. bi ∈ (0, 1) is a constant for 1 ≤ i ≤ k,

4. x ≥ 1 is a real number,

5. x0 is a constant and ≥ max
{

1
bi
, 1
1−bi

}
for 1 ≤ i ≤ k, and

6. g(x) is a nonnegative function that satisfies a polynomial growth condition (e.g., g(x) =
xα logβ x satisfies the polynomial growth condition for any constants α, β ∈ <).

Let p be the unique real number for which
∑k

i=1 aib
p
i = 1. Then

T (x) = Θ

(
xp
(

1 +

∫ x

1

g(u)

up+1
du

))
.

15

Appendix: Computing Products

Integer Multiplication. Karatsuba’s algorithm can multiply two n-bit integers in Θ
(
nlog2 3

)
=

O
(
n1.6

)
time (improving over the standard Θ

(
n2
)

time algorithm).

Matrix Multiplication. Strassen’s algorithm can multiply two 2× 2 matrices using 7 multiplica-
tions, and two n× n matrices in Θ

(
nlog2 7

)
= O

(
n2.81

)
time (improving over the standard Θ

(
n3
)

time algorithm).

Polynomial Multiplication. One can multiply two n-degree polynomials in Θ (n log n) time using
the FFT (Fast Fourier Transform) algorithm (improving over the standard Θ

(
n2
)

time algorithm).

Appendix: Closed Form for the nth Fibonacci Number (fn)

fn =
1√
5

(
1 +
√

5

2

)n
− 1√

5

(
1−
√

5

2

)n

Appendix: Computing Powers using Repeated Squaring

Pow(X, n) {Return Xn for integer n > 0.}

1. if n = 1 then

2. return X

3. else

4. m←
⌊
n
2

⌋
5. Y ← Pow(X, m) {recursively compute Y = Xm}
6. Y ← Y · Y

{
multiply Y = Xm and Y = Xm to get Y = X2m

}
7. if 2m 6= n then {if n is odd (i.e., n = 2m+ 1)}
8. Y ← X · Y

{
multiply X and Y = X2m to get Y = X2m+1

}
9. return Y {return Y = Xn}

Figure 5: Compute Xn by repeated squaring.

16

