CSE 548: Analysis of Algorithms

Prerequisites Review 7 (More Graph Algorithms: Basic and Beyond)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2019

Breadth-First Search (BFS).

Input: Unweighted directed or undirected graph $G=(V, E)$ with vertex set V and edge set E, and a source vertex $s \in G . V$. For each $v \in V$, the adjacency list of v is $G . \operatorname{Adj}[v]$.

Output: For all $v \in G[V], v . d$ is set to the shortest distance (in terms of the number of edges) from s to v. Also, $v . \pi$ pointers form a breadth-first tree rooted at s that contains all vertices reachable from s.

```
BFS (G,s )
1. for each vertex }u\inG.V\{s} d
2. u.color }\leftarrow\mathrm{ WHITE,u.d
3. s.color}\leftarrowGRAY, s.d\leftarrow0, s. \pi\leftarrowNI
4. Queue Q\leftarrow\emptyset
5. Enqueue( Q,s )
6. while Q # \emptyset do
7. }u\leftarrow\operatorname{DEQUEUE(Q )
8. for each v\inG.Adj[u] do
9. if v.color = WHITE then
10. v.color }\leftarrow\mathrm{ GRAY, v.d}\leftarrowu.d+1,v.\pi\leftarrow
11. Enqueue( }Q,v
12.
    u.color }\leftarrow\mathrm{ BLACK
```


Breadth-First Search (BFS).

Enqueue $(\boldsymbol{Q}, \boldsymbol{s})$

Breadth-First Search (BFS).

Dequeue $(Q) \rightarrow \boldsymbol{S}$
Enqueue ($\boldsymbol{Q}, \boldsymbol{w}$), Enqueue ($\boldsymbol{Q}, \boldsymbol{r}$)

Breadth-First Search (BFS).

Dequeve (\boldsymbol{Q}) $\rightarrow \boldsymbol{w}$
Enqueue ($\boldsymbol{Q}, \boldsymbol{t}$), Enqueue ($\boldsymbol{Q}, \boldsymbol{x}$)

Breadth-First Search (BFS).

Dequeve (\boldsymbol{Q}) $\boldsymbol{\rightarrow} \boldsymbol{r}$
Enqueue ($\boldsymbol{Q}, \boldsymbol{x}$), Enqueue ($\boldsymbol{Q}, \boldsymbol{v}$)

Breadth-First Search (BFS).

Breadth-First Search (BFS).

Breadth-First Search (BFS).

Dequeue (\boldsymbol{Q}) $\boldsymbol{\rightarrow} \boldsymbol{v}$

Breadth-First Search (BFS).

Dequeue (\boldsymbol{Q}) $\boldsymbol{\rightarrow} \boldsymbol{u}$

y
3

Breadth-First Search (BFS).

Dequeue $(Q) \rightarrow y$

$Q \quad \varnothing$

Breadth-First Search (BFS).

```
BFS (G,s )
1. for each vertex }u\inG.V\{s} d
2.u.color }\leftarrow\mathrm{ WHITE, u.d }\leftarrow\infty,u.\pi\leftarrowNI
3. s.color}\leftarrow\mathrm{ GRAY, s. d}\leftarrow0, s. \pi\leftarrowNI
4. Queue Q\leftarrow\emptyset
5. Enqueue( }Q,s
6. while Q # \emptyset do
7. }u\leftarrow\operatorname{DEQUEUE(Q )
8. for each v\inG.Adj[u] do
9. if v.color = WHITE then
10. v.color \leftarrowGRAY, v.d\leftarrowu.d+1, v.\pi\leftarrowu
11. Enqueue( Q,v)
12.
    u.color}\leftarrow\textrm{BLACK
```

Let $n=|G . V|$ and $m=|G . E|$

Time spent

- initializing $=\Theta(n)$
- enqueuing / dequeuing $=\Theta(n)$
- scanning the adjacency lists
$=\Theta\left(\sum_{v \in \mathrm{G} . V}|G . \operatorname{Adj}[v]|\right)$

$$
=\Theta(m)
$$

\therefore Total cost $=\Theta(m+n)$

Depth-First Search (DFS).

Input: Unweighted directed or undirected graph $G=(V, E)$ with vertex set V and edge set E. For each $v \in V$, the adjacency list of v is $G . A d j[v]$.

Output: For each $v \in G[V], v . d$ is set to the time when v was first discovered and $v . f$ is set to the time when v 's adjacency list has been examined completely. Also, $v . \pi$ pointers form a breadth-first tree rooted at s that contains all vertices reachable from s.

```
DFS (G )
1. for each vertex }u\inG.V d
2.u.color }\leftarrow\mathrm{ WHITE, u. }\pi\leftarrowNI
3. time \leftarrow0
4. for each }u\inG.V d
5. if u.color = WHITE then
6.
    DFS-VISIT (G,u )
```

```
DFS-VIIIT ( \(G, u\) )
    1. time \(\leftarrow\) time +1
    2. u.d time
    3. u.color \(\leftarrow\) GRAY
    4. for each \(v \in G . \operatorname{Adj}[u]\) do
5. if \(v\). color \(=\) WHITE then
6. \(\quad v . \pi \leftarrow u\)
7. \(\quad \operatorname{DFS}-\operatorname{VISIT}(G, v)\)
8. u.color \(\leftarrow\) BLACK
9. time \(\leftarrow\) time +1
10. u.f \(\leftarrow\) time
```


Depth-First Search (DFS)

Depth-First Search (DFS).

Tree Edge (T): These are edges in the depth-first forest G_{π}. Edge (u, v) is a tree edge if v was first discovered by exploring that edge. In the example above, we will make all tree edges green and thick.

Depth-First Search (DFS).

Depth-First Search (DFS)

Depth-First Search (DFS).

Back Edge (B): A back edge goes from a vertex to its ancestor in a depth-first tree. Self-loops are also considered back edges.

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS).

Forward Edge (F): A forward edge is a nontree edge that connects a vertex to a descendant in a depth-first tree.

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS).

Cross Edge (C): If a non-tree edge is neither a back edge nor a forward edge then it's a cross edge. Cross edges can go between vertices in the same depth-first tree or in different depth-first trees.

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

```
DFS (G )
1. for each vertex u\inG.V do
2. u.color }\leftarrow\mathrm{ WHITE, u. }\pi\leftarrowNI
3. time}\leftarrow
4. for each u\inG.V do
5. if u.color = WHITE then
6.
                            DFS-VIIIT G, u )
```

```
DFS-VISIT ( G,u)
1. time }\leftarrow\mathrm{ time + 1
2. u.d\leftarrowtime
3. u.color }\leftarrow\mathrm{ GRAY
4. for each v G G.Adj[u] do
5. if v.color = WHITE then
6. v.\pi\leftarrowu
7. DFS-VISIT(G,v)
8. u.color }\leftarrow\mathrm{ BLACK
9. time \leftarrowtime + 1
10.u. u\leftarrowtime
```

Let $n=|G . V|$ and $m=|G . E|$

Time spent

- in DFS (exclusive of calls to DFS-

$$
V \mid S I T)=\Theta(n)
$$

- in DFS-VISIT scanning the adjacency

$$
\begin{gathered}
\text { lists }=\Theta\left(\sum_{v \in G . V}|G \cdot \operatorname{Adj}[v]|\right) \\
=\Theta(m)
\end{gathered}
$$

\therefore Total cost $=\Theta(m+n)$

Topological Sort

A topological sort of a DAG (i.e., directed acyclic graph) $G=(V, E)$ is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.

We can view a topological sort of a graph as an ordering of its vertices along a horizontal line so that all directed edges go from left to right.

Topological Sort

Topological-Sort (G)

1. call DFS (G) to compute the finish times $v . f$ for each vertex $v \in G . V$
2. as each vertex is finished, insert it into the front of a linked list
3. return the linked list of vertices

Strongly Connected Components

A strongly connected component of a directed graph $G=(V, E)$ is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, we have both $u \leadsto v$ and $v \leadsto u$; that is, vertices u and v are reachable from each other.

Strongly Connected Components

A strongly connected component of a directed graph $G=(V, E)$ is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, we have both $u \leadsto v$ and $v \leadsto u$; that is, vertices u and v are reachable from each other.

Strongly Connected Components

A strongly connected component of a directed graph $G=(V, E)$ is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, we have both $u \leadsto v$ and $v \leadsto u$; that is, vertices u and v are reachable from each other.

Strongly Connected Components

Strongly-Connected-Components (G)

1. call DFS (G) to compute the finish times $v . f$ for each vertex $v \in G . V$
2. compute G^{T}
3. call DFS (G^{T}), but in the main loop of DFS, consider the vertices in order of decreasing $v . f$ (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Strongly Connected Components

Strongly-Connected-Components (G)

1. call DFS (G) to compute the finish times $v . f$ for each vertex $v \in G . V$
2. compute G^{T}
3. call DFS (G^{T}), but in the main loop of DFS, consider the vertices in order of decreasing $v . f$ (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Strongly Connected Components

Strongly-Connected-Components (G)

1. call DFS (G) to compute the finish times $v . f$ for each vertex $v \in G . V$
2. compute G^{T}
3. call DFS (G^{T}), but in the main loop of DFS, consider the vertices in order of decreasing $v . f$ (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Strongly Connected Components

Strongly-Connected-Components (G)

1. call DFS (G) to compute the finish times $v . f$ for each vertex $v \in G . V$
2. compute G^{T}
3. call DFS (G^{T}), but in the main loop of DFS, consider the vertices in order of decreasing $v . f$ (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Strongly Connected Components

Strongly-Connected-Components (G)

1. call DFS (G) to compute the finish times $v . f$ for each vertex $v \in G . V$
2. compute G^{T}
3. call DFS (G^{T}), but in the main loop of DFS, consider the vertices in order of decreasing $v . f$ (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Strongly Connected Components

Strongly-Connected-Components (G)

1. call DFS (G) to compute the finish times $v . f$ for each vertex $v \in G . V$
2. compute G^{T}
3. call DFS (G^{T}), but in the main loop of DFS, consider the vertices in order of decreasing $v . f$ (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Strongly Connected Components

Strongly-Connected-Components (G)

1. call DFS (G) to compute the finish times $v . f$ for each vertex $v \in G . V$
2. compute G^{T}
3. call DFS (G^{T}), but in the main loop of DFS, consider the vertices in order of decreasing $v . f$ (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

The Single-Source Shortest Paths (SSSP) Problem

We are given a weighted, directed graph $G=(V, E)$ with vertex set V and edge set E, and a weight function w such that for each edge $(u, v) \in E, w(u, v)$ represents its weight.

We are also given a source vertex $s \in V$.
Our goal is to find a shortest path (i.e., a path of the smallest total edge weight) from s to each vertex $v \in V$.

SSSP: Relxation

```
Initialize-Single-Source ( G = (V,E), s)
    1. for each vertex v\inG.V do
    2. v.d\leftarrow\infty
    3.v}v.\pi\leftarrowNI
    4. s.d}
```

$$
\begin{aligned}
& \operatorname{RELAX}(u, v, w) \\
& \text { 1. } \quad \text { if u.d }+w(u, v)<v . d \text { then } \\
& \text { 2. } \\
& \text { 3. } \\
& \text { v. } d \leftarrow u . d+w(u, v) \\
& \text {. } \pi \leftarrow u
\end{aligned}
$$

SSSP: Properties of Shortest Paths and Relxation

The weight $w(p)$ of path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is the sum of the weights of its constituent edges:

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

We define the shortest-path weight $\delta(u, v)$ from u to v by

$$
\delta(u, v)=\left\{\begin{array}{cc}
\min \{w(p): p \text { is } u \sim v\}, & \text { if there is a path from } u \text { to } v, \\
\infty, & \text { otherwise }
\end{array}\right.
$$

A shortest path from vertex u to vertex v is then defined as any path p with weight $w(p)=\delta(u, v)$.

SSSP: Properties of Shortest Paths and Relxation

Triangle inequality (Lemma 24.10 of CLRS)
For any edge $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u)+w(u, v)$.
Upper-bound inequality (Lemma 24.11 of CLRS)
We always have $v . d \geq \delta(s, v)$ for all vertices $v \in V$, and once v. d achieves the value $\delta(u, v)$, it never changes.

No-path property (Corollary 24.12 of CLRS)
If there is no path from s to v, then we always have
$v . d=\delta(s, v)=\infty$.
Convergence property (Lemma 24.14 of CLRS)
If $s \leadsto u \rightarrow v$ is a shortest path in G for some $u, v \in V$, and if
u. $d=\delta(s, u)$ at any time prior to relaxing edge (u, v), then
$v . d=\delta(s, v)$ at all times afterward.

SSSP: Properties of Shortest Paths and Relxation

Path-relaxation property (Lemma 24.15 of CLRS)
If $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is a shortest path from $s=v_{0}$ to v_{k}, and we relax the edges of p in the order $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right)$, $\ldots,\left(v_{k-1}, v_{k}\right)$, then $v_{k} \cdot d=\delta\left(s, v_{k}\right)$. This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations on the edges of p.

Predecessor-subgraph property (Lemma 24.17 of CLRS)
Once $v . d=\delta(s, v)$ for all $v \in V$, the predecessor subgraph is a shortest-paths tree rooted at s.

Dijkstra's SSSP Algorithm with a Min-Heap (SSSP: Single-Source Shortest Paths).

Since we already discussed Dijkstra's SSSP algorithm when we talked about greedy algorithms, we will skip over it in this lecture.

Dijkstra's SSSP Algorithm with a Min-Heap (SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G=(V, E)$ with vertex set V and edge set E, a non-negative weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V], v . d$ is set to the shortest distance from s to v.

```
Dijkstra-SSSP(G=(V,E),w,s)
```

 for each vertex \(v \in G . V\) do
 v. \(d \leftarrow \infty\)
 \(v . \pi \leftarrow N I L\)
 s. \(d \leftarrow 0\)
 Min-Heap \(Q \leftarrow \emptyset\)
 for each vertex \(v \in G . V\) do
 \(\operatorname{Insert}(Q, v)\)
 while \(Q \neq \varnothing\) do
 \(u \leftarrow \operatorname{ExtRact-Min}(Q)\)
 for each \((u, v) \in G . E\) do
 $$
\text { Let } n=|G[V]| \text { and } m=|G[E]|
$$

Worst-case running time:
Using a binary min-heap

$$
=\mathrm{O}((m+n) \log n)
$$

Using a Fibonacci heap

$$
=\mathrm{O}(m+n \log n)
$$

Dijkstra's SSSP Algorithm with a Min-Heap (SSSP: Single-Source Shortest Paths).

Input: Weighted graph $G=(V, E)$ with vertex set V and edge set E, a non-negative weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V], v$. d is set to the shortest distance from s to v.

```
Dijkstra-SSSP(G=(V,E),w,s)
1. for each vertex v\inG.V do
2. v.d\leftarrow\infty
3.v}v.\pi\leftarrowNI
4. s.d}\leftarrow
5. Min-Heap Q\leftarrow\emptyset
6. for each vertex v\inG.V do
7. INSERT(Q,v)
8. while Q\not=\emptyset do
9. u\leftarrowEXTRACT-MIN(Q)
10. for each }(u,v)\inG.E d
11. if u.d +w(u,v)<v.d then
12. v.d\leftarrowu.d+w(u,v)
13. v.\pi\leftarrowu
14.
DECREASE-KEY(Q,v,u.d+w(u,v))
```

Let $n=|G[V]|$ and $m=|G[E]|$

Worst-case running time:
Using a binary min-heap

$$
=\mathrm{O}((m+n) \log n)
$$

Using a Fibonacci heap
$=\mathrm{O}(m+n \log n)$

The Bellman-Ford (SSSP) Algorithm (SSSP: Single-Source Shortest Paths).

Input: Weighted graph $G=(V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$. Negative-weight edges are allowed (unlike Dijkstra's SSSP algorithm).

Output: Returns FALSE if a negative-weight cycle is reachable from s, otherwise returns True and for all $v \in G[V]$, sets v. d to the shortest distance from s to v.

Initialize-Single-Source $(G=(V, E), s)$

1. for each vertex $v \in G . V$ do
2. v.d $\leftarrow \infty$
3. $\quad v . \pi \leftarrow N I L$
4. s. $d \leftarrow 0$
$\operatorname{ReLax}(u, v, w)$
5. if $u . d+w(u, v)<v . d$ then
6. v.d $d \leftarrow u . d+w(u, v)$
7.

$v . \pi \leftarrow u$

```
Bellman-Ford (G=(V,E),w,s)
1. Initialize-Single-Source( G,s )
2. for i\leftarrow1 to |G.V|-1 do
3. for each (u,v) \in G.E do
4. ReLAX(u,v,w)
5. for each }(u,v)\inG.E d
6. if u.d+w(u,v)<v.d then
7. return FALSE
8. return TRUE
```


The Bellman-Ford (SSSP) Algorithm (SSSP: Single-Source Shortest Paths).

Initial State (with initial tentative distances)

The Bellman-Ford (SSSP) Algorithm (SSSP: Single-Source Shortest Paths).

Iteration 1

The Bellman-Ford (SSSP) Algorithm (SSSP: Single-Source Shortest Paths).

Iteration 2

The Bellman-Ford (SSSP) Algorithm (SSSP: Single-Source Shortest Paths).

Iteration 3

The Bellman-Ford (SSSP) Algorithm (SSSP: Single-Source Shortest Paths).

Iteration 4

The Bellman-Ford (SSSP) Algorithm (SSSP: Single-Source Shortest Paths).

Done!

The Bellman-Ford (SSSP) Algorithm (SSSP: Single-Source Shortest Paths).

Initialize-Single-Source $(G=(V, E), s)$

1. for each vertex $v \in G . V$ do
2. $\quad v . d \leftarrow \infty$
3. $\quad v . \pi \leftarrow N I L$
4. $s . d \leftarrow 0$
```
Relax (u,v,w)
    1. if u.d +w(u,v)<v.d then
    2.v}v.d\leftarrowu.d+w(u,v
    3.
    v.\pi\leftarrowu
```

```
BELLMAN-FORD ( G = (V,E),w,s)
1. Initialize-Single-Source( G,s )
2. for i\leftarrow1 to |G.V|-1 do
3. for each (u,v) \in G.E do
        Relax(u,v,w)
5. for each }(u,v)\inG.E d
6. if u.d +w(u,v)<v.d then
7. return FALSE
8. return TruE
```

Let $n=|V|$ and $m=|E|$
Time taken by: Line 1: $\Theta(n)$

$$
\begin{aligned}
& \text { Lines } 2-4: \Theta(m n) \\
& \text { Lines } 5-7: \Theta(m)
\end{aligned}
$$

Total time: $\Theta(m n)$

Correctness of the Bellman-Ford Algorithm

Lemma 24.2 (CLRS): Let $G=(V, E)$ be a weighted, directed graph with source s and weight function $w: E \rightarrow \mathbb{R}$, and suppose G contains no negative-weight cycles reachable from s. Then, after the $|V|-1$ iterations of the for loop of lines 2-4 of BELLMAN-FORD, we have $v . d=\delta(s, v)$ for all vertices v that are reachable from s.

Proof: The proof is based on the path-relaxation property.
Consider any $v \in G . V$ reachable from s, and let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=s$ and $v_{k}=v$, be any shortest path from s to v. Because shortest paths are simple, p has at most $|V|-1$ edges, and so $k \leq|V|-1$. Each of the $|V|-1$ iterations of the for loop of lines $2-4$ relaxes all $|E|$ edges. Among the edges relaxed in the $i^{\text {th }}$ iteration, for $i=1,2, \ldots, k$, is $\left(v_{i-1}, v_{i}\right)$. By the path-relaxation property, therefore, $v . d=v_{k} \cdot d=\delta\left(s, v_{k}\right)=\delta(s, v)$.

Correctness of the Bellman-Ford Algorithm

Corollary 24.3 (CLRS): Let $G=(V, E)$ be a weighted, directed graph with source s and weight function $w: E \rightarrow \mathbb{R}$, and suppose G contains no negative-weight cycles reachable from s. Then, for each $v \in V$, there is a path from s to v if and only if BELLMAN-FORD terminates with $v . d<\infty$ when it is run on G.

Correctness of the Bellman-Ford Algorithm

Theorem 24.4 (CLRS): Let BELLMAN-FORD be run on a weighted, directed graph $G=(V, E)$ with source s and weight function $w: E \rightarrow \mathbb{R}$. If G contains no negative-weight cycles reachable from s, then the algorithm returns True, we have $v . d=\delta(s, v)$ for all $v \in$ V, and the predecessor subgraph G_{π} is a shortest-paths tree rooted at s. If G does contain a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Correctness of the Bellman-Ford Algorithm

Proof of Theorem 24.4: Two cases:

\boldsymbol{G} contains no negative-weight cycles reachable from \boldsymbol{s} :
If $v \in G . V$ is reachable from s then according to Lemma 24.2 we have $v . d=\delta(s, v)$ at termination. Otherwise, $v . d=\delta(s, v)=\infty$ follows from the no-path property.

The predecessor-subgraph property, along with $v . d=\delta(s, v)$, implies that G_{π} is a shortest-paths tree.

Now, since at termination, for all edges $(u, v) \in G . E$, we have, $v . d=\delta(s, v)$ and $u . d=\delta(s, u)$, then by triangle inequality:

$$
v . d=\delta(s, v) \leq \delta(s, u)+w(u, v)=u . d+w(u, v) .
$$

So, none of the tests in line 6 causes BELLMAN-FORD to return FalSE.
Therefore, it returns TruE.

Correctness of the Bellman-Ford Algorithm

Proof of Theorem 24.4 (Continued):

G contains a negative-weight cycle reachable from s :
Let $c=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ be the cycle, where $v_{0}=v_{k}$. Then

$$
\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0 .
$$

Assume for the sake of contradiction that BELLMAN-FORD returns True.
Then $v_{i} . d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)$ for $i=1,2, \ldots, k$. Thus,
$\sum_{i=1}^{k} v_{i} \cdot d \leq \sum_{i=1}^{k}\left(v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)\right)=\sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$ But $\sum_{i=1}^{k} v_{i} . d=\sum_{i=1}^{k} v_{i-1} . d$, and by Corollary 24.3 , each $v_{i} . d$ is finite. Thus, $\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \geq 0$, which contradicts our initial assumption that $c=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is a negative-weight cycle.

SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths).

Input: Weighted DAG $G=(V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$. Negative-weight edges are allowed (unlike Dijkstra's SSSP algorithm).

Output: For all $v \in G[V]$, sets v. d to the shortest distance from s to v.

```
Initialize-Single-Source (G = (V,E), s)
1. for each vertex v\inG.V do
2. v.d\leftarrow\infty
3.v}v.\pi\leftarrowNI
4. s.d}\leftarrow
```

```
Relax (u,v,w)
1. if u.d+w(u,v)<v.d then
2. v.d\leftarrowu.d+w(u,v)
3. v. 
```

DAG-Shortest-Paths $(G=(V, E), w, s)$

1. topologically sort the vertices of G
2. INitialize-Single-Source (G, s)
3. for each $v \in V \cdot G$ taken in topologically sorted order do
4. for each $(u, v) \in G . E$ do
5. $\operatorname{ReLax}(u, v, w)$

SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths).

Given DAG

SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths).

After Topological Sorting (with initial tentative distances)

SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths).

After Iteration 1

SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths).

After Iteration 2

SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths).

After Iteration 3

SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths).

After Iteration 4

SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths).

After Iteration 5

SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths).

Done!

SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths).

Initialize-Single-Source $(G=(V, E), s)$

1. for each vertex $v \in G . V$ do
2. v. $d \leftarrow \infty$
3. $\quad v . \pi \leftarrow N I L$
4. $s . d \leftarrow 0$
```
RELAX (u,v,w)
1. if u.d+w(u,v)<v.d then
2.v}v.d\leftarrowu.d+w(u,v
3.v}v.\pi\leftarrow
```

Let $n=|V|$ and

$$
m=|E|
$$

```
DAG-SHORTEST-PATHS (G = (V,E),w,s)
    1. topologically sort the vertices of G
    2. InitIALIZE-SINGLE-SOURCE( G,s )
    3. for each v\inV.G taken in topologically sorted order do
    4. for each (u,v) \in G.E do
    5. RELAX(u,v,w)
```

Time taken by: Line 1: $\Theta(n+m)$
Line 2: $\Theta(n)$
Lines $3-5$: $\Theta(m)$
Total time: $\Theta(n+m)$

Correctness of DAG-SHORTEST-PATHS

Theorem 24.5 (CLRS): If a weighted, directed graph $G=(V, E)$ has a source vertex s and no cycles, then at the termination of the DAG-SHORTEST-PATHS procedure, $v . d=\delta(s, v)$ for all vertices $v \in G . V$, and the predecessor subgraph G_{π} is a shortest-paths tree.

Proof: Consider any $v \in G . V$.
If v is not reachable from s then $v . d=\delta(s, v)=\infty$ follows from the no-path property.

If v is reachable from s, and let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=s$ and $v_{k}=v$, be any shortest path from s to v. Since we process the vertices in topological order, we relax the edges on p in the order
$\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$. The path-relaxation property implies that $v_{i} . d=\delta\left(s, v_{i}\right)$ at termination for $i=1,2, \ldots, k$.

By the predecessor-subgraph property, G_{π} is a shortest-paths tree.

Correctness of DAG-SHORTEST-PATHS

Theorem 24.5 (CLRS): If a weighted, directed graph $G=(V, E)$ has a source vertex s and no cycles, then at the termination of the DAG-SHORTEST-PATHS procedure, $v . d=\delta(s, v)$ for all vertices $v \in G . V$, and the predecessor subgraph G_{π} is a shortest-paths tree.

Proof: Consider any $v \in G . V$.
If v is not reachable from s then $v . d=\delta(s, v)=\infty$ follows from the no-path property.

If v is reachable from s, and let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=s$ and $v_{k}=v$, be any shortest path from s to v. Since we process the vertices in topological order, we relax the edges on p in the order
$\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$. The path-relaxation property implies that $v_{i} . d=\delta\left(s, v_{i}\right)$ at termination for $i=1,2, \ldots, k$.

By the predecessor-subgraph property, G_{π} is a shortest-paths tree.

Correctness of DAG-SHORTEST-PATHS

Theorem 24.5 (CLRS): If a weighted, directed graph $G=(V, E)$ has a source vertex s and no cycles, then at the termination of the DAG-SHORTEST-PATHS procedure, $v . d=\delta(s, v)$ for all vertices $v \in G . V$, and the predecessor subgraph G_{π} is a shortest-paths tree.

Proof: Consider any $v \in G . V$.
If v is not reachable from s then $v . d=\delta(s, v)=\infty$ follows from the no-path property.

If v is reachable from s, and let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=s$ and $v_{k}=v$, be any shortest path from s to v. Since we process the vertices in topological order, we relax the edges on p in the order
$\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$. The path-relaxation property implies that $v_{i} . d=\delta\left(s, v_{i}\right)$ at termination for $i=1,2, \ldots, k$.

By the predecessor-subgraph property, G_{π} is a shortest-paths tree.

The All-Pairs Shortest Paths (APSP) Problem

We are given a weighted, directed graph $G=(V, E)$ with vertex set V and edge set E, and a weight function w such that for each edge $(u, v) \in E, w(u, v)$ represents its weight.

Our goal is to find, for every pair of vertices $u, v \in G . V$, a shortest path (i.e., a path of the smallest total edge weight) from u to v.

The All-Pairs Shortest Paths (APSP) Problem

One can solve the APSP problem by running an SSSP algorithm $n=$ $|G . V|$ times, once for each vertex as the source.

If all edge weights are nonnegative, one can use Dijkstra's SSSP algorithm. Using a binary min-heap as the priority queue, one can solve the problem in $O(n(m+n) \log n)$ time, where $m=|G . E|$. Using a Fibonacci heap as the priority queue yields a running time of $O\left(n^{2} \log n+m n\right)$.

If G has negative-weight edges, then one can use the slower Bellman-Ford SSSP algorithm resulting in a running time of $O\left(m n^{2}\right)$ which is $O\left(n^{4}\right)$ for dense graphs.

The All-Pairs Shortest Paths (APSP) Problem

We assume that the edge-weights are given as an $n \times n$ adjacency matrix $W=\left(w_{i j}\right)$, where

$$
w_{i j}=\left\{\begin{array}{cc}
0, & \text { if } i=j \\
\text { weight of directed edge }(i, j) & \text { if } i \neq j \text { and }(i, j) \in E \\
\infty & \text { if } i \neq j \text { and }(i, j) \notin E
\end{array}\right.
$$

We allow negative-weight edges, but we assume for the time being that G contains no negative-weight cycles.

APSP: Extending SPs by One Edge at a Time

Let $l_{i j}^{(m)}$ be the minimum weight of any path from vertex i to vertex j that contains at most m edges. Then

$$
l_{i j}^{(m)}=\left\{\begin{array}{cc}
0, & \text { if } m=0 \text { and } i=j, \\
\infty & \text { if } m=0 \text { and } i \neq j, \\
\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}, & \text { otherwise }(\text { i. } e ., m>0) .
\end{array}\right.
$$

If G has no negative-weight cycles, then for every pair of vertices i and j for which $\delta(i, j)<\infty$, there is a shortest path from i to j that is simple and thus contains at most $n-1$ edges. A path from vertex i to vertex j with more than $n-1$ edges cannot have lower weight than a shortest path from i to j. Hence,

$$
\delta(i, j)=l_{i j}^{(n-1)}=l_{i j}^{(n)}=l_{i j}^{(n+1)}=\cdots .
$$

APSP: Extending SPs by One Edge at a Time

Let $l_{i j}^{(m)}$ be the minimum weight of any path from vertex i to vertex j that contains at most m edges. Then

$$
l_{i j}^{(m)}=\left\{\begin{array}{cc}
0, & \text { if } m=0 \text { and } i=j, \\
\infty & \text { if } m=0 \text { and } i \neq j, \\
\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}, & \text { otherwise (i.e., } m>0) .
\end{array}\right.
$$

If G has no negative-weight cycles, then for every pair of vertices i and j for which $\delta(i, j)<\infty$, there is a shortest path from i to j that is simple and thus contains at most $n-1$ edges. A path from vertex i to vertex j with more than $n-1$ edges cannot have lower weight than a shortest path from i to j. Hence,

$$
\delta(i, j)=l_{i j}^{(n-1)}=l_{i j}^{(n)}=l_{i j}^{(n+1)}=\cdots .
$$

APSP: Extending SPs by One Edge at a Time

```
Extend-Shortest-Paths ( \(L, W\) )
    1. \(n \leftarrow\) L.rows
    2. let \(L^{\prime}=\left(l_{i j}^{\prime}\right)\) be a new \(n \times n\) matrix
3. for \(i \leftarrow 1\) to \(n\) do
4. for \(j \leftarrow 1\) to \(n\) do
5. \(\quad l_{i j}^{\prime} \leftarrow \infty\)
6. for \(k \leftarrow 1\) to \(n\) do
7. \(\quad l_{i j}^{\prime} \leftarrow \min \left(l_{i j}^{\prime}, l_{i k}^{\prime}+w_{k j}\right)\)
8. return \(L^{\prime}\)
```

```
Slow-All-Pairs-SHortest-Paths ( W )
    1. n\leftarrowW.rows
2. }\mp@subsup{L}{}{(1)}\leftarrow
3. for }m\leftarrow2\mathrm{ to }n-1\mathrm{ do
4. let }\mp@subsup{L}{}{(m)}\mathrm{ be a new }n\timesn\mathrm{ matrix
5. L L(m)}\leftarrowE\mathrm{ EXTEND-SHORTEST-PATHS( L (m-1)},W
6. return L (n-1)
```


APSP: Extending SPs by One Edge at a Time

$$
W=\left(\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad L^{(1)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right)
$$

APSP: Extending SPs by One Edge at a Time

$L^{(1)}=\left(\begin{array}{ccccc}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right) \quad L^{(2)}=\left(\begin{array}{ccccc}0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0\end{array}\right)$

APSP: Extending SPs by One Edge at a Time

$$
L^{(2)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & 2 & -4 \\
3 & 0 & -4 & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & \infty & 1 & 6 & 0
\end{array}\right) \quad L^{(3)}=\left(\begin{array}{ccccc}
0 & 3 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right)
$$

APSP: Extending SPs by One Edge at a Time

$L^{(3)}=\left(\begin{array}{ccccc}0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0\end{array}\right) \quad L^{(4)}=\left(\begin{array}{ccccc}0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0\end{array}\right)$

APSP: Extending SPs by One Edge at a Time

Note the similarity between Extend-Shortest-Paths and Square-MATRIX-MULTIPLY:

```
Extend-Shortest-Paths ( L,W )
    1. n\leftarrowL.rows
    2. let }\mp@subsup{L}{}{\prime}=(\mp@subsup{l}{ij}{\prime})\mathrm{ be a new }n\timesn\mathrm{ matrix
    3. for }i\leftarrow1\mathrm{ to n do
4. for }j\leftarrow1\mathrm{ to }n\mathrm{ do
5. }\mp@subsup{l}{ij}{\prime}\leftarrow
6. for }k\leftarrow1\mathrm{ to n do
7. }\mp@subsup{l}{ij}{\prime}\leftarrow\operatorname{min}(\mp@subsup{l}{ij}{\prime},\mp@subsup{l}{ik}{\prime}+\mp@subsup{w}{kj}{}
8. return L'
```

```
Square-Matrix-Multiply ( \(A, B\) )
1. \(n \leftarrow A\).rows
2. let \(C=\left(c_{i j}\right)\) be a new \(n \times n\) matrix
3. for \(i \leftarrow 1\) to \(n\) do
4. for \(j \leftarrow 1\) to \(n\) do
5. \(\quad c_{i j} \leftarrow 0\)
6. for \(k \leftarrow 1\) to \(n\) do
7. \(c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}\)
8. return \(C\)
```

Both have the same $\Theta\left(n^{3}\right)$ running time.

APSP: Extending SPs by One Edge at a Time

```
Extend-Shortest-Paths ( \(L, W\) )
    1. \(n \leftarrow\) L.rows
    2. let \(L^{\prime}=\left(l_{i j}^{\prime}\right)\) be a new \(n \times n\) matrix
3. for \(i \leftarrow 1\) to \(n\) do
4. for \(j \leftarrow 1\) to \(n\) do
5. \(\quad l_{i j}^{\prime} \leftarrow \infty\)
```

Running time
$=\Theta\left(n^{3}\right)$
SLow-All-Pairs-Shortest-Paths (W)

1. $n \leftarrow W$.rows
2. $L^{(1)} \leftarrow W$
3. for $m \leftarrow 2$ to $n-1$ do
4. let $L^{(m)}$ be a new $n \times n$ matrix
5. $\quad L^{(m)} \leftarrow$ EXTEND-SHORTEST-PATHS $\left(L^{(m-1)}, W\right)$

Running time

$$
\begin{aligned}
& =n \times \Theta\left(n^{3}\right) \\
& =\Theta\left(n^{4}\right)
\end{aligned}
$$

6. return $L^{(n-1)}$

APSP: Extending SPs by Repeated Squaring

```
Extend-Shortest-Paths ( \(L, W\) )
    1. \(n \leftarrow\) L.rows
    2. let \(L^{\prime}=\left(l_{i j}^{\prime}\right)\) be a new \(n \times n\) matrix
    3. for \(i \leftarrow 1\) to \(n\) do
4. \(\quad f o r j \leftarrow 1\) to \(n d o\)
5. \(\quad l_{i j}^{\prime} \leftarrow \infty\)
6. for \(k \leftarrow 1\) to \(n\) do
7. \(\quad l_{i j}^{\prime} \leftarrow \min \left(l_{i j}^{\prime}, l_{i k}^{\prime}+w_{k j}\right)\)
8. return \(L^{\prime}\)
```

```
FASTER-ALL-PAIRS-Shortest-Paths ( \(W\) )
    1. \(n \leftarrow W\).rows
    2. \(L^{(1)} \leftarrow W\)
    3. \(m \leftarrow 1\)
    4. while \(m<n-1\) do
5. let \(L^{(2 m)}\) be a new \(n \times n\) matrix
6. \(\quad L^{(2 m)} \leftarrow\) EXtEND-Shortest-PAths \(\left(L^{(m)}, L^{(m)}\right)\)
7. \(\quad m \leftarrow 2 m\)
8. return \(L^{(m)}\)
```


APSP: Extending SPs by Repeated Squaring

```
Extend-Shortest-Paths ( \(L, W\) )
1. \(n \leftarrow\) L.rows
2. let \(L^{\prime}=\left(l_{i j}^{\prime}\right)\) be a new \(n \times n\) matrix
3. for \(i \leftarrow 1\) to \(n\) do
4. for \(j \leftarrow 1\) to \(n\) do
5. \(\quad l_{i j}^{\prime} \leftarrow \infty\)
6. for \(k \leftarrow 1\) to \(n\) do
```

Running time

$$
=\Theta\left(n^{3}\right)
$$

FASTER-ALL-PAIRS-SHORTEST-PATHS (W)	
1.	$n \leftarrow W \cdot$ rows
2.	$L^{(1)} \leftarrow W$
3.	$m \leftarrow 1$
4.	while $m<n-1$ do
5.	let $L^{(2 m)}$ be a new $n \times n$ matrix
6.	$L^{(2 m)} \leftarrow$ EXTEND-SHORTEST-PATHS $\left(L^{(m)}, L^{(m)}\right)$
7.	$m \leftarrow 2 m$
8.	return $L^{(m)}$

Running time
$=\left\lceil\log _{2}(n-1)\right\rceil$
$\times \Theta\left(n^{3}\right)$
$=\Theta\left(n^{3} \log n\right)$

APSP: Floyd-Warshall's Algorithm

Let $d_{i j}^{(k)}$ be the minimum weight of any path from vertex i to vertex j for which all intermediate vertices are in $\{1,2, \ldots, k\}$. Then

$$
d_{i j}^{(k)}=\left\{\begin{array}{cc}
w_{i j}, & \text { if } k=0, \\
\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\} & \text { if } k \geq 1 .
\end{array}\right.
$$

Then $D^{(n)}=\left(d_{i j}^{(n)}\right)$ gives: $d_{i j}^{(n)}=\delta(i, j)$ for all $i, j \in G . V$.

$p:$ all intermediate vertices in $\{1,2, \ldots, k\}$

APSP: Floyd-Warshall's Algorithm

```
FLoyd-Warshall ( \(W\) )
    1. \(n \leftarrow W\).rows
    2. \(D^{(0)} \leftarrow W\)
    3. for \(k \leftarrow 1\) to \(n\) do
    4. let \(D^{(k)}=\left(d_{i j}^{(k)}\right)\) be a new \(n \times n\) matrix
    5. for \(i \leftarrow 1\) to \(n\) do
    6. for \(j \leftarrow 1\) to \(n\) do
    7.
        \(d_{i j}^{(k)} \leftarrow \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)\)
    8. return \(D^{(n)}\)
```


APSP: Floyd-Warshall with Predecessor Matrix

$$
\begin{aligned}
& \text { FLOYD-WARSHALL }(W) \\
& \text { 1. } \\
& \text { 2. } \\
& \text { 2 } \\
& \text { 3. } \\
& \text { 3. } \\
& D^{(0)} \leftarrow W \\
& \text { 4. let } \Pi^{(0)}=\left(\pi_{i j}^{(0)}\right) \text { be a new } n \times n \text { matrix } \\
& \text { 5. } \\
& \text { for } i \leftarrow 1 \text { to } n \text { do } \\
& \text { 6. } \\
& \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \text { 7. } \\
& \text { 8. } \\
& \text { if } i=j \text { or } w_{i j}=\infty \text { then } \pi_{i j}^{(0)} \leftarrow N I L \\
& \text { 9. } k \leftarrow 1 \text { to } n \text { do } \\
& \text { 10. } \\
& \text { let } D^{(k)}=\left(d_{i j}^{(k)}\right) \text { and } \Pi^{(k)}=\left(\pi_{i j}^{(k)}\right) \text { be new } n \times n \text { matrices } \\
& \text { 11. } \\
& \text { 12. } \\
& \text { for } i \leftarrow 1 \text { to } n \text { do } \\
& \text { 13. } \\
& \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \text { 14. } \\
& \text { if } d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \text { then } \pi_{i j}^{(k)} \leftarrow \pi_{i j}^{(k-1)} \\
& \text { 15. } \\
& \text { return } D^{(n)} \text { and } \Pi^{(n)}
\end{aligned}
$$

APSP: Floyd-Warshall with Predecessor Matrix

```
PRINT-ALl-PAIRS-SHORTEST-PATH ( \(\Pi, i, j\) )
1. if \(i=j\) then
2. print \(i\)
3. elseif \(\pi_{i j}=\) NIL then
4. print "no path from" \(i\) "to" \(j\) "exists"
5. else PRINT-All-Pairs-Shortest-Path ( \(\Pi, i, \pi_{i j}\) )
6.
        print \(j\)
```


APSP: Floyd-Warshall with Predecessor Matrix

$D^{(0)}=\left(\begin{array}{ccccc}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right) \quad \Pi^{(0)}=\left(\begin{array}{ccccc}\text { NIL } & 1 & 1 & \text { NIL } & 1 \\ \text { NIL } & N I L & N I L & 2 & 2 \\ \text { NIL } & 3 & N I L & \text { NIL } & \text { NIL } \\ 4 & N I L & 4 & \text { NIL } & \text { NIL } \\ \text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }\end{array}\right)$

APSP: Floyd-Warshall with Predecessor Matrix

$$
\begin{array}{ll}
D^{(0)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Pi^{(0)}=\left(\begin{array}{ccccc}
N I L & 1 & 1 & N I L & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & N L & N I L \\
4 & N I L & 4 & N L & N I L \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right) \\
D^{(1)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Pi^{(1)}=\left(\begin{array}{ccccc}
N I L & 1 & 1 & N I L & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & N I L & N I L \\
4 & 1 & 4 & N I L & 1 \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right)
\end{array}
$$

APSP: Floyd-Warshall with Predecessor Matrix

$$
\begin{aligned}
D^{(1)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Pi^{(1)}=\left(\begin{array}{ccccc}
N I L & 1 & 1 & N I L & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & N I L & N I L \\
4 & 1 & 4 & N I L & 1 \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right) \\
D^{(2)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Pi^{(2)}=\left(\begin{array}{ccccc}
N I L & 1 & 1 & 2 & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & 2 & 2 \\
4 & 1 & 4 & N I L & 1 \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right)
\end{aligned}
$$

APSP: Floyd-Warshall with Predecessor Matrix

$$
\begin{aligned}
D^{(2)} & =\left(\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Pi^{(2)}=\left(\begin{array}{ccccc}
N I L & 1 & 1 & 2 & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & 2 & 2 \\
4 & 1 & 4 & N I L & 1 \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right) \\
D^{(3)} & =\left(\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) & \Pi^{(3)}=\left(\begin{array}{ccccc}
N I L & 1 & 1 & 2 & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & 2 & 2 \\
4 & 3 & 4 & N I L & 1 \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right)
\end{aligned}
$$

APSP: Floyd-Warshall with Predecessor Matrix

$$
\begin{array}{ll}
D^{(3)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(3)}=\left(\begin{array}{ccccc}
N I L & 1 & 1 & 2 & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & 2 & 2 \\
4 & 3 & 4 & N I L & 1 \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right) \\
D^{(4)}=\left(\begin{array}{ccccc}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) & \Pi^{(4)}=\left(\begin{array}{ccccc}
N I L & 1 & 4 & 2 & 1 \\
4 & N I L & 4 & 2 & 1 \\
4 & 3 & N I L & 2 & 1 \\
4 & 3 & 4 & N I L & 1 \\
4 & 3 & 4 & 5 & N I L
\end{array}\right)
\end{array}
$$

APSP: Floyd-Warshall with Predecessor Matrix

$$
\begin{aligned}
D^{(4)}=\left(\begin{array}{ccccc}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) & \Pi^{(4)}=\left(\begin{array}{ccccc}
N I L & 1 & 4 & 2 & 1 \\
4 & N I L & 4 & 2 & 1 \\
4 & 3 & N I L & 2 & 1 \\
4 & 3 & 4 & N I L & 1 \\
4 & 3 & 4 & 5 & N I L
\end{array}\right) \\
D^{(5)}=\left(\begin{array}{ccccc}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) & \Pi^{(5)}=\left(\begin{array}{ccccc}
N I L & 3 & 4 & 5 & 1 \\
4 & N I L & 4 & 2 & 1 \\
4 & 3 & N I L & 2 & 1 \\
4 & 3 & 4 & N I L & 1 \\
4 & 3 & 4 & 5 & N I L
\end{array}\right)
\end{aligned}
$$

APSP: Floyd-Warshall's Algorithm

```
Floyd-Warshall ( \(W\) )
    1. \(n \leftarrow W\).rows
    2. \(D^{(0)} \leftarrow W\)
    3. for \(k \leftarrow 1\) to \(n\) do
    4. let \(D^{(k)}=\left(d_{i j}^{(k)}\right)\) be a new \(n \times n\) matrix
    5. for \(i \leftarrow 1\) to \(n\) do
    6. \(\quad\) for \(j \leftarrow 1\) to \(n d o\)
    7. \(d_{i j}^{(k)} \leftarrow \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)\)
    8. return \(D^{(n)}\)
```

 Running Time \(=\Theta\left(n^{3}\right)\)
 Space Complexity \(=\Theta\left(n^{3}\right)\)

APSP: Floyd-Warshall's Algorithm

But $D^{(k)}$ depends only on $D^{(k-1)}$.

```
Floyd-Warshall-Quadratic-Space ( W )
    1. n}n\leftarrowW.row
    2. let D}\mp@subsup{D}{}{(0)}=(\mp@subsup{d}{ij}{(0)})\mathrm{ and }\mp@subsup{D}{}{(1)}=(\mp@subsup{d}{ij}{(1)})\mathrm{ be new }n\timesn\mathrm{ matrices
    3. }\mp@subsup{D}{}{(0)}\leftarrow
    4. for }k\leftarrow1\mathrm{ to }n\mathrm{ do
    5. for }i\leftarrow1\mathrm{ to }n\mathrm{ do
6. for j\leftarrow1 to n do
7. }\mp@subsup{d}{ij}{(1)}\leftarrow\operatorname{min}(\mp@subsup{d}{ij}{(0)},\mp@subsup{d}{ik}{(0)}+\mp@subsup{d}{kj}{(0)}
8. }\mp@subsup{D}{}{(0)}\leftarrow\mp@subsup{D}{}{(1)
9. return D D (0)
```

Running Time $=\Theta\left(n^{3}\right)$ Space Complexity $=\Theta\left(n^{2}\right)$

APSP: Floyd-Warshall's Algorithm

Can be solved in-place!

FLoyd-Warshall-In-Place (W)

1. $n \leftarrow W$.rows
2. for $k \leftarrow 1$ to n do
3. for $i \leftarrow 1$ to n do
4. for $j \leftarrow 1$ to $n d o$
5. $\quad w_{i j} \leftarrow \min \left(w_{i j}, w_{i k}+w_{k j}\right)$
6. return W

Running Time $=\Theta\left(n^{3}\right)$
Space Complexity $=\Theta\left(n^{2}\right)$

