CSE 548: Analysis of Algorithms

Prerequisites Review 7 (More Graph Algorithms: Basic and Beyond)

Rezaul A. Chowdhury

Department of Computer Science SUNY Stony Brook Fall 2019

1

Input: Unweighted directed or undirected graph G = (V, E) with vertex set V and edge set E, and a source vertex $s \in G.V$. For each $v \in V$, the adjacency list of v is G.Adj[v].

Output: For all $v \in G[V]$, v.d is set to the shortest distance (in terms of the number of edges) from s to v. Also, $v.\pi$ pointers form a breadth-first tree rooted at s that contains all vertices reachable from s.

BFS (G, s)				
1.	for each vertex $u \in G.V \setminus \{s\}$ do			
2.	$u. color \leftarrow WHITE, u. d \leftarrow \infty, u. \pi \leftarrow NIL$			
3.	$s. color \leftarrow GRAY, s. d \leftarrow 0, s. \pi \leftarrow NIL$			
4.	Queue $Q \leftarrow \emptyset$			
5.	ENQUEUE(Q, s)			
6.	while $Q \neq \emptyset$ do			
7.	$u \leftarrow DEQUEUE(Q)$			
8.	for each $v \in G.Adj[u]$ do			
9.	if $v.color = WHITE$ then			
10.	$v. color \leftarrow GRAY, v. d \leftarrow u. d + 1, v. \pi \leftarrow u$			
11.	ENQUEUE(Q, v)			
12.	$u. color \leftarrow BLACK$			

ENQUEUE (Q, s)

DEQUEUE (Q) $\rightarrow v$

DEQUEUE (Q) $\rightarrow u$

DEQUEUE (Q) \rightarrow y

Q Ø

BFS ((G, s)	Let $n = G, V $ and $m = G, E $
BFS (0 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	G, s) for each vertex $u \in G.V \setminus \{s\}$ do $u.color \leftarrow WHITE, u.d \leftarrow \infty, u.\pi \leftarrow NIL$ $s.color \leftarrow GRAY, s.d \leftarrow 0, s.\pi \leftarrow NIL$ Queue $Q \leftarrow \emptyset$ ENQUEUE(Q,s) while $Q \neq \emptyset$ do $u \leftarrow DEQUEUE(Q)$ for each $v \in G.Adj[u]$ do if $v.color = WHITE$ then $v.color \leftarrow GRAY, v.d \leftarrow u.d + 1, v.\pi \leftarrow u$	Let $n = G.V $ and $m = G.E $ Time spent - initializing = $\Theta(n)$ - enqueuing / dequeuing = $\Theta(n)$ - scanning the adjacency lists = $\Theta(\sum_{v \in G.V} G.Adj[v])$ = $\Theta(m)$
11. 12.	$ENQUEUE(Q, v)$ $u. color \leftarrow BLACK$	$\therefore \text{ Total cost} = \Theta(m+n)$

Input: Unweighted directed or undirected graph G = (V, E) with vertex set V and edge set E. For each $v \in V$, the adjacency list of v is G.Adj[v].

Output: For each $v \in G[V]$, v.d is set to the time when v was first discovered and v.f is set to the time when v's adjacency list has been examined completely. Also, $v.\pi$ pointers form a breadth-first tree rooted at s that contains all vertices reachable from s.

DFS-V ISIT (G, u)			
1.	$time \leftarrow time + 1$		
2.	$u.d \leftarrow time$		
3.	$u. color \leftarrow GRAY$		
4.	for each $v \in G.Adj[u]$ do		
5.	<i>if v</i> . <i>color</i> = WHITE <i>then</i>		
6.	$v.\pi \leftarrow u$		
7.	DFS-V ISIT(G, v)		
8.	$u. color \leftarrow BLACK$		
9.	$time \leftarrow time + 1$		
10.	$u.f \leftarrow time$		

Tree Edge (T): These are edges in the depth-first forest G_{π} . Edge (u, v) is a tree edge if v was first discovered by exploring that edge. In the example above, we will make all tree edges green and thick.

Back Edge (B): A back edge goes from a vertex to its ancestor in a depth-first tree. Self-loops are also considered back edges.

Forward Edge (F): A forward edge is a nontree edge that connects a vertex to a descendant in a depth-first tree.

Cross Edge (C): If a non-tree edge is neither a back edge nor a forward edge then it's a cross edge. Cross edges can go between vertices in the same depth-first tree or in different depth-first trees.

$\mathsf{DFS}\xspace(G)$

- 1. for each vertex $u \in G.V$ do
- 2. $u. color \leftarrow WHITE, u. \pi \leftarrow NIL$
- 3. $time \leftarrow 0$
- 4. for each $u \in G.V$ do
- 5. *if u*.*color* = WHITE *then*
- 6. DFS-VISIT(G, u)

DFS-VISIT (G, u)

6.

1.
$$time \leftarrow time + 1$$

2.
$$u.d \leftarrow time$$

- 3. $u. color \leftarrow GRAY$
- 4. for each $v \in G.Adj[u]$ do
- 5. *if* v. color = WHITE then

$$v.\pi \leftarrow u$$

- 7. DFS-VISIT(G, v)
- 8. $u. color \leftarrow BLACK$
- 9. $time \leftarrow time + 1$

10.
$$u.f \leftarrow time$$

Let
$$n = |G.V|$$
 and $m = |G.E|$

Time spent

- in DFS (exclusive of calls to DFS-VISIT) = $\Theta(n)$
- in *DFS-VISIT* scanning the adjacency lists = $\Theta(\sum_{v \in G.V} |G.Adj[v]|)$ = $\Theta(m)$

$$\therefore \text{ Total cost} = \Theta(m+n)$$

Topological Sort

A **topological sort** of a DAG (i.e., directed acyclic graph) G = (V, E) is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.

We can view a topological sort of a graph as an ordering of its vertices along a horizontal line so that all directed edges go from left to right.

31

Topological Sort

TOPOLOGICAL-SORT (G)

- 1. call DFS (G) to compute the finish times v.f for each vertex $v \in G.V$
- 2. as each vertex is finished, insert it into the front of a linked list
- 3. *return* the linked list of vertices

A **strongly connected component** of a directed graph G = (V, E) is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, we have both $u \rightarrow v$ and $v \rightarrow u$; that is, vertices u and v are reachable from each other.

A strongly connected component of a directed graph G = (V, E) is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, we have both $u \rightarrow v$ and $v \rightarrow u$; that is, vertices u and v are reachable from each other.

A strongly connected component of a directed graph G = (V, E) is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, we have both $u \rightarrow v$ and $v \rightarrow u$; that is, vertices u and v are reachable from each other.

STRONGLY-CONNECTED-COMPONENTS (G)

- 1. call DFS (G) to compute the finish times v.f for each vertex $v \in G.V$
- 2. compute G^T
- 3. call DFS (G^T), but in the main loop of DFS, consider the vertices in order of decreasing v. f (as computed in line 1)
- 4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
- 1. call DFS (G) to compute the finish times v.f for each vertex $v \in G.V$
- 2. compute G^T
- 3. call DFS (G^T), but in the main loop of DFS, consider the vertices in order of decreasing v.f (as computed in line 1)
- 4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

- 1. call DFS (G) to compute the finish times v.f for each vertex $v \in G.V$
- 2. compute G^T
- 3. call DFS (G^T), but in the main loop of DFS, consider the vertices in order of decreasing v.f (as computed in line 1)
- 4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

- 1. call DFS (G) to compute the finish times v.f for each vertex $v \in G.V$
- 2. compute G^T
- 3. call DFS (G^T), but in the main loop of DFS, consider the vertices in order of decreasing v.f (as computed in line 1)
- 4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

- 1. call DFS (G) to compute the finish times v.f for each vertex $v \in G.V$
- 2. compute G^T
- 3. call DFS (G^T), but in the main loop of DFS, consider the vertices in order of decreasing v.f (as computed in line 1)
- 4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

- 1. call DFS (G) to compute the finish times v.f for each vertex $v \in G.V$
- 2. compute G^T
- 3. call DFS (G^T), but in the main loop of DFS, consider the vertices in order of decreasing v.f (as computed in line 1)
- 4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

- 1. call DFS (G) to compute the finish times v.f for each vertex $v \in G.V$
- 2. compute G^T
- 3. call DFS (G^T), but in the main loop of DFS, consider the vertices in order of decreasing v.f (as computed in line 1)
- 4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

The Single-Source Shortest Paths (SSSP) Problem

We are given a weighted, directed graph G = (V, E) with vertex set V and edge set E, and a weight function w such that for each edge $(u, v) \in E$, w(u, v) represents its weight.

We are also given a source vertex $s \in V$.

Our goal is to find a shortest path (i.e., a path of the smallest total edge weight) from s to each vertex $v \in V$.

SSSP: Relxation

INITIALIZE-SINGLE-SOURCE (G = (V, E), s)1.for each vertex $v \in G.V$ do2. $v.d \leftarrow \infty$ 3. $v.\pi \leftarrow NIL$ 4. $s.d \leftarrow 0$

RELAX (u, v, w)			
1.	if $u.d + w(u,v) < v.d$ then		
2.	$v.d \leftarrow u.d + w(u,v)$		
3.	$v.\pi \leftarrow u$		

SSSP: Properties of Shortest Paths and Relxation

The **weight** w(p) of path $p = \langle v_0, v_1, ..., v_k \rangle$ is the sum of the weights of its constituent edges:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

We define the **shortest-path weight** $\delta(u, v)$ from u to v by

$$\delta(u, v) = \begin{cases} \min\{w(p): p \text{ is } u \sim v\}, & \text{ if there is a path from } u \text{ to } v, \\ \infty, & \text{ otherwise.} \end{cases}$$

A *shortest path* from vertex u to vertex v is then defined as any path p with weight $w(p) = \delta(u, v)$.

SSSP: Properties of Shortest Paths and Relxation

Triangle inequality (Lemma 24.10 of CLRS)

For any edge $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

Upper-bound inequality (Lemma 24.11 of CLRS)

We always have $v.d \ge \delta(s, v)$ for all vertices $v \in V$, and once v.d achieves the value $\delta(u, v)$, it never changes.

No-path property (Corollary 24.12 of CLRS)

If there is no path from s to v, then we always have $v \cdot d = \delta(s, v) = \infty$.

Convergence property (Lemma 24.14 of CLRS)

If $s \rightarrow u \rightarrow v$ is a shortest path in G for some $u, v \in V$, and if $u.d = \delta(s,u)$ at any time prior to relaxing edge (u,v), then $v.d = \delta(s,v)$ at all times afterward.

SSSP: Properties of Shortest Paths and Relxation

Path-relaxation property (Lemma 24.15 of CLRS)

If $p = \langle v_0, v_1, ..., v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$, then v_k . $d = \delta(s, v_k)$. This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations on the edges of p.

Predecessor-subgraph property (Lemma 24.17 of CLRS) Once $v. d = \delta(s, v)$ for all $v \in V$, the predecessor subgraph is a shortest-paths tree rooted at s.

Dijkstra's SSSP Algorithm with a Min-Heap (SSSP: Single-Source Shortest Paths)

Since we already discussed Dijkstra's SSSP algorithm when we

talked about greedy algorithms, we will skip over it in this lecture.

Dijkstra's SSSP Algorithm with a Min-Heap (SSSP: Single-Source Shortest Paths)

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a non-negative weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, v.d is set to the shortest distance from s to v.

Dijkstra-SSSP(G = (V, E), w, s)		
1.	for each vertex $v \in G.V$ do	
2.	$v.d \leftarrow \infty$	
3.	$v. \pi \leftarrow NIL$	
4.	$s.d \leftarrow 0$	
5.	$Min-Heap\ Q \leftarrow \emptyset$	
6.	for each vertex $v \in G.V$ do	
7.	INSERT(Q, v)	
8.	while $Q \neq \emptyset$ do	
9.	$u \leftarrow Extract-Min(Q)$	
10.	for each $(u, v) \in G.E$ do	
11.	if $u.d + w(u, v) < v.d$ then	
12.	$v.d \leftarrow u.d + w(u,v)$	
13.	$v.\pi \leftarrow u$	
14.	DECREASE-KEY($Q, v, u.d + w(u, v)$)	

```
Let n = |G[V]| and m = |G[E]|
```

Worst-case running time:

Using a binary min-heap = $O((m + n) \log n)$ Using a Fibonacci heap = $O(m + n \log n)$

<u>Dijkstra's SSSP Algorithm with a Min-Heap</u> (<u>SSSP: Single-Source Shortest Paths</u>)

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a non-negative weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v \cdot d$ is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V, E), w, s)		
1.	for each vertex $v \in G.V$ do	Let $n = G[V] $ and $m = G[E] $
2.	$v.d \leftarrow \infty$	
3.	$v. \pi \leftarrow NIL$	
4.	$s.d \leftarrow 0$	Worst-case running time:
5.	$Min-Heap\ Q\ \leftarrow\ \emptyset$	
6.	for each vertex $v \in G.V$ do	Using a binary min-neap
7.	INSERT(Q, V)	$= O((m+n)\log n)$
8.	while $Q \neq \emptyset$ do	Using a Eibonassi boan
9.	$u \leftarrow Extract-Min(Q)$	
10.	for each $(u, v) \in G.E$ do	$= O(m + n \log n)$
11.	if $u.d + w(u, v) < v.d$ then	
12.	$v.d \leftarrow u.d + w(u,v)$	
13.	$v.\pi \leftarrow u$	
14.	DECREASE-KEY($Q, v, u.d + w(u,v)$)	

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$. Negative-weight edges are allowed (unlike Dijkstra's SSSP algorithm).

Output: Returns FALSE if a negative-weight cycle is reachable from s, otherwise returns TRUE and for all $v \in G[V]$, sets v.d to the shortest distance from s to v.

BELLMAN-FORD (G = (V, E), w, s) INITIALIZE-SINGLE-SOURCE(G, s) 1. for $i \leftarrow 1$ to |G.V| - 1 do 2. 3. for each $(u, v) \in G.E$ do RELAX(u, v, w)4. for each $(u, v) \in G.E$ do 5. 6. if u.d + w(u,v) < v.d then return False 7. 8. return True

Initial State (with initial tentative distances)

Done!

INITIALIZE-SINGLE-SOURCE (G = (V, E), s)

- 1. for each vertex $v \in G.V$ do
- 2. $v.d \leftarrow \infty$
- 3. $v.\pi \leftarrow NIL$
- 4. $s.d \leftarrow 0$

3.

RELAX (u, v, w)

1. *if* u.d + w(u,v) < v.d *then*

2.
$$v.d \leftarrow u.d + w(u,v)$$

 $v.\pi \leftarrow u$

BELLMAN-FORD (G = (V, E), w, s) INITIALIZE-SINGLE-SOURCE(G, s) 1. for $i \leftarrow 1$ to |G.V| - 1 do 2. 3. for each $(u, v) \in G.E$ do RELAX(u, v, w)4. 5. for each $(u, v) \in G.E$ do if u.d + w(u,v) < v.d then 6. 7. return False 8. return True

Let n = |V| and m = |E|

```
Time taken by: Line 1: \Theta(n)
Lines 2 - 4: \Theta(mn)
Lines 5 - 7: \Theta(m)
```

Total time: $\Theta(mn)$

LEMMA 24.2 (CLRS): Let G = (V, E) be a weighted, directed graph with source s and weight function $w: E \to \mathbb{R}$, and suppose G contains no negative-weight cycles reachable from s. Then, after the |V| - 1 iterations of the for loop of lines 2–4 of BELLMAN-FORD, we have $v d = \delta(s, v)$ for all vertices v that are reachable from s. **PROOF:** The proof is based on the *path-relaxation property*. Consider any $v \in G.V$ reachable from s, and let $p = \langle v_0, v_1, \dots, v_k \rangle$, where $v_0 = s$ and $v_k = v$, be any shortest path from s to v. Because shortest paths are simple, p has at most |V| - 1 edges, and so $k \leq |V| - 1$. Each of the |V| - 1 iterations of the for loop of lines 2–4 relaxes all |E| edges. Among the edges relaxed in the i^{th} iteration, for i = 1, 2, ..., k, is (v_{i-1}, v_i) . By the path-relaxation property, therefore, $v \cdot d = v_k \cdot d = \delta(s, v_k) = \delta(s, v)$.

COROLLARY 24.3 (CLRS): Let G = (V, E) be a weighted, directed graph with source s and weight function $w: E \to \mathbb{R}$, and suppose Gcontains no negative-weight cycles reachable from s. Then, for each $v \in V$, there is a path from s to v if and only if **BELLMAN-FORD** terminates with $v.d < \infty$ when it is run on G.

THEOREM 24.4 (CLRS): Let *BELLMAN-FORD* be run on a weighted, directed graph G = (V, E) with source s and weight function $w: E \to \mathbb{R}$. If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE, we have $v. d = \delta(s, v)$ for all $v \in V$, and the predecessor subgraph G_{π} is a shortest-paths tree rooted at s. If G does contain a negative-weight cycle reachable from s, then the algorithm returns FALSE.

PROOF OF THEOREM 24.4: Two cases:

<u>*G* contains no negative-weight cycles reachable from s</u>:

If $v \in G.V$ is reachable from s then according to Lemma 24.2 we have $v.d = \delta(s, v)$ at termination. Otherwise, $v.d = \delta(s, v) = \infty$ follows from the **no-path property**.

The **predecessor-subgraph property**, along with $v \cdot d = \delta(s, v)$, implies that G_{π} is a shortest-paths tree.

Now, since at termination, for all edges $(u, v) \in G.E$, we have, $v.d = \delta(s, v)$ and $u.d = \delta(s, u)$, then by **triangle inequality**: $v.d = \delta(s, v) \le \delta(s, u) + w(u, v) = u.d + w(u, v)$.

So, none of the tests in line 6 causes **BELLMAN-FORD** to return FALSE. Therefore, it returns TRUE.

PROOF OF THEOREM 24.4 (CONTINUED):

<u>*G*</u> contains a negative-weight cycle reachable from *s*:

Let $c = \langle v_0, v_1, \dots, v_k \rangle$ be the cycle, where $v_0 = v_k$. Then $\sum_{i=1}^k w(v_{i-1}, v_i) < 0.$

Assume for the sake of contradiction that **BELLMAN-FORD** returns TRUE. Then $v_i \cdot d \le v_{i-1} \cdot d + w(v_{i-1}, v_i)$ for i = 1, 2, ..., k. Thus,

$$\sum_{i=1}^{k} v_i \cdot d \le \sum_{i=1}^{k} (v_{i-1} \cdot d + w(v_{i-1}, v_i)) = \sum_{i=1}^{k} v_{i-1} \cdot d + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

But $\sum_{i=1}^{k} v_i d = \sum_{i=1}^{k} v_{i-1} d$, and by Corollary 24.3, each $v_i d$ is finite. Thus, $\sum_{i=1}^{k} w(v_{i-1}, v_i) \ge 0$, which contradicts our initial assumption that $c = \langle v_0, v_1, \dots, v_k \rangle$ is a negative-weight cycle.

<u>SSSP in Directed Acyclic Graphs (DAGs)</u> (SSSP: Single-Source Shortest Paths)

Input: Weighted DAG G = (V, E) with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$. Negative-weight edges are allowed (unlike Dijkstra's SSSP algorithm).

Output: For all $v \in G[V]$, sets v d to the shortest distance from s to v.

INITIALIZE-SINGLE-SOURCE (G = (V, E), s)

- 1. for each vertex $v \in G.V$ do
- 2. $v.d \leftarrow \infty$

3.
$$v.\pi \leftarrow NIL$$

4. $s.d \leftarrow 0$

RELAX (u, v, w)1. if u.d + w(u,v) < v.d then 2. $v.d \leftarrow u.d + w(u,v)$ 3. $v.\pi \leftarrow u$

DAG-SHORTEST-PATHS (G = (V, E), w, s)

- 1. topologically sort the vertices of *G*
- 2. INITIALIZE-SINGLE-SOURCE(G, s)
- 3. for each $v \in V$. G taken in topologically sorted order do
- 4. for each $(u, v) \in G.E$ do
- 5. RELAX(u, v, w)

(SSSP: Single-Source Shortest Paths)

Given DAG

<u>SSSP in Directed Acyclic Graphs (DAGs)</u> (SSSP: Single-Source Shortest Paths)

After Topological Sorting (with initial tentative distances)

(SSSP: Single-Source Shortest Paths)

(SSSP: Single-Source Shortest Paths)

(SSSP: Single-Source Shortest Paths)

Time taken by: Line 1: $\Theta(n + m)$ Line 2: $\Theta(n)$ Lines 3 - 5: $\Theta(m)$

Total time: $\Theta(n+m)$
Correctness of DAG-SHORTEST-PATHS

THEOREM 24.5 (CLRS): If a weighted, directed graph G = (V, E) has a source vertex s and no cycles, then at the termination of the *DAG*-SHORTEST-PATHS procedure, $v.d = \delta(s, v)$ for all vertices $v \in G.V$, and the predecessor subgraph G_{π} is a shortest-paths tree.

PROOF: Consider any $v \in G.V$.

If v is not reachable from s then $v \cdot d = \delta(s, v) = \infty$ follows from the *no-path property*.

If v is reachable from s, and let $p = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = s$ and $v_k = v$, be any shortest path from s to v. Since we process the vertices in topological order, we relax the edges on p in the order $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$. The **path-relaxation property** implies that $v_i. d = \delta(s, v_i)$ at termination for i = 1, 2, ..., k. By the **predecessor-subgraph property**, G_{π} is a shortest-paths tree.

Correctness of DAG-SHORTEST-PATHS

THEOREM 24.5 (CLRS): If a weighted, directed graph G = (V, E) has a source vertex s and no cycles, then at the termination of the *DAG*-SHORTEST-PATHS procedure, $v.d = \delta(s, v)$ for all vertices $v \in G.V$, and the predecessor subgraph G_{π} is a shortest-paths tree.

PROOF: Consider any $v \in G.V$.

If v is not reachable from s then $v \cdot d = \delta(s, v) = \infty$ follows from the *no-path property*.

If v is reachable from s, and let $p = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = s$ and $v_k = v$, be any shortest path from s to v. Since we process the vertices in topological order, we relax the edges on p in the order $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$. The **path-relaxation property** implies that $v_i. d = \delta(s, v_i)$ at termination for i = 1, 2, ..., k. By the **predecessor-subgraph property**, G_{π} is a shortest-paths tree.

Correctness of DAG-SHORTEST-PATHS

THEOREM 24.5 (CLRS): If a weighted, directed graph G = (V, E) has a source vertex s and no cycles, then at the termination of the *DAG*-SHORTEST-PATHS procedure, $v.d = \delta(s, v)$ for all vertices $v \in G.V$, and the predecessor subgraph G_{π} is a shortest-paths tree.

PROOF: Consider any $v \in G.V$.

If v is not reachable from s then $v \cdot d = \delta(s, v) = \infty$ follows from the *no-path property*.

If v is reachable from s, and let $p = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = s$ and $v_k = v$, be any shortest path from s to v. Since we process the vertices in topological order, we relax the edges on p in the order $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$. The **path-relaxation property** implies that $v_i. d = \delta(s, v_i)$ at termination for i = 1, 2, ..., k. By the **predecessor-subgraph property**, G_{π} is a shortest-paths tree.

The All-Pairs Shortest Paths (APSP) Problem

We are given a weighted, directed graph G = (V, E) with vertex set V and edge set E, and a weight function w such that for each edge $(u, v) \in E$, w(u, v) represents its weight.

Our goal is to find, for every pair of vertices $u, v \in G.V$, a shortest path (i.e., a path of the smallest total edge weight) from u to v.

The All-Pairs Shortest Paths (APSP) Problem

One can solve the APSP problem by running an SSSP algorithm n = |G.V| times, once for each vertex as the source.

If all edge weights are nonnegative, one can use **Dijkstra's SSSP algorithm**. Using a binary min-heap as the priority queue, one can solve the problem in $O(n(m + n) \log n)$ time, where m = |G.E|. Using a Fibonacci heap as the priority queue yields a running time of $O(n^2 \log n + mn)$.

If G has negative-weight edges, then one can use the slower **Bellman-Ford SSSP algorithm** resulting in a running time of $O(mn^2)$ which is $O(n^4)$ for dense graphs.

The All-Pairs Shortest Paths (APSP) Problem

We assume that the edge-weights are given as an $n \times n$ adjacency matrix $W = (w_{ij})$, where

$$w_{ij} = \begin{cases} 0, & \text{if } i = j, \\ \text{weight of directed edge } (i,j) & \text{if } i \neq j \text{ and } (i,j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E. \end{cases}$$

We allow negative-weight edges, but we assume for the time being that G contains no negative-weight cycles.

Let $l_{ij}^{(m)}$ be the minimum weight of any path from vertex *i* to vertex *j* that contains at most *m* edges. Then

$$l_{ij}^{(m)} = \begin{cases} 0, & \text{if } m = 0 \text{ and } i = j, \\ \infty & \text{if } m = 0 \text{ and } i \neq j, \\ \min_{1 \le k \le n} \left\{ l_{ik}^{(m-1)} + w_{kj} \right\}, & \text{otherwise } (i.e., m > 0). \end{cases}$$

If G has no negative-weight cycles, then for every pair of vertices iand j for which $\delta(i, j) < \infty$, there is a shortest path from i to jthat is simple and thus contains at most n - 1 edges. A path from vertex i to vertex j with more than n - 1 edges cannot have lower weight than a shortest path from i to j. Hence,

$$\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = \cdots.$$

Let $l_{ij}^{(m)}$ be the minimum weight of any path from vertex i to vertex j that contains at most m edges. Then

$$l_{ij}^{(m)} = \begin{cases} 0, & \text{if } m = 0 \text{ and } i = j, \\ \infty & \text{if } m = 0 \text{ and } i \neq j, \\ \min_{1 \le k \le n} \left\{ l_{ik}^{(m-1)} + w_{kj} \right\}, & \text{otherwise } (i.e., m > 0). \end{cases}$$

If G has no negative-weight cycles, then for every pair of vertices iand j for which $\delta(i, j) < \infty$, there is a shortest path from i to jthat is simple and thus contains at most n - 1 edges. A path from vertex i to vertex j with more than n - 1 edges cannot have lower weight than a shortest path from i to j. Hence,

$$\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = \cdots.$$

EXTEND-SHORTEST-PATHS (L, W) 1. $n \leftarrow L.rows$ 2. let $L' = (l'_{ij})$ be a new $n \times n$ matrix 3. for $i \leftarrow 1$ to n do 4. for $j \leftarrow 1$ to n do 5. $l'_{ij} \leftarrow \infty$ 6. for $k \leftarrow 1$ to n do 7. $l'_{ij} \leftarrow \min(l'_{ij}, l'_{ik} + w_{kj})$ 8. return L'

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

- 1. $n \leftarrow W.rows$
- 2. $L^{(1)} \leftarrow W$
- 3. for $m \leftarrow 2$ to n 1 do
- 4. let $L^{(m)}$ be a new $n \times n$ matrix
- 5. $L^{(m)} \leftarrow EXTEND-SHORTEST-PATHS(L^{(m-1)}, W)$
- 6. *return* $L^{(n-1)}$

$$W = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix} \qquad L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

Note the similarity between *EXTEND-SHORTEST-PATHS* and *SQUARE-MATRIX-MULTIPLY*:

EXTEND-SHORTEST-PATHS (L, W) 1. $n \leftarrow L.rows$ 2. let $L' = (l'_{ij})$ be a new $n \times n$ matrix 3. for $i \leftarrow 1$ to n do 4. for $j \leftarrow 1$ to n do 5. $l'_{ij} \leftarrow \infty$ 6. for $k \leftarrow 1$ to n do 7. $l'_{ij} \leftarrow \min(l'_{ij}, l'_{ik} + w_{kj})$ 8. return L' SQUARE-MATRIX-MULTIPLY (A, B)1. $n \leftarrow A.rows$ let $C = (c_{ij})$ be a new $n \times n$ matrix 2. 3. for $i \leftarrow 1$ to n do 4. for $i \leftarrow 1$ to n do 5. $c_{ii} \leftarrow 0$ 6. for $k \leftarrow 1$ to n do 7. $c_{ii} \leftarrow c_{ii} + a_{ik} \cdot b_{ki}$ 8. return C

Both have the same $\Theta(n^3)$ running time.

EXTEND-SHORTEST-PATHS (L, W) 1. $n \leftarrow L.rows$ 2. let $L' = (l'_{ij})$ be a new $n \times n$ matrix 3. for $i \leftarrow 1$ to n do 4. for $j \leftarrow 1$ to n do 5. $l'_{ij} \leftarrow \infty$ 6. for $k \leftarrow 1$ to n do 7. $l'_{ij} \leftarrow \min(l'_{ij}, l'_{ik} + w_{kj})$ 8. return L'

Running time

 $= \Theta(n^3)$

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

- 1. $n \leftarrow W.rows$
- 2. $L^{(1)} \leftarrow W$
- 3. for $m \leftarrow 2$ to n 1 do
- 4. let $L^{(m)}$ be a new $n \times n$ matrix
- 5. $L^{(m)} \leftarrow EXTEND-SHORTEST-PATHS(L^{(m-1)}, W)$
- 6. *return* $L^{(n-1)}$

Running time = $n \times \Theta(n^3)$ = $\Theta(n^4)$

APSP: Extending SPs by Repeated Squaring

EXTEND-SHORTEST-PATHS (L, W) 1. $n \leftarrow L.rows$ 2. let $L' = (l'_{ij})$ be a new $n \times n$ matrix 3. for $i \leftarrow 1$ to n do 4. for $j \leftarrow 1$ to n do 5. $l'_{ij} \leftarrow \infty$ 6. for $k \leftarrow 1$ to n do 7. $l'_{ij} \leftarrow \min(l'_{ij}, l'_{ik} + w_{kj})$ 8. return L'

Faster-All-Pairs-Shortest-Paths (W)

- 1. $n \leftarrow W.rows$
- 2. $L^{(1)} \leftarrow W$
- 3. $m \leftarrow 1$
- 4. while m < n 1 do
- 5. let $L^{(2m)}$ be a new $n \times n$ matrix
- 6. $L^{(2m)} \leftarrow EXTEND-SHORTEST-PATHS(L^{(m)}, L^{(m)})$
- 7. $m \leftarrow 2m$
- 8. return $L^{(m)}$

APSP: Extending SPs by Repeated Squaring

EXTEND-SHORTEST-PATHS (L, W)1. $n \leftarrow L.rows$ let $L' = \left(l'_{ij}
ight)$ be a new n imes n matrix 2. 3. for $i \leftarrow 1$ to n do 4. for $i \leftarrow 1$ to n do 5. $l'_{ii} \leftarrow \infty$ $= \Theta(n^3)$ for $k \leftarrow 1$ to n do 6. $l'_{ij} \leftarrow \min(l'_{ij}, l'_{ik} + w_{kj})$ 7. return L' 8.

Running time

FASTER-ALL-PAIRS-SHORTEST-PATHS (W)

1.
$$n \leftarrow W.rows$$

$$2. \qquad L^{(1)} \leftarrow W$$

3. $m \leftarrow 1$

while m < n - 1 do 4.

let $L^{(2m)}$ be a new $n \times n$ matrix 5.

 $L^{(2m)} \leftarrow EXTEND-SHORTEST-PATHS(L^{(m)}, L^{(m)})$ 6.

7. $m \leftarrow 2m$

return $L^{(m)}$ 8.

Running time $= \left[\log_2(n-1)\right]$ $\times \Theta(n^3)$ $= \Theta(n^3 \log n)$

Let $d_{ij}^{(k)}$ be the minimum weight of any path from vertex *i* to vertex *j* for which all intermediate vertices are in {1,2, ..., *k*}. Then

$$d_{ij}^{(k)} = \begin{cases} w_{ij}, & \text{if } k = 0, \\ \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} & \text{if } k \ge 1. \end{cases}$$

Then $D^{(n)} = (d_{ij}^{(n)})$ gives: $d_{ij}^{(n)} = \delta(i, j)$ for all $i, j \in G.V.$

FLOYD-WARSHALL (W)1. $n \leftarrow W.rows$ 2. $D^{(0)} \leftarrow W$ 3. for $k \leftarrow 1$ to n do4. let $D^{(k)} = (d_{ij}^{(k)})$ be a new $n \times n$ matrix5. for $i \leftarrow 1$ to n do6. for $j \leftarrow 1$ to n do7. $d_{ij}^{(k)} \leftarrow \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$ 8. return $D^{(n)}$

FLOYD-WARSHALL (W)

- 1. $n \leftarrow W.rows$
- 2. $D^{(0)} \leftarrow W$
- 3. let $\Pi^{(0)} = \left(\pi_{ij}^{(0)}\right)$ be a new $n \times n$ matrix
- 4. for $i \leftarrow 1$ to n do
- 5. for $j \leftarrow 1$ to n do

6. if
$$i = j$$
 or $w_{ij} = \infty$ then $\pi_{ij}^{(0)} \leftarrow NIL$

7. else
$$\pi_{ij}^{(0)} \leftarrow i$$

8. for
$$k \leftarrow 1$$
 to n do

9. let
$$D^{(k)} = \left(d_{ij}^{(k)}\right)$$
 and $\Pi^{(k)} = \left(\pi_{ij}^{(k)}\right)$ be new $n \times n$ matrices

10. for $i \leftarrow 1$ to n do

11. for
$$j \leftarrow 1$$
 to n do

12. *if*
$$d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$
 then $\pi_{ij}^{(k)} \leftarrow \pi_{ij}^{(k-1)}$

13. else
$$\pi_{ij}^{(k)} \leftarrow \pi_{kj}^{(k-1)}$$

14.
$$d_{ij}^{(k)} \leftarrow \min\left(d_{ij}^{(k-1)}, \ d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$

15. return
$$D^{(n)}$$
 and $\Pi^{(n)}$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(0)} = \begin{pmatrix} NIL & 1 & 1 & NIL & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & NIL & NIL \\ 4 & NIL & 4 & NIL & NIL \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(0)} = \begin{pmatrix} NIL & 1 & 1 & NIL & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & NIL & NIL \\ 4 & NIL & 4 & NIL & NIL \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(1)} = \begin{pmatrix} NIL & 1 & 1 & NIL & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & NIL & NIL \\ 4 & 1 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(1)} = \begin{pmatrix} NIL & 1 & 1 & NIL & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & NIL & NIL \\ 4 & 1 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 3 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 3 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} NIL & 1 & 4 & 2 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & 3 & 4 & 5 & NIL \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} NIL & 1 & 4 & 2 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & 3 & 4 & 5 & NIL \end{pmatrix}$$
$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} NIL & 3 & 4 & 5 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & A & NIL & 1 \\ 4 & 3 & 4 & 5 & NIL \end{pmatrix}$$

FLOYD-WARSHALL (W)1. $n \leftarrow W.rows$ 2. $D^{(0)} \leftarrow W$ 3. for $k \leftarrow 1$ to n do4. let $D^{(k)} = (d_{ij}^{(k)})$ be a new $n \times n$ matrix5. for $i \leftarrow 1$ to n do6. for $j \leftarrow 1$ to n do7. $d_{ij}^{(k)} \leftarrow \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$ 8. return $D^{(n)}$

Running Time = $\Theta(n^3)$ Space Complexity = $\Theta(n^3)$

But $D^{(k)}$ depends only on $D^{(k-1)}$.

 FLOYD-WARSHALL-QUADRATIC-SPACE (W)

 1. $n \leftarrow W.rows$

 2. let $D^{(0)} = (d_{ij}^{(0)})$ and $D^{(1)} = (d_{ij}^{(1)})$ be new $n \times n$ matrices

 3. $D^{(0)} \leftarrow W$

 4. for $k \leftarrow 1$ to n do

 5. for $i \leftarrow 1$ to n do

 6. for $j \leftarrow 1$ to n do

 7. $d_{ij}^{(1)} \leftarrow \min(d_{ij}^{(0)}, d_{ik}^{(0)} + d_{kj}^{(0)})$

 8. $D^{(0)} \leftarrow D^{(1)}$

 9. return $D^{(0)}$

Running Time = $\Theta(n^3)$ Space Complexity = $\Theta(n^2)$

Can be solved in-place!

FLOYD-WARSHALL-IN-PLACE (W)1. $n \leftarrow W.rows$ 2. for $k \leftarrow 1$ to n do3. for $i \leftarrow 1$ to n do4. for $j \leftarrow 1$ to n do5. $w_{ij} \leftarrow \min(w_{ij}, w_{ik} + w_{kj})$ 6. return W

Running Time = $\Theta(n^3)$ Space Complexity = $\Theta(n^2)$