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Merging Two Sorted Subarrays

Input: Two subarrays 𝐴[ 𝑝 ∶ 𝑞 ] and 𝐴 𝑞 + 1: 𝑟 in sorted order ( 𝑝 ≤ 𝑞 < 𝑟 ).

Output: A single sorted subarray 𝐴[ 𝑝 ∶ 𝑟 ] by merging the input subarrays.
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Loop Invariants

We use loop invariants to prove correctness of iterative algorithms

A loop invariant is associated with a given loop of an algorithm, 
and it is a formal statement about the relationship among variables 
of the algorithm such that

― [ Initialization ] It is true prior to the first iteration of the loop

― [ Maintenance ] If it is true before an iteration of the loop, it 
remains true before the next iteration

― [ Termination ] When the loop terminates, the invariant gives us 
a useful property that helps show that the algorithm is correct
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Merging Two Sorted Subarrays

Input: Two subarrays 𝐴[ 𝑝 ∶ 𝑞 ] and 𝐴 𝑞 + 1: 𝑟 in sorted order ( 𝑝 ≤ 𝑞 < 𝑟 ).

Output: A single sorted subarray 𝐴[ 𝑝 ∶ 𝑟 ] by merging the input subarrays.

Loop Invariant
At the start of each iteration of the 
for loop of lines 12‒17 the following 
invariant holds:

The subarray 𝐴 𝑝: 𝑘 − 1 contains 
the 𝑘 − 𝑝 smallest elements of 
𝐿 1: 𝑛1 + 1 and 𝑅 1: 𝑛2 + 1 , 
in sorted order. 

Moreover, 𝐿 𝑖 and 𝑅 𝑗 are the 
smallest elements of their arrays that 
have not been copied back into 𝐴.
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Merging Two Sorted Subarrays

Input: Two subarrays 𝐴[ 𝑝 ∶ 𝑞 ] and 𝐴 𝑞 + 1: 𝑟 in sorted order ( 𝑝 ≤ 𝑞 < 𝑟 ).

Output: A single sorted subarray 𝐴[ 𝑝 ∶ 𝑟 ] by merging the input subarrays.

Running Time

Let 𝑛 = 𝑟 − 𝑝 + 1.
Then 𝑛 = 𝑛1 + 𝑛2.

The loop in lines 4‒5 takes Θ 𝑛1 time.

The loop in lines 6‒7 takes Θ 𝑛2 time.

The loop in lines 12‒17 takes Θ 𝑛 time.

Lines 1‒3 and 8‒11 take Θ 1 time.

Overall running time 

= Θ 𝑛1 + Θ 𝑛2 + Θ 𝑛 + Θ 1

= Θ 𝑛
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Divide-and-Conquer

1. Divide: divide the original problem into smaller 

subproblems that are easier to solve

2. Conquer: solve the smaller subproblems

( perhaps recursively )

3. Merge: combine the solutions to the smaller subproblems

to obtain a solution for the original problem
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Intuition Behind Merge Sort

1. Base case: We know how to correctly sort an array containing 

only a single element. 

Indeed, an array of one number is already trivially sorted!

2. Reduction to base case ( recursive divide-and-conquer ):

At each level of recursion we split the current subarray at the     

midpoint ( approx ) to obtain two subsubarrays of equal or  

almost equal lengths, and sort them recursively.

We are guaranteed to reach subproblems of size 1 ( i.e., the 

base case size ) eventually which are trivially sorted.

3. Merge: We know how to merge two ( recursively ) sorted 

subarrays to obtain a longer sorted subarray.
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Merge Sort

Input: A subarray 𝐴[ 𝑝 ∶ 𝑟 ] of 𝑟 − 𝑝 + 1 numbers, where 𝑝 ≤ 𝑟.

Output: Elements of 𝐴[ 𝑝 ∶ 𝑟 ] rearranged in non-decreasing order of value.

MERGE-SORT ( A, p, r )

1. if 𝑝 < 𝑟 then

2. // split 𝐴 𝑝. . 𝑟 into two approximately equal halves 𝐴 𝑝. . 𝑞 and 𝐴 𝑞 + 1. . 𝑟

3. 𝑞 =
𝑝+𝑟

2

4. // recursively sort the left half

5. MERGE-SORT ( A, p, q )

6. // recursively sort the right half

7. MERGE-SORT ( A, q + 1, r )

8. // merge the two sorted halves and put the sorted sequence in 𝐴 𝑝. . 𝑟

9. MERGE ( A, p, q, r )
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Correctness of Merge Sort

The proof has two parts. 

‒ First we will show that the algorithm terminates.

‒ Then we will show that the algorithm produces correct 

results ( assuming the algorithm terminates ).
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Termination Guarantee

Size of the input subarray, 𝑛 = 𝑟 − 𝑝 + 1

Size of the left half, 𝑛1 = 𝑞 − 𝑝 + 1

Size of the right half, 𝑛2 = 𝑟 − 𝑞 + 1 + 1 = 𝑟 − 𝑞

We will show the following:  𝑛1 < 𝑛 and 𝑛2 < 𝑛

Meaning: Sizes of subproblems decrease by at least 1 in each 

recursive call, and so there cannot be more than 𝑛 − 1 levels of 

recursion. So, MERGE-SORT will terminate in finite time. 11



Termination Guarantee

A problem will be recursively subdivided ( i.e., lines 5 and 7 will be 

executed ) provided the following holds in line 1:  𝑝 < 𝑟

But 𝑝 < 𝑟 implies: 

𝑝 + 𝑟 < 2𝑟 ⇒
𝑝+𝑟

2
< 𝑟 ⇒

𝑝+𝑟

2
< 𝑟

⇒ 𝑞 < 𝑟 ⇒ 𝑞 − 𝑝 + 1 < 𝑟 − 𝑝 + 1 ⇒ 𝑛1 < 𝑛
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Termination Guarantee

A problem will be recursively subdivided ( i.e., lines 5 and 7 will be 

executed ) provided the following holds in line 1:  𝑝 < 𝑟

𝑝 < 𝑟 also implies: 

2𝑝 < 𝑝 + 𝑟 ⇒ 𝑝 <
𝑝+𝑟

2
⇒ 𝑝 ≤

𝑝+𝑟

2
⇒ 𝑝 ≤ 𝑞

⇒ −𝑞 ≤ −𝑝 ⇒ 𝑟 − 𝑞 ≤ 𝑟 − 𝑝 ⇒ 𝑟 − 𝑞 < 𝑟 − 𝑝 + 1 ⇒ 𝑛2 < 𝑛
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Inductive Proof of Correctness

Base Case: The algorithm is trivially correct when 𝑟 ≥ 𝑝, i.e., 𝑛 ≤ 1.

Let 𝑛 = 𝑟 − 𝑝 + 1.

Inductive Hypothesis: Suppose the algorithm works correctly for all 

integral values of 𝑛 not larger than 𝑘, where 𝑘 ≥ 1 is an integer.

Inductive Step: We will prove that the algorithm works correctly for 

𝑛 = 𝑘 + 1.
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Inductive Proof of Correctness

When 𝑛 = 𝑘 + 1, lines 2‒9 of the algorithm will be executed 

because 𝑘 ≥ 1 ⇒ 𝑛 > 1 ⇒ 𝑟 − 𝑝 + 1 > 1 ⇒ 𝑝 < 𝑟 holds in line 1.

The algorithm splits the input subarray 𝐴 𝑝: 𝑟 into two parts: 

𝐴 𝑝: 𝑞 and 𝐴 𝑞 + 1: 𝑟 , where 𝑞 =
𝑝+𝑟

2
.

The recursive call in line 5 sorts the left part 𝐴 𝑝: 𝑞 . Since 𝐴 𝑝: 𝑞

containis 𝑛1 = 𝑞 − 𝑝 + 1 < 𝑛 ⇒ 𝑛1 ≤ 𝑘 numbers, it is sorted 

correctly (using inductive hypothesis). 
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Inductive Proof of Correctness

The recursive call in line 7 sorts the right part 𝐴 𝑞 + 1: 𝑟 . Since 

𝐴 𝑞 + 1: 𝑟 containis 𝑛2 = 𝑟 − 𝑞 < 𝑛 ⇒ 𝑛2 ≤ 𝑘 numbers, it is 

sorted correctly (using inductive hypothesis). 

We know that the MERGE algorithm can merge two sorted arrays 

correctly. So, line 9 correctly merges the sorted left and right parts 

of the input subarray into a single sorted sequence in 𝐴 𝑝: 𝑞 .  

Therefore, the algorithm works correctly for 𝑛 = 𝑘 + 1, and 

consequently for all integral values of 𝑛. 16



Analyzing Divide-and-Conquer Algorithms

Let 𝑇 𝑛 be the running time of the algorithm on a problem of size 𝑛.

― If the problem size is small enough, say 𝑛 ≤ 𝑐 for some constant 𝑐, 

the straightforward solution takes Θ 1 time.

― Suppose our division of the problem yields 𝑎 subproblems, each of 

which is 1/𝑏 the size of the original.

― Let 𝐷 𝑛 = time needed to divide the problem into subproblems.

― Let 𝐶 𝑛 = time needed to combine the solutions to the 

subproblems into the solution to the original problem.

Then 𝑇 𝑛 = ቐ
Θ 1 𝑖𝑓 𝑛 ≤ 𝑐,

𝑎𝑇
𝑛

𝑏
+ 𝐷 𝑛 + 𝐶 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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Analysis of Merge Sort

Let 𝑇 𝑛 be the worst-case running time of MERGE-SORT on 𝑛 numbers.

We reason as follows to set up the recurrence for 𝑇 𝑛 .

― When 𝑛 = 1, MERGE-SORT takes Θ 1 time.

― When 𝑛 > 1, we break down the running time as follows. 

▪ Divide: This step simply computes the middle of the subarray, which takes 

constant time. Hence, 𝐷 𝑛 = Θ 1 .

▪ Conquer: We recursively solve 2 subproblems of size 𝑛/2 each, which adds 

2𝑇 𝑛/2 to the running time.

▪ Combine: The MERGE procedure takes Θ 𝑛 time on an 𝑛-element subarray. 

Hence, 𝐶 𝑛 = Θ 𝑛 .

Then 𝑇 𝑛 = ቐ
Θ 1 𝑖𝑓 𝑛 = 1,

2𝑇
𝑛

2
+ Θ 𝑛 𝑖𝑓 𝑛 > 1.
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Analysis of Merge Sort ( Upper Bound )

Let us assume for simplicity that 𝑛 = 2𝑘 for some integer 𝑘 ≥ 0, 

and for constants 𝑐1 and 𝑐2:

𝑇 𝑛 ≤ ቐ
𝑐1 𝑖𝑓 𝑛 = 1,

2𝑇
𝑛

2
+ 𝑐2𝑛 𝑖𝑓 𝑛 > 1;

where, 𝑐1 is an upper bound on the time needed to solve a problem of 

size 1, and 𝑐2 is an upper bound on the time per array element of the 

divide and combine steps.

Let’s see how the recursion unfolds.
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Analysis of Merge Sort  ( Upper Bound )

𝑇 𝑛

Running time on an input of size 𝑛 = 2𝑘 for some integer 𝑘 ≥ 0:

20



Analysis of Merge Sort  ( Upper Bound )

𝑐2𝑛

𝑇
𝑛

2
𝑇

𝑛

2

1

Unfolding the recurrence up to level 1:
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Analysis of Merge Sort  ( Upper Bound )
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Unfolding the recurrence up to level 2:
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Analysis of Merge Sort  ( Upper Bound )
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Unfolding the recurrence up to level 3:
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Analysis of Merge Sort  ( Upper Bound )
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Unfolding the recurrence up to level 𝑘:
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Analysis of Merge Sort  ( Upper Bound )

𝑐2𝑛

𝑐2
𝑛
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𝑐2
𝑛
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𝑛

But 𝑛 = 2𝑘 ⇒
𝑛

2𝑘
= 1, and there will be 𝑛 nodes (leaves) at level 𝑘:
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Analysis of Merge Sort  ( Upper Bound )

𝑐2𝑛
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Then 𝑇
𝑛

2𝑘
= 𝑇 1 = 𝑐1:
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Analysis of Merge Sort  ( Upper Bound )
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Total work at each level:
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Analysis of Merge Sort  ( Upper Bound )

𝑐2𝑛
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Total: 𝑐2𝑛𝑘 + 𝑐1𝑛

Total work across all levels:
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Analysis of Merge Sort  ( Upper Bound )

𝑐2𝑛

𝑐2
𝑛

2
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𝑛
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Total: 𝑐2𝑛 log2 𝑛 + 𝑐1𝑛

= Θ 𝑛 log 𝑛

But 𝑛 = 2𝑘 ⇒ 𝑘 = log2 𝑛:
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Analysis of Merge Sort ( Upper Bound )

Hence, we have:

30

𝑇 𝑛 ≤ Θ 𝑛 log 𝑛

Implying:

𝑇 𝑛 = O 𝑛 log 𝑛



Analysis of Merge Sort ( Lower Bound )

Assuming 𝑛 = 2𝑘 for some integer 𝑘 ≥ 0, for some constants 𝑐1
′ and 

𝑐2
′ , we have:

𝑇 𝑛 ≥ ቐ
𝑐1
′ 𝑖𝑓 𝑛 = 1,

2𝑇
𝑛

2
+ 𝑐2

′𝑛 𝑖𝑓 𝑛 > 1;

where, 𝑐1
′ is a lower bound on the time needed to solve a problem of 

size 1, and 𝑐2
′ is a lower bound on the time per array element of the 

divide and combine steps.
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Using the approach we used for proving the upper bound, we have:

𝑇 𝑛 ≥ Θ 𝑛 log 𝑛

Implying:

𝑇 𝑛 = Ω 𝑛 log 𝑛



Analysis of Merge Sort ( Tight Bound )

32

We have proved, upper bound: 𝑇 𝑛 = O 𝑛 log 𝑛

and lower bound: 𝑇 𝑛 = Ω 𝑛 log 𝑛

Combining we get the tight bound: 

𝑇 𝑛 = Θ 𝑛 log 𝑛


