CSE 548: Analysis of Algorithms

Lecture 10 (Dijkstra's SSSP & Fibonacci Heaps)

Rezaul A. Chowdhury Department of Computer Science

SUNY Stony Brook Fall 2023

<u>Fibonacci Heaps</u> <u>(Fredman & Tarjan, 1984)</u>

A *Fibonacci heap* can be viewed as an extension of Binomial heaps which supports DECREASE-KEY and DELETE operations efficiently.

Heap Operation	Binary Heap (worst-case)	Binomial Heap (amortized)	
Μακε-Ηεαρ	$\Theta(1)$	$\Theta(1)$	
INSERT	$O(\log n)$	$\Theta(1)$	
MINIMUM	$\Theta(1)$	$\Theta(1)$	
Extract-Min	$O(\log n)$	$O(\log n)$	
UNION	$\Theta(n)$	$\Theta(1)$	
Decrease-Key	$O(\log n)$	_	
Delete	$O(\log n)$	_	

<u>Fibonacci Heaps</u> <u>(Fredman & Tarjan, 1984)</u>

A *Fibonacci heap* can be viewed as an extension of Binomial heaps which supports DECREASE-KEY and DELETE operations efficiently.

Heap Operation	Binary Heap (worst-case)	Binomial Heap (amortized)
Μακε-Ηεαρ	$\Theta(1)$	$\Theta(1)$
INSERT	$O(\log n)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$\Theta(1)$
Extract-Min	$O(\log n)$	$O(\log n)$
UNION	$\Theta(n)$	$\Theta(1)$
Decrease-Key	$O(\log n)$	O(log n) (worst case)
Delete	$O(\log n)$	$O(\log n)$

<u>Fibonacci Heaps</u> <u>(Fredman & Tarjan, 1984)</u>

A *Fibonacci heap* can be viewed as an extension of Binomial heaps which supports DECREASE-KEY and DELETE operations efficiently.

Heap Operation	Binary Heap (worst-case)	Binomial Heap (amortized)	Fibonacci Heap (amortized)
Μακε-Ηεαρ	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
INSERT	$O(\log n)$	$\Theta(1)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
Extract-Min	$O(\log n)$	$O(\log n)$	$O(\log n)$
UNION	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$
Decrease-Key	$O(\log n)$	$O(\log n)$ (worst case)	$\Theta(1)$
Delete	$O(\log n)$	$O(\log n)$	$O(\log n)$

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v \cdot d$ is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V, E), w, s) for each $v \in G[V]$ do $v.d \leftarrow \infty$ 1. 2. $s.d \leftarrow 0$ 3. $H \leftarrow \phi$ { empty min-heap } 4. for each $v \in G[V]$ do INSERT(H, v) 5. while $H \neq \emptyset$ do 6. $u \leftarrow EXTRACT-MIN(H)$ for each $v \in Adj[u]$ do 7. 8. if $v.d > u.d + w_{u.v}$ then 9. DECREASE-KEY(H, v, $u.d + w_{uv}$) 10. $v.d \leftarrow u.d + w_{u,v}$

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v \cdot d$ is set to the shortest distance from s to v.

Dijkstra-SSSP(G = (V, E), w, s)					
1.	for each $v \in G[V]$ do v	$p.d \leftarrow \infty$			
2.	$s.d \leftarrow 0$				
3.	$H \leftarrow \phi$	{ empty min-heap }			
4.	for each $v \in G[V]$ do I	NSERT(H, v)			
5.	while H ≠ Ø do				
6.	$u \leftarrow Extract-Min$	(<i>H</i>)			
7.	for each $v \in Adj$	i[u] do			
8.	if $v.d > u.d$	$L + w_{u,v}$ then			
9.	Decrease-	$KEY(H, v, u.d + w_{u,v})$			
10.	$v.d \leftarrow u.d$	$1 + w_{u,v}$			

```
Let n = |G[V]| and m = |G[E]|
```

```
# INSERTS = n
# EXTRACT-MINS = n
# DECREASE-KEYS \leq m
```

Total cost $\leq n(cost_{Insert} + cost_{Extract-Min})$ $+ m(cost_{Decrease-Key})$

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v \cdot d$ is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V, E), w, s) for each $v \in G[V]$ do $v.d \leftarrow \infty$ 1. 2. $s.d \leftarrow 0$ $H \leftarrow \phi$ { empty min-heap } 3. for each $v \in G[V]$ do INSERT(H, v) 4. 5. while $H \neq \emptyset$ do 6. $u \leftarrow EXTRACT-MIN(H)$ for each $v \in Adj[u]$ do 7. 8. if $v.d > u.d + w_{u,v}$ then 9. DECREASE-KEY(H, v, $u.d + w_{\mu\nu}$) $v.d \leftarrow u.d + w_{u,v}$ 10.

Let n = |G[V]| and m = |G[E]|

For Binary Heap (worst-case costs): $cost_{Insert} = O(\log n)$ $cost_{Extract-Min} = O(\log n)$ $cost_{Decrease-Key} = O(\log n)$

 \therefore Total cost (worst-case) = $O((m + n) \log n)$

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v \cdot d$ is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V, E), w, s) for each $v \in G[V]$ do $v.d \leftarrow \infty$ 1. 2. $s.d \leftarrow 0$ $H \leftarrow \phi$ { empty min-heap } 3. for each $v \in G[V]$ do INSERT(H, v) 4. 5. while $H \neq \emptyset$ do 6. $u \leftarrow EXTRACT-MIN(H)$ for each $v \in Adj[u]$ do 7. 8. if $v.d > u.d + w_{u,v}$ then 9. DECREASE-KEY(H, v, $u.d + w_{uv}$) $v.d \leftarrow u.d + w_{u,v}$ 10.

Let n = |G[V]| and m = |G[E]|

For Binomial Heap (amortized costs): $cost_{Insert} = O(1)$ $cost_{Extract-Min} = O(\log n)$ $cost_{Decrease-Key} = O(\log n)$ (worst-case)

```
:. Total cost (worst-case)
= O((m + n) \log n)
```

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v \cdot d$ is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V, E), w, s)					
1.	for each $v \in G[V]$ do $v.d \leftarrow \infty$				
2.	$s.d \leftarrow 0$				
3.	$H \leftarrow \phi$ { empty min-he	ap }			
4.	for each $v \in G[V]$ do Insert(H, v)				
5.	while $H \neq \emptyset$ do				
6.	$u \leftarrow Extract-Min(H)$				
7.	for each $v \in Adj[u]$ do				
8.	if $v. d > u. d + w_{u,v}$ then				
9.	D ECREASE- K EY(H , v , u . $d + w_u$,v)			
10.	$v.d \leftarrow u.d + w_{u,v}$				

Let n = |G[V]| and m = |G[E]|Total cost $\leq n(cost_{Insert} + cost_{Extract-Min})$ $+ m(cost_{Decrease-Key})$

Observation:

Obtaining a worst-case bound for a sequence of *n* INSERTS, *n* EXTRACT-MINS and *m* DECREASE-KEYS is enough.

∴ Amortized bound per operation is sufficient.

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v \cdot d$ is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V, E), w, s)					
1.	for each $v \in G[V]$ do $v.d \leftarrow \infty$				
2.	$s.d \leftarrow 0$				
3.	$H \leftarrow \phi$ { empty min-heap	}			
4.	for each $v \in G[V]$ do INSERT(H, v)				
5.	while H ≠ Ø do				
6.	$u \leftarrow Extract-Min(H)$				
7.	for each $v \in Adj[u]$ do				
8.	if $v.d > u.d + w_{u,v}$ then				
9.	D ECREASE- K EY(H , v , $u.d + w_{u,v}$)				
10.	$v.d \leftarrow u.d + w_{u,v}$				

Let n = |G[V]| and m = |G[E]|Total cost $\leq n(cost_{Insert} + cost_{Extract-Min})$ $+ m(cost_{Decrease-Key})$

Observation:

For $n(cost_{Insert} + cost_{Extract-Min})$ the best possible bound is $\Theta(n \log n)$. (else violates sorting lower bound)

Perhaps $m(cost_{Decrease-Key})$ can be improved to $o(m \log n)$.

- A *Fibonacci heap* can be viewed as an extension of Binomial heaps which supports DECREASE-KEY and DELETE operations efficiently.
- But the trees in a Fibonacci heap are no longer binomial trees as we will be cutting subtrees out of them.
- However, all operations (except DECREASE-KEY and DELETE) are still performed in the same way as in binomial heaps.
- The *rank* of a tree is still defined as the number of children of the root, and we still link two trees if they have the same rank.

Implementing DECREASE-KEY(H, x, k)

DECREASE-KEY(H, x, k): One possible approach is to cut out the subtree rooted at x from H, reduce the value of x to k, and insert that subtree into the root list of H.

<u>Problem</u>: If we cut out a lot of subtrees from a tree its size will no longer be exponential in its rank. Since our analysis of EXTRACT-MIN in binomial heaps was highly dependent on this exponential relationship, that analysis will no longer hold.

<u>Solution</u>: Limit #cuts among the children of any node to 2. We will show that the size of each tree will still remain exponential in its rank.

When a 2nd child is cut from a node x, we also cut x from its parent leading to a possible sequence of cuts moving up towards the root.

Recurrence for Fibonacci numbers: $f_n = \begin{cases} 0 & \text{if } n = 0, \\ 1 & \text{if } n = 1, \\ f_{n-1} + f_{n-2} & \text{otherwise.} \end{cases}$

We showed in a pervious lecture: $f_n = \frac{1}{\sqrt{5}} (\phi^n - \hat{\phi}^n)$,

where
$$\phi = \frac{1+\sqrt{5}}{2}$$
 and $\hat{\phi} = \frac{1-\sqrt{5}}{2}$ are the roots $z^2 - z - 1 = 0$.

f_0	0	<	1	$1 + f_0$
f_1	1	<	2	$1 + f_0 + f_1$
f_2	1	<	3	$1 + f_0 + f_1 + f_2$
f_3	2	<	5	$1 + f_0 + f_1 + f_2 + f_3$
f_4	3	<	8	$1 + f_0 + f_1 + f_2 + f_3 + f_4$
f_5	5	<	13	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5$
f_6	8	<	21	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6$
<i>f</i> ₇	13	<	34	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7$
f_8	21	<	55	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7 + f_8$
f_9	34	<	89	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7 + f_8 + f_9$
<i>f</i> ₁₀	55	<	144	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7 + f_8 + f_9 + f_{10}$

f_0	0			
f_1	1	=	1	$1 + f_0$
f_2	1	<	2	$1 + f_0 + f_1$
f_3	2	<	3	$1 + f_0 + f_1 + f_2$
f_4	3	<	5	$1 + f_0 + f_1 + f_2 + f_3$
f_5	5	<	8	$1 + f_0 + f_1 + f_2 + f_3 + f_4$
f_6	8	<	13	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5$
<i>f</i> ₇	13	<	21	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6$
f_8	21	<	34	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7$
f_9	34	<	55	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7 + f_8$
f_{10}	55	<	89	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7 + f_8 + f_9$
<i>f</i> ₁₁	89	<	144	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7 + f_8 + f_9 + f_{10}$

f_0	0			
f_1	1	_		
f_2	1	=	1	$1 + f_0$
f_3	2	=	2	$1 + f_0 + f_1$
f_4	3	=	3	$1 + f_0 + f_1 + f_2$
f_5	5	=	5	$1 + f_0 + f_1 + f_2 + f_3$
f_6	8	=	8	$1 + f_0 + f_1 + f_2 + f_3 + f_4$
f_7	13	=	13	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5$
f_8	21	=	21	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6$
f_9	34	=	34	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7$
f_{10}	55	=	55	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7 + f_8$
<i>f</i> ₁₁	89	=	89	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7 + f_8 + f_9$
<i>f</i> ₁₂	144	=	144	$1 + f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7 + f_8 + f_9 + f_{10}$

Lemma 1: For all integers $n \ge 0$, $f_{n+2} = 1 + \sum_{i=0}^{n} f_i$.

Lemma 1: For all integers $n \ge 0$, $f_{n+2} = 1 + \sum_{i=0}^{n} f_i$.

Proof: By induction on *n*.

Base case: $f_2 = 1 = 1 + 0 = 1 + f_0 = 1 + \sum_{i=0}^{n} f_i$.

Inductive hypothesis: $f_{k+2} = 1 + \sum_{i=0}^{k} f_i$ for $0 \le k \le n-1$.

Then
$$f_{n+2} = f_{n+1} + f_n = f_n + (1 + \sum_{i=0}^{n-1} f_i) = 1 + \sum_{i=0}^n f_i$$
.

f_0	0	<	1.00	ϕ^0
f_1	1	<	1.62	ϕ^1
f_2	1	<	2.62	ϕ^2
f_3	2	<	4.24	ϕ^3
f_4	3	<	6.85	ϕ^4
f_5	5	<	11.09	ϕ^5
f_6	8	<	17.94	ϕ^6
f_7	13	<	29.03	ϕ^7
f_8	21	<	46.98	ϕ^8
f_9	34	<	76.01	ϕ^9
<i>f</i> ₁₀	55	<	122.99	ϕ^{10}
		-		

f_0	0			
f_1	1	2	1.00	ϕ^0
f_2	1	<	1.62	ϕ^1
f_3	2	<	2.62	ϕ^2
f_4	3	<	4.24	ϕ^3
f_5	5	<	6.85	ϕ^4
f_6	8	<	11.09	ϕ^5
<i>f</i> ₇	13	<	17.94	ϕ^6
f_8	21	<	29.03	ϕ^7
f_9	34	<	46.98	ϕ^8
f_{10}	55	<	76.01	ϕ^9
<i>f</i> ₁₁	89	<	122.99	ϕ^{10}

f_0	0			
f_1	1	_		
f_2	1	≥	1.00	ϕ^0
f_3	2	\geq	1.62	ϕ^1
f_4	3	≥	2.62	ϕ^2
f_5	5	≥	4.24	ϕ^3
f_6	8	2	6.85	ϕ^4
<i>f</i> ₇	13	2	11.09	ϕ^5
f_8	21	2	17.94	ϕ^6
f_9	34	2	29.03	ϕ^7
f_{10}	55	2	46.98	ϕ^8
<i>f</i> ₁₁	89	2	76.01	ϕ^9
f_{12}	144	2	122.99	ϕ^{10}

Lemma 2: For all integers $n \ge 0$, $f_{n+2} \ge \phi^n$.

Lemma 2: For all integers $n \ge 0$, $f_{n+2} \ge \phi^n$.

Proof: By induction on *n*.

Base case: $f_2 = 1 = \phi^0$ and $f_3 = 2 > \phi^1$.

Inductive hypothesis: $f_{k+2} \ge \phi^k$ for $0 \le k \le n-1$.

Then
$$f_{n+2} = f_{n+1} + f_n$$

$$\geq \phi^{n-1} + \phi^{n-2}$$

$$= (\phi + 1)\phi^{n-2}$$

$$= \phi^2 \phi^{n-2}$$

$$= \phi^n$$

Lemma 3: Let x be any node in a Fibonacci heap, and suppose that k = rank(x). Let $y_1, y_2, ..., y_k$ be the children of x in the order in which they were linked to x, from the earliest to the latest. Then $rank(y_i) \ge max\{0, i-2\}$ for $1 \le i \le k$.

Proof: Obviously, $rank(y_1) \ge 0$.

For i > 1, when y_i was linked to x, all of $y_1, y_2, ..., y_{i-1}$ were children of x. So, $rank(x) \ge i - 1$.

Because y_i is linked to x only if $rank(y_i) = rank(x)$, we must have had $rank(y_i) \ge i - 1$ at that time.

Since then, at most one child has been removed from y_i , and hence $rank(y_i) \ge i - 2$.

Lemma 4: Let z be any node in a Fibonacci heap with n = size(z)and r = rank(z). Then $r \le \log_{\phi} n$.

Proof: Let s_k be the minimum possible size of any node of rank k in any Fibonacci heap.

Trivially, $s_0 = 1$ and $s_1 = 2$.

Since adding children to a node cannot decrease its size, s_k increases monotonically with k.

Let x be a node in any Fibonacci heap with rank(x) = r and $size(x) = s_r$.

Lemma 4: Let z be any node in a Fibonacci heap with n = size(z)and r = rank(z). Then $r \le \log_{\phi} n$.

Proof (continued): Let $y_1, y_2, ..., y_r$ be the children of x in the order in which they were linked to x, from the earliest to the latest.

Then
$$s_r \ge 1 + \sum_{i=1}^r s_{rank(y_i)} \ge 1 + \sum_{i=1}^r s_{\max\{0,i-2\}} = 2 + \sum_{i=2}^r s_{i-2}$$

We now show by induction on r that $s_r \ge f_{r+2}$ for all integer $r \ge 0$.

Base case:
$$s_0 = 1 = f_2$$
 and $s_1 = 2 = f_3$.

Inductive hypothesis: $s_k \ge f_{k+2}$ for $0 \le k \le r-1$.

Then
$$s_r \ge 2 + \sum_{i=2}^r s_{i-2} \ge 2 + \sum_{i=2}^r f_i = 1 + \sum_{i=1}^r f_i = f_{r+2}$$
.

Hence $n \ge s_r \ge f_{r+2} \ge \phi^r \Rightarrow r \le \log_{\phi} n$.

Corollary: The maximum degree of any node in an n node Fibonacci heap is $O(\log n)$.

Proof: Let *z* be any node in the heap.

Then from Lemma 4,

 $degree(z) = rank(z) \le \log_{\phi}(size(z)) \le \log_{\phi} n = O(\log n).$

All nodes are initially unmarked.

We mark a node when

a child is removed from it for the first time

We unmark a node when

- a child is removed from it for the second time, or
- becomes the child of another node (e.g., LINKed)

We extend the potential function used for binomial heaps:

$$\Phi(D_i) = 2t(D_i) + 3m(D_i),$$

where D_i is the state of the data structure after the i^{th} operation, $t(D_i)$ is the number of trees in the root list, and $m(D_i)$ is the number of marked nodes.

We extend the potential function used for binomial heaps:

$$\Phi(D_i) = 2t(D_i) + 3m(D_i),$$

where D_i is the state of the data structure after the i^{th} operation, $t(D_i)$ is the number of trees in the root list, and $m(D_i)$ is the number of marked nodes.

DECREASE-KEY(H, x, k_x): Let k =#cascading cuts performed.

Then the actual cost of cutting the tree rooted at x is 1, and the actual cost of each of the cascading cuts is also 1.

 \therefore overall actual cost, $c_i = 1 + k$

Potential function: $\Phi(D_i) = 2t(D_i) + 3m(D_i)$

DECREASE-KEY(H, x, k_x):

New trees: 1 tree rooted at *x*, and

1 tree produced by each of the k cascading cuts.

$$\therefore t(D_i) - t(D_{i-1}) = 1 + k$$

Marked nodes: 1 node unmarked by each cascading cut, and at most 1 node marked by the last cut/cascading cut.

 $\therefore m(D_i) - m(D_{i-1}) \le -k+1$

Potential drop, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1})$ = $2(t(D_i) - t(D_{i-1})) + 3(m(D_i) - m(D_{i-1}))$ $\leq 2(1+k) + 3(-k+1)$ = -k + 5

Potential function: $\Phi(D_i) = 2t(D_i) + 3m(D_i)$

DECREASE-KEY(H, x, k_x):

Amortized cost,
$$\hat{c}_i = c_i + \Delta_i$$

$$\leq (1+k) + (-k+5)$$

$$= 6$$

$$= O(1)$$

Potential function: $\Phi(D_i) = 2t(D_i) + 3m(D_i)$

EXTRACT-MIN(H):

Let d_n be the max degree of any node in an n-node Fibonacci heap.

The amortized cost of performing EXTRACT-MIN on the array version and that of converting from the array version to the doubly linked list version both can be easily shown to be $O(d_n) = O(\log n)$.

Hence, here we will only analyze the amortized cost of converting from the doubly linked list version to the array version.

Cost of creating the array of pointers is $\leq d_n + 1$.

Suppose we start with k trees in the doubly linked list and perform l link operations during the conversion from linked list to array version.

So, we perform k + l work and end up with k - l trees.

Potential function: $\Phi(D_i) = 2t(D_i) + 3m(D_i)$ EXTRACT-MIN(*H*):

actual cost, $c_i \leq d_n + 1 + (k + l) = k + d_n + l + 1$ potential change, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) = -2l$ amortized cost, $\hat{c}_i = c_i + \Delta_i \leq (k - l) + d_n + 1$ But $k - l \leq d_n + 1$ (as we have at most one tree of each rank) So, $\hat{c}_i \leq 2d_n + 2 = O(\log n)$.

Potential function: $\Phi(D_i) = 2t(D_i) + 3m(D_i)$

DELETE(H, x):

STEP 1: DECREASE-KEY($H, x, -\infty$) **STEP 2:** EXTRACT-MIN(H)

amortized cost, \hat{c}_i = amortized cost of DECREASE-KEY + amortized cost of EXTRACT-MIN = $O(1) + O(\log n)$ = $O(\log n)$