
CSE548, AMS542: Analysis of Algorithms, Fall 2023 Date: Oct 27

Homework #2
( Due: Nov 8 )

Figure 1: [Task 1] The deterministic Quicksort algorithm we analyzed in the class.

Task 1. [ 100 Points ] The Variance of the #Comparisons Performed by Quicksort

[Do not panic. This task is not as scary as it seems. A lot of work has already been done for you.
The amount of work you will need to do for each part is often quite small and straightforward.]

This task asks you to precisely compute the variance of the number of element comparisons per-
formed by the Quicksort algorithm shown in Figure 1.

Let tn be the number of comparisons performed by our Quicksort algorithm averaged over all n!
permutations of an input of size n, and let vn be its variance.

Let fn,k be the fraction of all possible inputs of size n for which the algorithm performs exactly k
comparisons. Then by definitions of mean and variance,

tn =
∑
k

kfn,k and vn =
∑
k

k2fn,k − t2n

(a) [ 5 Points ] Consider the following generating function for fn,k’s.

Fn(z) = fn,0 + fn,1z + fn,2z
2 + . . .+ fn,kz

k + . . .

Show that tn = F ′
n(1) and vn = F ′′

n (1) + F ′
n(1)− (F ′

n(1))
2.

(b) [ 10 Points ] Argue that Fn(z) can be described by the following recurrence relation:

Fn(z) =

{
1, if n ≤ 1,
zn−1

n

∑n
k=1 Fk−1(z)Fn−k(z), otherwise.
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(c) [ 10 Points ] Using parts (a) and (b) derive the following recurrence relation for tn:

tn =

{
0, if n ≤ 1,
n− 1 + 1

n

∑n
k=1 (tk−1 + tn−k), otherwise.

Recall that we already solved this recurrence in the class to show that tn = 2(n+1)Hn − 4n.
You do not need to solve it here.

(d) [ 10 Points ] Let sn = F ′′
n (1). Show that sn = 0 for n ≤ 2, and the following recurrence

holds for n > 2:

sn = (n− 1)(n− 2) +
1

n

(
n∑

k=1

(sk−1 + sn−k) + 2(n− 1)
n∑

k=1

(tk−1 + tn−k) + 2
n∑

k=1

tk−1tn−k

)

(e) [ 5 Points ] Show that the recurrence for sn from part (d) can be simplified to:

sn =

{
0, if n ≤ 2,
2
n

∑n−1
k=0 sk +

2
n

∑n
k=1 tk−1tn−k + (n− 1)(2tn − n), otherwise.

(f) [ 25 Points ] Using tn = 2(n+1)Hn−4n (proved in the class) and the definitions and math-
ematical identities involving harmonic numbers given in Table 1, show that the recurrence
from part (e) can be written as:

sn =


0, if n ≤ 2,
2
n

∑n−1
k=0 sk +

4
3(n+ 1)(n+ 2)

(
(Hn)

2 −H
(2)
n

)
−4

9(8n
2 + 21n+ 7)Hn + 1

27(95n
2 + 309n+ 28), otherwise.

(g) [ 10 Points ] Using part (f) show that for n ≥ 0:

sn+1

n+ 2
=

sn
n+ 1

+ 4
(
(Hn)

2 −H(2)
n

)
− 8n

n+ 1
Hn + 7− 10

n+ 1
+

6

n+ 2

(h) [ 20 Points ] Solve the recurrence from part (g) to show that for n ≥ 0:

sn = 4(n+ 1)2
(
(Hn)

2 −H(2)
n

)
− 4(n+ 1)(4n+ 1)Hn + n(23n+ 17)

Use of generating functions is optional for this part.

(i) [ 5 Points ] Finally, combine your result from part (h) with the solution for tn we proved in
the class to show that for n ≥ 0:

vn = 7n2 + 13n− 2(n+ 1)Hn − 4(n+ 1)2H(2)
n

2



Hn =

n∑
k=1

1

k
(1)

lim
n→∞

(Hn − lnn) = γ ≈ 0.5772156649 (2)

H(2)
n =

n∑
k=1

1

k2
(3)

lim
n→∞

H(2)
n =

π2

6
≈ 1.644934068 (4)

(Hn+1)
2 −H

(2)
n+1 = (Hn)

2 −H(2)
n +

2Hn

n+ 1
(5)

n∑
k=1

Hk−1 = n(Hn − 1) (6)

n∑
k=1

Hn−k = n(Hn − 1) (7)

n∑
k=1

Hk−1Hn−k = n
(
(Hn)

2 −H(2)
n − 2(Hn − 1)

)
(8)

n∑
k=1

kHk−1 =
n(n+ 1)

2

(
Hn − 1

2
− 1

n+ 1

)
(9)

n∑
k=1

kHn−k =
n(n+ 1)

2

(
Hn − 3

2
+

1

n+ 1

)
(10)

n∑
k=1

kHk−1Hn−k =
n(n+ 1)

2

(
(Hn)

2 −H(2)
n − 2(Hn − 1)

)
(11)

n∑
k=1

k2Hk−1 =
n(n+ 1)(2n+ 1)

6
Hn − n

36
(4n2 + 15n+ 17) (12)

n∑
k=1

k2Hn−k =
n(n+ 1)(2n+ 1)

6
Hn − n

36
(22n2 + 15n− 1) (13)

n∑
k=1

k2Hk−1Hn−k =
n(n+ 1)(2n+ 1)

6

(
(Hn)

2 −H(2)
n

)
− n

18
(13n2 + 15n+ 8)Hn

+
n

108
(71n2 + 111n+ 34) (14)

tn = 2(n+ 1)Hn − 4n (15)

Table 1: [Task 1] Definitions and mathematical identities useful for Task 1.
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Select( A[q : r], k, α, s1, s2, b )

Input: An array of distinct elements, and an integer k ∈ [1, r − q + 1]. The parameter α ∈ [0, 1]
is a floating point number that gives the probability of choosing s1 as the block size to be used at
this level of recursion and 1− α is the probability of choosing s2. Also b is an upper bound on the
size of the base case.
Output: An element x of A[q : r] such that rank(x,A[q, r]) = k.

1. n← r − q + 1

2. if n ≤ b then

3. sort A[q : r]

4. return A[q + k − 1]

5. else

6. d← a floating point number between 0 and 1 (inclusive) chosen uniformly at random

7. if d ≤ α then s← s1

8. else s← s2

9. divide A[q : r] into blocks Bi’s each containing s consecutive elements

( last block may contain fewer than s elements )

10. for i← 1 to
⌈
n
s

⌉
do

11. M [i]← median of Bi using sorting

12. x← Select

(
M

[
1 :

⌈
n
s

⌉]
,

⌊
⌈ns ⌉+1

2

⌋
, α, s1, s2, b

)
{median of medians}

13. t← Partition( A[q : r], x ) {partition around x which ends up at A[t]}
14. if k = t− q + 1 then return A[t]

15. else if k < t− q + 1 then return Select( A[q : t− 1], k, α, s1, s2, b )

16. else return Select( A[t+ 1 : r], k − t+ q − 1, α, s1, s2, b )

Figure 2: [Task 2] Selection with probabilistic blocking.

Task 2. [ 50 Points ] Recursive Selection with Probabilistic Blocking

Figure 2 shows a slightly generalized version of the selection algorithm we saw in the class. Instead
of using a single block size (e.g., 5) at all levels of recursion, it chooses between two block sizes s1
and s2 with probability α and 1 − α, respectively. The base case size b is also a parameter to the
algorithm. Observe that when b = 140 and s1 = s2 = 5 (or s1 = 5 with α = 1, or s2 = 5 with
α = 0), the algorithm reduces to the one we saw in the class.

(a) [ 15 Points ] Write a recurrence relation describing the running time of Select on an array
of size n assuming s1 = s2 = 3. Using the approach we saw in the class can you reduce the
running time to O (n) based on your recurrence? Why or why not?

(b) [ 20 Points ] How about calling Select with s1 = 3, s2 = 5, and α = 1
3? Can you get

an O (n) upper bound based on your recurrence from part (a)? Explain. If so, what is the
smallest value of b you can use?

(c) [ 15 Points ] Now, how about calling Select with s1 = 3 and s2 = 5, but an arbitrary value
of α < 1? Can you still get down to O (n)? Explain.
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Comp-Q( n ) {Integer n ≥ 0}

1. if n = 0 then return 1

2. else

3. q ← Comp-Q ( n− 1 )

4. r ← Comp-R ( n− 1 )

5. s← Comp-S ( n− 1 )

6. t← Comp-S ( n )

7. return q + 4r + s− t

Comp-R( n ) {Integer n ≥ 0}

1. if n = 0 then return 1

2. else

3. q ← Comp-Q ( n− 1 )

4. r ← Comp-R ( n− 1 )

5. return 3q + r

Comp-S( n ) {Integer n ≥ 0}

1. if n = 0 then return 1

2. else

3. q ← Comp-Q ( n− 1 )

4. r ← Comp-R ( n− 1 )

5. s← Comp-S ( n− 1 )

6. return 2q + 3r + s

Figure 3: [Task 3] Three mutually recursive functions.

Task 3. [ 50 Points ] Three Mutually Recursive Functions

Figure 3 shows three mutually recursive functions Comp-Q, Comp-R and Comp-S. Each function
accepts a nonnegative integer as the sole input. Now answer the following questions.

(a) [ 20 Points ] Use generating functions to find the values returned by Comp-Q( n ), Comp-
R( n ) and Comp-S( n ).

(b) [ 20 Points ] Use generating functions to find the running times of Comp-Q( n ), Comp-
R( n ) and Comp-S( n ).

(c) [ 10 Points ] Based on part (a) can you give algorithms to compute the values returned by
Comp-Q( n ), Comp-R( n ) and Comp-S( n ) in O (n) time? Can you compute them in
o (n) time? Why or why not?
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