
CSE548, AMS542: Analysis of Algorithms, Fall 2023 Date: Nov 10

Homework #3
( Due: Nov 23 )

Task 1. [ 200 Points ] The Diamond Heap

In this task, we will construct and analyze the Diamond Heap. Like the binomial heap we discussed
in the class, a diamond heap will support Make-Heap, Insert, Minimum, Extract-Min, and
Union efficiently, but unlike the binomial heap, it will also offer efficient support for Maximum
and Extract-Max.

A diamond heap is a set of diamond pendants along with a couple of loose diamonds. We define
diamonds1 and pendants below.

Figure 1: Diamonds Dk for 0 ≤ k ≤ 3.

A diamond of rank k is denoted by Dk. Figure 1 shows Dk’s for 0 ≤ k ≤ 3. A D0 is a single node.
As shown in Figure 2, for k ≥ 0, a Dk+1 is constructed by connecting the top nodes of two Dk’s
using an additional node, and their bottom nodes using another new node.

A pendant Pk is constructed from a Dk by adding an extra node as the parent of its top node
and another extra node as the child of its bottom node (see Figure 2). Figure 3 shows Pk’s for
0 ≤ k ≤ 3.

A diamond heap H is a collection of pendants and a few loose diamonds (i.e., D0’s) that satisfy
the following properties.

• Each node has a key.

• Each pendant satisfies the min-heap property, i.e., the parent of a node x cannot have a key
larger than that of x. In the figures, the parent-child relationship is shown using arrows. If
there is an arrow pointing from node x to node y then x is y’s parent.

1i.e., diamond-shaped structures

1



Figure 2: A Dk+1 is constructed from two Dk’s and two additional nodes. A Pk is constructed from
one Dk and two additional nodes.

• For every integer k ≥ 0, there is at most one Pk in H.

• There are at most two D0’s in H.

Figure 3: Pendants Pk for 0 ≤ k ≤ 3.

(a) [ 10 Points ] How do you efficiently merge two min-heap-ordered Pk’s to produce a min-
heap-ordered Pk+1? What is the complexity of this merge operation?

(b) [ 30 Points ] Suppose that you want to support only Make-Heap, Minimum, Maximum,
Insert, and Union under eager union (i.e., using the array of pointers version of the data
structure). Show that the amortized cost of each operation will be O (1) except for Union
which will be O (log n), where n is the number of items currently in the data structure.

2



(c) [ 30 Points ] Extend part (b) to support Extract-Min and Extract-Max without chang-
ing the amortized complexities of the operations the data structure already supports. Show
that the two new operations can be supported in O

(
log2 n

)
amortized cost each.

(d) [ 50 Points ] Suppose that the data structure will never contain more than N items during
its entire lifetime and that you are willing to support Make-Heap, Insert and Union
operations in O (logN) amortized cost each. Now, re-analyze your data structure from part
(c) to show that all other operations including Extract-Min and Extract-Max can be
supported in O (1) amortized cost each.

Important: Do not prove part (d) as a corollary of part (e). This task asks you to prove part
(d) first and then extend it to part (e).

(e) [ 30 Points ] Extend your analysis from part (d) to show that the bounds proved in that part
continue to hold even if N represents the number of items currently in the data structure (i.e.,
N = n) provided the size of at least one of the heaps given as input to the Union operation
is upper-bounded by a constant. What amortized bound do you get for Union if there is no
restriction on the sizes of the input heaps, but you want to keep the amortized bounds of all
other operations unchanged?

(f) [ 30 Points ] How do the bounds for the diamond heap operations you proved in part (e)
change if you use lazy union (i.e., using the doubly linked list version of the data structure)
instead of eager union?

(g) [ 20 Points ] Analyze the amortized complexities of Decrease-Key, Increase-Key, and
Delete operations for your data structure from part (f). Does any of those bounds hold in
the worst case?

3


