
CSE 548: Analysis of Algorithms

Prerequisites Review 2

(Insertion Sort and Selection Sort)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2019

1

Insertion Sort

Input: An array 𝐴[1 ∶ 𝑛] of 𝑛 numbers.

Output: Elements of 𝐴[1 ∶ 𝑛] rearranged in non-decreasing order of value.

INSERTION-SORT (A)

1. for 𝑗 = 2 to 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ

2. 𝑘𝑒𝑦 = 𝐴 𝑗

3. // insert 𝐴 𝑗 into the sorted sequence 𝐴 1. . 𝑗 − 1

4. 𝑖 = 𝑗 − 1

5. while 𝑖 > 0 and 𝐴 𝑖 > 𝑘𝑒𝑦

6. 𝐴 𝑖 + 1 = 𝐴 𝑖

7. 𝑖 = 𝑖 − 1

8. 𝐴 𝑖 + 1 = 𝑘𝑒𝑦

2

Loop Invariants

We use loop invariants to prove correctness of iterative algorithms

A loop invariant is associated with a given loop of an algorithm,
and it is a formal statement about the relationship among variables
of the algorithm such that

― [Initialization] It is true prior to the first iteration of the loop

― [Maintenance] If it is true before an iteration of the loop, it
remains true before the next iteration

― [Termination] When the loop terminates, the invariant gives us
a useful property that helps show that the algorithm is correct

3

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for 𝑗 = 2 to 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ

2. 𝑘𝑒𝑦 = 𝐴 𝑗

3. // insert 𝐴 𝑗 into the sorted sequence 𝐴 1. . 𝑗 − 1

4. 𝑖 = 𝑗 − 1

5. while 𝑖 > 0 and 𝐴 𝑖 > 𝑘𝑒𝑦

6. 𝐴 𝑖 + 1 = 𝐴 𝑖

7. 𝑖 = 𝑖 − 1

8. 𝐴 𝑖 + 1 = 𝑘𝑒𝑦

4

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for 𝑗 = 2 to 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ

Invariant 1: 𝐴 1. . 𝑗 − 1 consists of the elements

originally in 𝐴 1. . 𝑗 − 1 , but in sorted order

2. 𝑘𝑒𝑦 = 𝐴 𝑗

3. // insert 𝐴 𝑗 into the sorted sequence 𝐴 1. . 𝑗 − 1

4. 𝑖 = 𝑗 − 1

5. while 𝑖 > 0 and 𝐴 𝑖 > 𝑘𝑒𝑦

6. 𝐴 𝑖 + 1 = 𝐴 𝑖

7. 𝑖 = 𝑖 − 1

8. 𝐴 𝑖 + 1 = 𝑘𝑒𝑦

5

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for 𝑗 = 2 to 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ

Invariant 1: 𝐴 1. . 𝑗 − 1 consists of the elements

originally in 𝐴 1. . 𝑗 − 1 , but in sorted order

2. 𝑘𝑒𝑦 = 𝐴 𝑗

3. // insert 𝐴 𝑗 into the sorted sequence 𝐴 1. . 𝑗 − 1

4. 𝑖 = 𝑗 − 1

5. while 𝑖 > 0 and 𝐴 𝑖 > 𝑘𝑒𝑦

Invariant 2: 𝐴 𝑖. . 𝑗 are each ≥ 𝑘𝑒𝑦

6. 𝐴 𝑖 + 1 = 𝐴 𝑖

7. 𝑖 = 𝑖 − 1

8. 𝐴 𝑖 + 1 = 𝑘𝑒𝑦

6

Loop Invariant 1: Initialization

At the start of the first iteration of the loop (in lines 1 − 8): 𝑗 = 2

Hence, subarray 𝐴 1. . 𝑗 − 1 consists of a single element 𝐴 1 , which is
in fact the original element in 𝐴 1 .

The subarray consisting of a single element is trivially sorted.

Hence, the invariant holds initially.

7

Loop Invariant 1: Maintenance

We assume that invariant 1 holds before the start of the current iteration.

Hence, the following holds: 𝐴 1. . 𝑗 − 1 consists of the elements originally
in 𝐴 1. . 𝑗 − 1 , but in sorted order.

For invariant 1 to hold before the start of the next iteration, the following
must hold at the end of the current iteration:

𝐴 1. . 𝑗 consists of the elements originally in 𝐴 1. . 𝑗 , but in sorted order.

We use invariant 2 to prove this. 8

Loop Invariant 1: Maintenance
Loop Invariant 2: Initialization

At the start of the first iteration of the loop (in lines 5 − 7): 𝑖 = 𝑗 − 1

Hence, subarray 𝐴 𝑖. . 𝑗 consists of only two entries: 𝐴 𝑖 and 𝐴 𝑗 .

We know the following:
― 𝐴 𝑖 > 𝑘𝑒𝑦 (explicitly tested in line 5)
― 𝐴 𝑗 = 𝑘𝑒𝑦 (from line 2)

Hence, invariant 2 holds initially.
9

Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

We assume that invariant 2 holds before the start of the current iteration.

Hence, the following holds: 𝐴 𝑖. . 𝑗 are each ≥ 𝑘𝑒𝑦.

Since line 6 copies 𝐴 𝑖 which is known to be > 𝑘𝑒𝑦 to 𝐴 𝑖 + 1 which also
held a value ≥ 𝑘𝑒𝑦, the following holds at the end of the current iteration:
𝐴 𝑖 + 1. . 𝑗 are each ≥ 𝑘𝑒𝑦.

Before the start of the next iteration the check 𝐴 𝑖 > 𝑘𝑒𝑦 in line 5 ensures
that invariant 2 continues to hold.

10

Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

Observe that the inner loop (in lines 5 − 7) does not destroy any data
because though the first iteration overwrites 𝐴 𝑗 , that 𝐴 𝑗 has already
been saved in 𝑘𝑒𝑦 in line 2.

As long as 𝑘𝑒𝑦 is copied back into a location in 𝐴 1. . 𝑗 without destroying
any other element in that subarray, we maintain the invariant that 𝐴 1. . 𝑗
contains the first 𝑗 elements of the original list.

11

Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

When the inner loop terminates we know the following.

― 𝐴 1. . 𝑖 is sorted with each element ≤ 𝑘𝑒𝑦

▪ if 𝑖 = 0, true by default
▪ if 𝑖 > 0, true because 𝐴 1. . 𝑖 is sorted and 𝐴 𝑖 ≤ 𝑘𝑒𝑦

― 𝐴 𝑖 + 1. . 𝑗 is sorted with each element ≥ 𝑘𝑒𝑦 because the following
held before 𝑖 was decremented: 𝐴 𝑖. . 𝑗 is sorted with each item ≥ 𝑘𝑒𝑦

― 𝐴 𝑖 + 1 = 𝐴 𝑖 + 2 if the loop was executed at least once, and
𝐴 𝑖 + 1 = 𝑘𝑒𝑦 otherwise 12

Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

When the inner loop terminates we know the following.

― 𝐴 1. . 𝑖 is sorted with each element ≤ 𝑘𝑒𝑦

― 𝐴 𝑖 + 1. . 𝑗 is sorted with each element ≥ 𝑘𝑒𝑦

― 𝐴 𝑖 + 1 = 𝐴 𝑖 + 2 or 𝐴 𝑖 + 1 = 𝑘𝑒𝑦

Given the facts above, line 8 does not destroy any data, and gives us
𝐴 1. . 𝑗 as the sorted permutation of the original data in 𝐴 1. . 𝑗 .

13

Loop Invariant 1: Termination

When the outer loop terminates we know that 𝑗 = 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ + 1.

Hence, 𝐴 1. . 𝑗 − 1 is the entire array 𝐴 1. . 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ , which is sorted and
contains the original elements of 𝐴 1. . 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ .

14

Worst Case Runtime of Insertion Sort (Upper Bound)

INSERTION-SORT (A)

1. for 𝑗 = 2 to 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ

2. 𝑘𝑒𝑦 = 𝐴 𝑗

3. // insert 𝐴 𝑗 into the sorted sequence 𝐴 1. . 𝑗 − 1

4. 𝑖 = 𝑗 − 1

5. while 𝑖 > 0 and 𝐴 𝑖 > 𝑘𝑒𝑦

6. 𝐴 𝑖 + 1 = 𝐴 𝑖

7. 𝑖 = 𝑖 − 1

8. 𝐴 𝑖 + 1 = 𝑘𝑒𝑦

𝑐1

𝑐2

0

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑛

𝑛 − 1

2≤𝑗≤𝑛

𝑗

2≤𝑗≤𝑛

𝑗 − 1

𝑛 − 1

cost times

Running time, 𝑇 𝑛 ≤ 𝑐1𝑛 + 𝑐2 𝑛 − 1 + 𝑐4 𝑛 − 1

+𝑐5σ𝑗=2
𝑛 𝑗 + 𝑐6σ𝑗=2

𝑛 𝑗 − 1 + 𝑐7σ𝑗=2
𝑛 𝑗 − 1 + 𝑐8 𝑛 − 1

= 0.5 𝑐5 + 𝑐6 + 𝑐7 𝑛2 + 0.5 2𝑐1 + 2𝑐2 + 2𝑐4 + 𝑐5 − 𝑐6 − 𝑐7 + 2𝑐8 𝑛
− 𝑐2 + 𝑐4 + 𝑐5 + 𝑐8

⇒ 𝑇 𝑛 = 𝑂 𝑛2 15

Best Case Runtime of Insertion Sort (Lower Bound)

INSERTION-SORT (A)

1. for 𝑗 = 2 to 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ

2. 𝑘𝑒𝑦 = 𝐴 𝑗

3. // insert 𝐴 𝑗 into the sorted sequence 𝐴 1. . 𝑗 − 1

4. 𝑖 = 𝑗 − 1

5. while 𝑖 > 0 and 𝐴 𝑖 > 𝑘𝑒𝑦

6. 𝐴 𝑖 + 1 = 𝐴 𝑖

7. 𝑖 = 𝑖 − 1

8. 𝐴 𝑖 + 1 = 𝑘𝑒𝑦

𝑐1

𝑐2

0

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑛

𝑛 − 1

0

𝑛 − 1

cost times

Running time, 𝑇 𝑛 ≥ 𝑐1𝑛 + 𝑐2 𝑛 − 1 + 𝑐4 𝑛 − 1
+𝑐5 𝑛 − 1 + 𝑐8 𝑛 − 1

= 𝑐1 + 𝑐2 + 𝑐4 + 𝑐5 + 𝑐8 𝑛 − 𝑐2 + 𝑐4 + 𝑐5 + 𝑐8

⇒ 𝑇 𝑛 = Ω 𝑛
16

Selection Sort

Input: An array 𝐴[1 ∶ 𝑛] of 𝑛 numbers.

Output: Elements of 𝐴[1 ∶ 𝑛] rearranged in non-decreasing order of value.

SELECTION-SORT (A)

1. for 𝑗 = 1 to 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ

2. // find the index of an entry with the smallest value in 𝐴 𝑗. . 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ

3. 𝑚𝑖𝑛 = 𝑗

4. for 𝑖 = 𝑗 + 1 to 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ

5. if 𝐴 𝑖 < 𝐴 𝑚𝑖𝑛

6. 𝑚𝑖𝑛 = 𝑖

7. // swap 𝐴 𝑗 and 𝐴 𝑚𝑖𝑛

8. 𝐴 𝑗 ↔ 𝐴 𝑚𝑖𝑛

17

