CSE 548: Analysis of Algorithms

Prerequisites Review 2
(Insertion Sort and Selection Sort)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2019

Insertion Sort

Input: An array $A[1: n$] of n numbers.
Output: Elements of $A[1: n$] rearranged in non-decreasing order of value.

InSERTION-SORT (A)

1. for $j=2$ to A. length
2. $k e y=A[j]$
3. // insert $A[j]$ into the sorted sequence $A[1 . . j-1]$
4. $i=j-1$
5. while $i>0$ and $A[i]>k e y$
6. $A[i+1]=A[i]$
7. $\quad i=i-1$
8. $A[i+1]=k e y$

Loop Invariants

We use loop invariants to prove correctness of iterative algorithms
A loop invariant is associated with a given loop of an algorithm, and it is a formal statement about the relationship among variables of the algorithm such that

- [Initialization] It is true prior to the first iteration of the loop
- [Maintenance] If it is true before an iteration of the loop, it remains true before the next iteration
- [Termination] When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for $j=2$ to A.length
2. $k e y=A[j]$
3. // insert $A[j]$ into the sorted sequence $A[1 . . j-1]$
4. $i=j-1$
5. while $i>0$ and $A[i]>k e y$
6. $A[i+1]=A[i]$
7. $\quad i=i-1$
8. $A[i+1]=k e y$

Loop Invariants for Insertion Sort

Insertion-Sort (A)

1. for $j=2$ to A.length

Invariant 1: $A[1 . . j-1]$ consists of the elements originally in $A[1 . . j-1]$, but in sorted order
2. $k e y=A[j]$
3. // insert $A[j]$ into the sorted sequence $A[1 . . j-1]$
4. $i=j-1$
5. while $i>0$ and $A[i]>k e y$
6. $A[i+1]=A[i]$
7. $\quad i=i-1$
8. $A[i+1]=k e y$

Loop Invariants for Insertion Sort

Insertion-Sort (A)

1. for $j=2$ to A.length

Invariant 1: $A[1 . . j-1]$ consists of the elements originally in $A[1 . . j-1]$, but in sorted order
2. $k e y=A[j]$
3. // insert $A[j]$ into the sorted sequence $A[1 . . j-1]$
4. $i=j-1$
5. while $i>0$ and $A[i]>k e y$

Invariant 2: $A[i . . j]$ are each $\geq k e y$
6.

$$
A[i+1]=A[i]
$$

7. $\quad i=i-1$
8. $A[i+1]=k e y$

Loop Invariant 1: Initialization

```
INSERTION-SORT (A )
    1. for j=2 to A.length
        Invariant 1:A[1..j-1] consists of the elements
        originally in A[1..j-1], but in sorted order
    key = A[j]
    // insert A[j] into the sorted sequence A[1..j - 1]
    i=j-1
    while i>0 and A[i] > key
        Invariant 2: A[i..j] are each \geq key
            A[i+1]=A[i]
            i=i-1
    A[i+1]=key
```

At the start of the first iteration of the loop (in lines $1-8$): $j=2$
Hence, subarray $A[1 . . j-1]$ consists of a single element $A[1]$, which is in fact the original element in $A[1]$.

The subarray consisting of a single element is trivially sorted.
Hence, the invariant holds initially.

Loop Invariant 1: Maintenance

```
INSERTION-SORT ( A )
    1. for j=2 to A.length
        Invariant 1: A[1..j-1] consists of the elements
            originally in A[1..j-1], but in sorted order
    key = A[j]
        // insert A[j] into the sorted sequence }A[1..j-1
        i=j-1
        while i>0 and A[i]>key
        Invariant 2: A[i..j] are each \geq key
        A[i+1]=A[i]
        i=i-1
    A[i+1] = key
```

We assume that invariant 1 holds before the start of the current iteration. Hence, the following holds: $A[1 . . j-1]$ consists of the elements originally in $A[1 . . j-1]$, but in sorted order.

For invariant 1 to hold before the start of the next iteration, the following must hold at the end of the current iteration:
$A[1 . . j]$ consists of the elements originally in $A[1 . . j]$, but in sorted order. We use invariant 2 to prove this.

Loop Invariant 1: Maintenance Loop Invariant 2: Initialization

```
INSERTION-SORT (A )
    1. for j=2 to A.length
        Invariant 1: A[1..j-1] consists of the elements
        originally in A[1..j - 1], but in sorted order
    key = A[j]
    // insert A[j] into the sorted sequence }A[1..j-1
    i=j-1
    while i>0 and A[i] > key
        Invariant 2: }A[i..j] are each \geqke
        A[i+1] = A[i]
        i=i-1
    A[i+1]=key
```

At the start of the first iteration of the loop (in lines 5-7): $i=j-1$ Hence, subarray $A[i . . j]$ consists of only two entries: $A[i]$ and $A[j]$.

We know the following:
$-A[i]>$ key (explicitly tested in line 5)
$-A[j]=\operatorname{key}($ from line 2$)$
Hence, invariant 2 holds initially.

Loop Invariant 1: Maintenance Loop Invariant 2: Maintenance

```
INSERTION-SORT ( A )
    for j=2 to A.length
        Invariant 1:A[1..j-1] consists of the elements
            originally in A[1..j-1], but in sorted order
    key = A[j]
    // insert A[j] into the sorted sequence }A[1..j-1
    i=j-1
    while i>0 and A[i] > key
        Invariant 2: A[i..j] are each \geq key
        A[i+1] = A[i]
        i=i-1
    A[i+1]=key
```

We assume that invariant 2 holds before the start of the current iteration. Hence, the following holds: $A[i . . j]$ are each $\geq k e y$.

Since line 6 copies $A[i]$ which is known to be $>k e y$ to $A[i+1]$ which also held a value $\geq k e y$, the following holds at the end of the current iteration: $A[i+1 . . j]$ are each $\geq k e y$.

Before the start of the next iteration the check $A[i]>$ key in line 5 ensures that invariant 2 continues to hold.

Loop Invariant 1: Maintenance Loop Invariant 2: Maintenance

```
INSERTION-SORT ( A )
    1. for j=2 to A.length
        Invariant 1:A[1..j-1] consists of the elements
            originally in A[1..j-1], but in sorted order
    key = A[j]
    // insert A[j] into the sorted sequence }A[1..j - 1
    i=j-1
    while i>0 and A[i] > key
        Invariant 2: A[i..j] are each \geq key
        A[i+1] = A[i]
        i=i-1
    A[i+1] = key
```

Observe that the inner loop (in lines 5-7) does not destroy any data because though the first iteration overwrites $A[j]$, that $A[j]$ has already been saved in key in line 2.

As long as key is copied back into a location in $A[1 . . j]$ without destroying any other element in that subarray, we maintain the invariant that $A[1 . . j]$ contains the first j elements of the original list.

Loop Invariant 1: Maintenance Loop Invariant 2: Termination

```
INSERTION-SORT ( A )
    1. for j=2 to A.length
        Invariant 1: A[1..j-1] consists of the elements
            originally in A[1..j - 1], but in sorted order
    key = A[j]
    // insert A[j] into the sorted sequence }A[1..j-1
    i=j-1
    while i>0 and A[i] > key
        Invariant 2: A[i..j] are each \geq key
        A[i+1] = A[i]
        i=i-1
    A[i+1] = key
```

When the inner loop terminates we know the following.
$-A[1 . . i]$ is sorted with each element $\leq k e y$

- if $i=0$, true by default
- if $i>0$, true because $A[1 . . i]$ is sorted and $A[i] \leq k e y$
$-A[i+1 . . j]$ is sorted with each element \geq key because the following held before i was decremented: $A[i . . j]$ is sorted with each item $\geq k e y$
$-A[i+1]=A[i+2]$ if the loop was executed at least once, and $A[i+1]=$ key otherwise

Loop Invariant 1: Maintenance Loop Invariant 2: Termination

```
INSERTION-SORT (A )
    1. for j=2 to A.length
        Invariant 1: A[1..j-1] consists of the elements
            originally in A[1..j - 1], but in sorted order
    key = A[j]
    // insert A[j] into the sorted sequence }A[1..j-1
    i=j-1
    while i>0 and A[i] > key
        Invariant 2: A[i..j] are each \geq key
        A[i+1] = A[i]
        i=i-1
    A[i+1] = key
```

When the inner loop terminates we know the following.
$-A[1 . . i]$ is sorted with each element $\leq k e y$
$-A[i+1 . . j]$ is sorted with each element $\geq k e y$
$-A[i+1]=A[i+2]$ or $A[i+1]=k e y$

Given the facts above, line 8 does not destroy any data, and gives us $A[1 . . j]$ as the sorted permutation of the original data in $A[1 . . j]$.

Loop Invariant 1: Termination

```
INSERTION-SORT (A )
    1. for j=2 to A.length
        Invariant 1: A[1..j-1] consists of the elements
        originally in A[1..j - 1], but in sorted order
        key=A[j]
        // insert A[j] into the sorted sequence A[1..j - 1]
        i=j-1
        while i>0 and A[i] > key
        Invariant 2: }A[i..j] are each \geq ke
            A[i+1] = A[i]
            i=i-1
    A[i+1]=key
```

When the outer loop terminates we know that $j=A$.length +1 .
Hence, $A[1 . . j-1]$ is the entire array $A[1 . . A$.length $]$, which is sorted and contains the original elements of $A[1 . . A$. length $]$.

Worst Case Runtime of Insertion Sort (Upper Bound)

Insertion-Sort (A)

Running time, $T(n) \leq c_{1} n+c_{2}(n-1)+c_{4}(n-1)$

$$
\begin{aligned}
& \quad+c_{5} \sum_{j=2}^{n} j+c_{6} \sum_{j=2}^{n}(j-1)+c_{7} \sum_{j=2}^{n}(j-1)+c_{8}(n-1) \\
& =0.5\left(c_{5}+c_{6}+c_{7}\right) n^{2}+0.5\left(2 c_{1}+2 c_{2}+2 c_{4}+c_{5}-c_{6}-c_{7}+2 c_{8}\right) n \\
& \Rightarrow \\
& \left.\Rightarrow T(n)=O\left(n_{2} n^{2}\right) \quad c_{4}+c_{5}+c_{8}\right)
\end{aligned}
$$

Best Case Runtime of Insertion Sort (Lower Bound)

Insertion-Sort (A)

1.	for $j=2$ to A.length	c_{1}	------- n
2.	$k e y=A[j]$	c_{2}	
3.	// insert $A[j]$ into the sorted sequence $A[1 . . j-1]$	0	
4.	$i=j-1$	c_{4}	
5.	while $i>0$ and $A[i]>$ key	c_{5}	...-
6.	$A[i+1]=A[i]$	c_{6}	
7.	$i=i-1$	c_{7}	
8.	$A[i+1]=k e y$	c_{8}	------n-1

Running time, $T(n) \geq c_{1} n+c_{2}(n-1)+c_{4}(n-1)$

$$
\begin{aligned}
& +c_{5}(n-1)+c_{8}(n-1) \\
& =\left(c_{1}+c_{2}+c_{4}+c_{5}+c_{8}\right) n-\left(c_{2}+c_{4}+c_{5}+c_{8}\right) \\
\Rightarrow T(n) & =\Omega(n)
\end{aligned}
$$

Selection Sort

Input: An array $A[1: n]$ of n numbers.
Output: Elements of $A[1: n$] rearranged in non-decreasing order of value.

Selection-Sort (A)

1. for $j=1$ to A. length
2. // find the index of an entry with the smallest value in $A[j$..A.length]
3. $\min =j$
4. for $i=j+1$ to A. length
5. if $A[i]<A[\min]$
6. $\quad \min =i$
7. $/ / \operatorname{swap} A[j]$ and $A[\min]$
8. $A[j] \leftrightarrow A[\min]$
