CSE 548: Analysis of Algorithms

Prerequisites Review 2 (Insertion Sort and Selection Sort)

Rezaul A. Chowdhury

Department of Computer Science SUNY Stony Brook Fall 2019

Insertion Sort

Input: An array A[1:n] of n numbers.

Output: Elements of A[1:n] rearranged in non-decreasing order of value.

INSERTION-SORT (A) 1. for j = 2 to A. length 2. key = A[j]3. // insert A[j] into the sorted sequence A[1..j-1]4. i = j - 15. while i > 0 and A[i] > keyA[i+1] = A[i]6. 7. i = i - 1A[i+1] = key8.

Loop Invariants

We use *loop invariants* to prove correctness of iterative algorithms

A loop invariant is associated with a given loop of an algorithm, and it is a formal statement about the relationship among variables of the algorithm such that

- [Initialization] It is true prior to the first iteration of the loop
- [Maintenance] If it is true before an iteration of the loop, it remains true before the next iteration
- [Termination] When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for
$$j = 2$$
 to A. length

$$2. \qquad key = A[j]$$

3. // insert
$$A[j]$$
 into the sorted sequence $A[1..j-1]$

4.
$$i = j - 1$$

5. while
$$i > 0$$
 and $A[i] > key$

6.
$$A[i+1] = A[i]$$

7.
$$i = i - 1$$

$$8. \qquad A[i+1] = key$$

Loop Invariants for Insertion Sort

INSERTION-SORT (A)1. for j = 2 to A. length **Invariant 1:** A[1..j-1] consists of the elements originally in A[1..j-1], but in sorted order 2. key = A[j]// insert A[j] into the sorted sequence A[1..j-1]3. 4. i = j - 1while i > 0 and A[i] > key5. A[i + 1] = A[i]6. 7. i = i - 18. A[i+1] = key

Loop Invariants for Insertion Sort

INSERTION-SORT (A)1. for j = 2 to A. length **Invariant 1:** A[1..j-1] consists of the elements originally in A[1..j-1], but in sorted order 2. key = A[j]// insert A[j] into the sorted sequence A[1..j-1]3. 4. i = j - 15. while i > 0 and A[i] > key**Invariant 2:** A[i..j] are each $\geq key$ A[i + 1] = A[i]6. 7. i = i - 18. A[i+1] = key

Loop Invariant 1: Initialization

At the start of the first iteration of the loop (in lines 1 - 8): j = 2

Hence, subarray A[1..j - 1] consists of a single element A[1], which is in fact the original element in A[1].

The subarray consisting of a single element is trivially sorted.

Hence, the invariant holds initially.

Loop Invariant 1: Maintenance

We assume that invariant 1 holds before the start of the current iteration.

Hence, the following holds: A[1..j - 1] consists of the elements originally in A[1..j - 1], but in sorted order.

For invariant 1 to hold before the start of the next iteration, the following must hold at the end of the current iteration:

A[1.,j] consists of the elements originally in A[1.,j], but in sorted order. We use invariant 2 to prove this.

Loop Invariant 1: Maintenance Loop Invariant 2: Initialization

At the start of the first iteration of the loop (in lines 5-7): i = j - 1

Hence, subarray A[i . . j] consists of only two entries: A[i] and A[j].

We know the following:

$$-A[i] > key$$
 (explicitly tested in line 5)
 $-A[j] = key$ (from line 2)

Hence, invariant 2 holds initially.

Loop Invariant 1: Maintenance Loop Invariant 2: Maintenance

We assume that invariant 2 holds before the start of the current iteration.

```
Hence, the following holds: A[i \, . \, j] are each \geq key.
```

Since line 6 copies A[i] which is known to be > key to A[i + 1] which also held a value $\ge key$, the following holds at the end of the current iteration: A[i + 1..j] are each $\ge key$.

Before the start of the next iteration the check A[i] > key in line 5 ensures that invariant 2 continues to hold.

Loop Invariant 1: Maintenance Loop Invariant 2: Maintenance

Observe that the inner loop (in lines 5 - 7) does not destroy any data because though the first iteration overwrites A[j], that A[j] has already been saved in key in line 2.

As long as key is copied back into a location in A[1..j] without destroying any other element in that subarray, we maintain the invariant that A[1..j]contains the first j elements of the original list.

Loop Invariant 1: Maintenance Loop Invariant 2: Termination

Insertion-Sort (A)	
1. for $j = 2$ to A.length	
	Invariant 1: $A[1, j-1]$ consists of the elements
	originally in $A[1j - 1]$, but in sorted order
2.	key = A[j]
3.	// insert $A[j]$ into the sorted sequence $A[1j - 1]$
4.	i = j - 1
5.	while $i > 0$ and $A[i] > key$
	Invariant 2: $A[ij]$ are each $\geq key$
6.	A[i+1] = A[i]
7.	i = i - 1
8.	A[i+1] = key

When the inner loop terminates we know the following.

- -A[1..i] is sorted with each element $\leq key$
 - if i = 0, true by default
 - if i > 0, true because A[1..i] is sorted and $A[i] \le key$
- -A[i+1..j] is sorted with each element $\geq key$ because the following held before *i* was decremented: A[i..j] is sorted with each item $\geq key$
- -A[i+1] = A[i+2] if the loop was executed at least once, and A[i+1] = key otherwise

Loop Invariant 1: Maintenance Loop Invariant 2: Termination

When the inner loop terminates we know the following.

- -A[1..i] is sorted with each element $\leq key$
- -A[i+1..j] is sorted with each element $\geq key$
- -A[i+1] = A[i+2] or A[i+1] = key

Given the facts above, line 8 does not destroy any data, and gives us A[1..j] as the sorted permutation of the original data in A[1..j].

Loop Invariant 1: Termination

When the outer loop terminates we know that j = A.length + 1.

Hence, A[1..j - 1] is the entire array A[1..A.length], which is sorted and contains the original elements of A[1..A.length].

Worst Case Runtime of Insertion Sort (Upper Bound)

Running time, $T(n) \leq c_1 n + c_2 (n-1) + c_4 (n-1)$ + $c_5 \sum_{j=2}^n j + c_6 \sum_{j=2}^n (j-1) + c_7 \sum_{j=2}^n (j-1) + c_8 (n-1)$ = $0.5(c_5 + c_6 + c_7)n^2 + 0.5(2c_1 + 2c_2 + 2c_4 + c_5 - c_6 - c_7 + 2c_8)n$ $-(c_2 + c_4 + c_5 + c_8)$ $\Rightarrow T(n) = O(n^2)$

Best Case Runtime of Insertion Sort (Lower Bound)

Running time, $T(n) \ge c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$

 $= (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$ $\Rightarrow T(n) = \Omega(n)$

Selection Sort

Input: An array A[1:n] of n numbers.

Output: Elements of A[1:n] rearranged in non-decreasing order of value.

SELECTION-SORT (A)

- 1. for j = 1 to A. length
- 2. // find the index of an entry with the smallest value in A[j..A.length]

```
3. min = j
```

4. **for**
$$i = j + 1$$
 to A. length

- 5. **if** A[i] < A[min]
- $6. \qquad min=i$
- 7. // swap A[j] and A[min]

8. $A[j] \leftrightarrow A[min]$