
1

CSE 548: Analysis of Algorithms

Prerequisites Review 3

(Deterministic Quicksort and

Average Case Analysis)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2019

The Divide-and-Conquer Process in Merge Sort

Suppose we want to sort a typical subarray 𝐴 𝑝. . 𝑟 .

DIVIDE: Split 𝐴 𝑝. . 𝑟 at midpoint 𝑞 into two subarrays 𝐴 𝑝. . 𝑞 and

𝐴 𝑞 + 1. . 𝑟 of equal or almost equal length.

CONQUER: Recursively sort 𝐴 𝑝. . 𝑞 and 𝐴 𝑞 + 1. . 𝑟 .

COMBINE: Merge the two sorted subarrays 𝐴 𝑝. . 𝑞 and 𝐴 𝑞 + 1. . 𝑟

to obtain a longer sorted subarray 𝐴 𝑝. . 𝑟 .

The DIVIDE step is cheap ― takes only Θ 1 time.

But the COMBINE step is costly ― takes Θ 𝑛 time, where 𝑛 is the

length of 𝐴 𝑝. . 𝑟 .

2

The Divide-and-Conquer Process in Quicksort

Suppose we want to sort a typical subarray 𝐴 𝑝. . 𝑟 .

DIVIDE: Partition 𝐴 𝑝. . 𝑟 into two (possibly empty) subarrays

𝐴 𝑝. . 𝑞 − 1 and 𝐴 𝑞 + 1. . 𝑟 and find index 𝑞 such that

• each element of 𝐴 𝑝. . 𝑞 − 1 is ≤ 𝐴 𝑞 , and

• each element of 𝐴 𝑞 + 1. . 𝑟 is ≥ 𝐴 𝑞 .

CONQUER: Recursively sort 𝐴 𝑝. . 𝑞 − 1 and 𝐴 𝑞 + 1. . 𝑟 .

COMBINE: Since 𝐴 𝑞 is “equal or larger” and “equal or smaller” than

everything to its left and right, respectively, and both left and right

parts are sorted, subarray 𝐴 𝑝. . 𝑟 is also sorted.

The COMBINE step is cheap ― takes only Θ 1 time.

But the DIVIDE step is costly ― takes Θ 𝑛 time, where 𝑛 is the

length of 𝐴 𝑝. . 𝑟 . 3

Quicksort

Input: A subarray 𝐴[𝑝 ∶ 𝑟] of 𝑟 − 𝑝 + 1 numbers, where 𝑝 ≤ 𝑟.

Output: Elements of 𝐴[𝑝 ∶ 𝑟] rearranged in non-decreasing order of value.

QUICKSORT (A, p, r)

1. if 𝑝 < 𝑟 then

2. // partition 𝐴 𝑝. . 𝑟 into 𝐴 𝑝. . 𝑞 − 1 and 𝐴 𝑞 + 1. . 𝑟 such that everything in

𝐴 𝑝. . 𝑞 − 1 is ≤ 𝐴 𝑞 and everything in 𝐴 𝑞 + 1. . 𝑟 is ≥ 𝐴 𝑞

3. 𝑞 = PARTITION (A, p, r)

4. // recursively sort the left part

5. QUICKSORT (A, p, q ‒ 1)

6. // recursively sort the right part

7. QUICKSORT (A, q + 1, r)

4

Partition

Input: A subarray 𝐴[𝑝 ∶ 𝑟] of 𝑟 − 𝑝 + 1 numbers, where 𝑝 ≤ 𝑟.

Output: Elements of 𝐴[𝑝 ∶ 𝑟] are rearranged such that for some 𝑞 ∈ 𝑝, 𝑟

everything in 𝐴[𝑝 ∶ 𝑞 − 1] is ≤ 𝐴 𝑞 and everything in 𝐴[𝑞 + 1: 𝑟] is ≥

𝐴 𝑞 . Index 𝑞 is returned.

PARTITION (A, p, r)

1. 𝑥 = 𝐴 𝑟

2. 𝑖 = 𝑝 − 1

3. for 𝑗 = 𝑝 to 𝑟 − 1

4. if 𝐴 𝑗 ≤ 𝑥

5. 𝑖 = 𝑖 + 1

6. exchange 𝐴 𝑖 with 𝐴 𝑗

7. exchange 𝐴 𝑖 + 1 with 𝐴 𝑟

8. return 𝑖 + 1

5

Correctness of Partition

Input: A subarray 𝐴[𝑝 ∶ 𝑟] of 𝑟 − 𝑝 + 1 numbers, where 𝑝 ≤ 𝑟.

Output: Elements of 𝐴[𝑝 ∶ 𝑟] are rearranged such that for some 𝑞 ∈ 𝑝, 𝑟

everything in 𝐴[𝑝 ∶ 𝑞 − 1] is ≤ 𝐴 𝑞 and everything in 𝐴[𝑞 + 1: 𝑟] is ≥

𝐴 𝑞 . Index 𝑞 is returned.

Loop Invariant
At the start of each iteration of the
for loop of lines 3‒6, for any array
index 𝑘,

1. if 𝑝 ≤ 𝑘 ≤ 𝑖,
then 𝐴 𝑘 ≤ 𝑥.

2. if 𝑖 + 1 ≤ 𝑘 ≤ 𝑗 − 1,
then 𝐴 𝑘 > 𝑥.

3. if 𝑘 = 𝑟,
then 𝐴 𝑘 = 𝑥.

6

Running Time of Partition

Input: A subarray 𝐴[𝑝 ∶ 𝑟] of 𝑟 − 𝑝 + 1 numbers, where 𝑝 ≤ 𝑟.

Output: Elements of 𝐴[𝑝 ∶ 𝑟] are rearranged such that for some 𝑞 ∈ 𝑝, 𝑟

everything in 𝐴[𝑝 ∶ 𝑞 − 1] is ≤ 𝐴 𝑞 and everything in 𝐴[𝑞 + 1: 𝑟] is ≥

𝐴 𝑞 . Index 𝑞 is returned.

Let 𝑛 = 𝑟 − 𝑝 + 1.

The loop of lines 3‒6 takes
Θ 𝑟 − 1 − 𝑝 + 1 = Θ 𝑛 time.

Lines 1, 2, 7 and 8 take Θ 1 time each.

Hence, the overall running time is Θ 𝑛 .

7

Worst-case Running Time of Quicksort

𝑇 𝑛 = ൝
Θ 1 𝑖𝑓 𝑛 = 1,

max
𝑝≤𝑞≤𝑟

𝑇 𝑞 − 𝑝 + 𝑇 𝑟 − 𝑞 + Θ 𝑛 𝑖𝑓 𝑛 > 1.

𝑇 𝑛 = ൝
Θ 1 𝑖𝑓 𝑛 = 1,

max
1≤𝑘≤𝑛

𝑇 𝑘 − 1 + 𝑇 𝑛 − 𝑘 + Θ 𝑛 𝑖𝑓 𝑛 > 1.

Replacing 𝑞 with 𝑘 + 𝑝 − 1, we get:

Assuming 𝑛 = 𝑟 − 𝑝 + 1, the worst-case running time of quicksort:

8

Worst-case Running Time of Quicksort (Upper Bound)

For 𝑛 > 1 and a constant 𝑐 > 0,

𝑇 𝑛 = max
1≤𝑘≤𝑛

𝑇 𝑘 − 1 + 𝑇 𝑛 − 𝑘 + 𝑐𝑛

Our guess for upper bound: 𝑇 𝑛 ≤ 𝑐1𝑛
2 for constant 𝑐1 > 0.

Using this bound on the right side of the recurrence equation, we get.

𝑇 𝑛 ≤ max
1≤𝑘≤𝑛

𝑐1 𝑘 − 1 2 + 𝑐1 𝑛 − 𝑘 2 + 𝑐𝑛

⇒ 𝑇 𝑛 ≤ 𝑐1 max
1≤𝑘≤𝑛

𝑘 − 1 2 + 𝑛 − 𝑘 2 + 𝑐𝑛

But 𝑘 − 1 2 + 𝑛 − 𝑘 2 reaches its maximum value for 𝑘 = 1 and 𝑘 = 𝑛.

Hence,

𝑇 𝑛 ≤ 𝑐1 1 − 1 2 + 𝑛 − 1 2 + 𝑐𝑛

⇒ 𝑇 𝑛 ≤ 𝑐1 𝑛 − 1 2 + 𝑐𝑛

⇒ 𝑇 𝑛 ≤ 𝑐1𝑛
2 − 𝑐1 2𝑛 − 1 − 𝑐𝑛

9

But for 𝑐1 ≥ 𝑐, we have,

𝑐1 2𝑛 − 1 ≥ 𝑐 2𝑛 − 1

⇒ 𝑐1 2𝑛 − 1 ≥ 2𝑐𝑛 − 𝑐

⇒ 𝑐1 2𝑛 − 1 − 𝑐𝑛 ≥ 𝑐𝑛 − 𝑐

But 𝑛 ≥ 1 ⇒ 𝑐𝑛 ≥ 𝑐 ⇒ 𝑐𝑛 − 𝑐 ≥ 0, and thus

𝑐1 2𝑛 − 1 − 𝑐𝑛 ≥ 0

⇒ − 𝑐1 2𝑛 − 1 − 𝑐𝑛 ≤ 0

⇒ 𝑐1𝑛
2 − 𝑐1 2𝑛 − 1 − 𝑐𝑛 ≤ 𝑐1𝑛

2

But 𝑇 𝑛 ≤ 𝑐1𝑛
2 − 𝑐1 2𝑛 − 1 − 𝑐𝑛 .

Hence, 𝑇 𝑛 ≤ 𝑐1𝑛
2 for 𝑐1 ≥ 𝑐.

Worst-case Running Time of Quicksort (Upper Bound)

10

For 𝑛 > 1 and a constant 𝑐 > 0,

𝑇 𝑛 = max
1≤𝑘≤𝑛

𝑇 𝑘 − 1 + 𝑇 𝑛 − 𝑘 + 𝑐𝑛

Our guess for lower bound: 𝑇 𝑛 ≥ 𝑐2𝑛
2 for constant 𝑐2 > 0.

Using this bound on the right side of the recurrence equation, we get.

𝑇 𝑛 ≥ max
1≤𝑘≤𝑛

𝑐2 𝑘 − 1 2 + 𝑐1 𝑛 − 𝑘 2 + 𝑐𝑛

⇒ 𝑇 𝑛 ≥ 𝑐2 max
1≤𝑘≤𝑛

𝑘 − 1 2 + 𝑛 − 𝑘 2 + 𝑐𝑛

But 𝑘 − 1 2 + 𝑛 − 𝑘 2 reaches its maximum value for 𝑘 = 1 and 𝑘 = 𝑛.

Hence,

𝑇 𝑛 ≥ 𝑐2 1 − 1 2 + 𝑛 − 1 2 + 𝑐𝑛

⇒ 𝑇 𝑛 ≥ 𝑐2 𝑛 − 1 2 + 𝑐𝑛

⇒ 𝑇 𝑛 ≥ 𝑐2𝑛
2 + 𝑐𝑛 − 𝑐2 2𝑛 − 1

Worst-case Running Time of Quicksort (Lower Bound)

11

But for 𝑐2 ≤
𝑐

2
, we have,

𝑐2 2𝑛 − 1 ≤
𝑐

2
2𝑛 − 1

⇒ 𝑐2 2𝑛 − 1 ≤ 𝑐𝑛 −
𝑐

2

⇒ 𝑐𝑛 − 𝑐2 2𝑛 − 1 ≥
𝑐

2

But 𝑐 > 0, and thus

𝑐𝑛 − 𝑐2 2𝑛 − 1 > 0

⇒ 𝑐2𝑛
2 + 𝑐𝑛 − 𝑐2 2𝑛 − 1 > 𝑐2𝑛

2

But 𝑇 𝑛 ≥ 𝑐2𝑛
2 + 𝑐𝑛 − 𝑐2 2𝑛 − 1 .

Hence, 𝑇 𝑛 ≥ 𝑐2𝑛
2 for 𝑐2 ≤

𝑐

2
.

Worst-case Running Time of Quicksort (Lower Bound)

12

We have proved that

𝑇 𝑛 ≤ 𝑐1𝑛
2 for 𝑐1 ≥ 𝑐,

and 𝑇 𝑛 ≥ 𝑐2𝑛
2 for 𝑐2 ≤

𝑐

2
.

Worst-case Running Time of Quicksort (Tight Bound)

Thus 𝑐2𝑛
2 ≤ 𝑇 𝑛 ≤ 𝑐1𝑛

2 for constants 𝑐1 ≥ 𝑐 and 𝑐2 ≤
𝑐

2
.

Hence, 𝑇 𝑛 = Θ 𝑛2 .

13

Average Case Running Time of Quicksort

𝑇 𝑛 = ൞

Θ 1 𝑖𝑓 𝑛 = 1,

1

𝑛

1≤𝑘≤𝑛

𝑇 𝑘 − 1 + 𝑇 𝑛 − 𝑘 + Θ 𝑛 𝑖𝑓 𝑛 > 1.

14

Average Case Running Time of Quicksort

For 𝑛 > 1 and a constant 𝑐 > 0,

𝑇 𝑛 =
1

𝑛
σ1≤𝑘≤𝑛 𝑇 𝑘 − 1 + 𝑇 𝑛 − 𝑘 + 𝑐𝑛

⇒ 𝑛𝑇 𝑛 = σ1≤𝑘≤𝑛 𝑇 𝑘 − 1 + 𝑇 𝑛 − 𝑘 + 𝑐𝑛2

⇒ 𝑛𝑇 𝑛 = 2σ0≤𝑘≤𝑛−1𝑇 𝑘 + 𝑐𝑛2 ⋯ 1

Replacing 𝑛 with 𝑛 − 1,

⇒ 𝑛 − 1 𝑇 𝑛 − 1 = 2σ0≤𝑘≤𝑛−2𝑇 𝑘 + 𝑐 𝑛 − 1 2 ⋯ 2

Subtracting equation 2 from equation 1 , we get

𝑛𝑇 𝑛 − 𝑛 − 1 𝑇 𝑛 − 1 = 2𝑇 𝑛 − 1 + 𝑐 2𝑛 − 1

⇒ 𝑛𝑇 𝑛 − 𝑛 + 1 𝑇 𝑛 − 1 = 𝑐 2𝑛 − 1

Dividing both sides by 𝑛 𝑛 + 1 , we get

𝑇 𝑛

𝑛+1
−

𝑇 𝑛−1

𝑛
=

𝑐 2𝑛−1

𝑛 𝑛+1
15

Average Case Running Time of Quicksort

Assuming
𝑇 𝑛

𝑛+1
= 𝐴 𝑛 , we get from the equation from the previous slide,

𝐴 𝑛 − 𝐴 𝑛 − 1 =
𝑐 2𝑛−1

𝑛 𝑛+1

⇒ 𝐴 𝑛 = 𝐴 𝑛 − 1 +
𝑐 2𝑛−1

𝑛 𝑛+1

⇒ 𝐴 𝑛 = 𝐴 𝑛 − 1 +
2𝑐

𝑛+1
−

𝑐

𝑛 𝑛+1

⇒ 𝐴 𝑛 < 𝐴 𝑛 − 1 +
2𝑐

𝑛+1

⇒ 𝐴 𝑛 < 𝐴 𝑛 − 2 +
2𝑐

𝑛
+

2𝑐

𝑛+1

⇒ 𝐴 𝑛 < 𝐴 𝑛 − 3 +
2𝑐

𝑛−1
+

2𝑐

𝑛
+

2𝑐

𝑛+1

⇒ 𝐴 𝑛 < 𝐴 𝑛 − 𝑘 +
2𝑐

𝑛−𝑘+2
+

2𝑐

𝑛−𝑘+3
+⋯+

2𝑐

𝑛
+

2𝑐

𝑛+1

⇒ 𝐴 𝑛 < 𝐴 1 +
2𝑐

3
+

2𝑐

4
+⋯+

2𝑐

𝑛
+

2𝑐

𝑛+1

16

Average Case Running Time of Quicksort

Since 𝐴 1 =
𝑇 1

2
= Θ 1 , we get,

⇒ 𝐴 𝑛 < Θ 1 + 2𝑐
1

3
+

1

4
+⋯+

1

𝑛
+

1

𝑛+1

⇒ 𝐴 𝑛 < Θ 1 + 2𝑐 1 +
1

2
+

1

3
+⋯+

1

𝑛
+

1

𝑛+1
− 2𝑐 1 +

1

2

But 𝐻𝑛+1 = 1 +
1

2
+

1

3
+⋯+

1

𝑛
+

1

𝑛+1
is the 𝑛 + 1’st Harmonic Number,

and lim
𝑛→∞

𝐻𝑛+1 = ln 𝑛 + 1 + 𝛾, where 𝛾 ≈ 0.5772 is known as the

Euler-Mascheroni constant.

Hence, for 𝑛 → ∞: 𝐴 𝑛 < 2𝑐 ln 𝑛 + 1 + 𝛾 − 3𝑐 + Θ 1

⇒ 𝐴 𝑛 < 2𝑐 ln 𝑛 + 1 + Θ 1

⇒
𝑇 𝑛

𝑛+1
< 2𝑐 ln 𝑛 + 1 + Θ 1

⇒ 𝑇 𝑛 < 2𝑐 𝑛 + 1 ln 𝑛 + 1 + Θ 𝑛

⇒ 𝑇 𝑛 = 𝑂 𝑛 log 𝑛
17

