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Fibonacci Heaps
( Fredman & Tarjan, 1984 )

Heap Operation Binary Heap
( worst-case )

Binomial Heap
( amortized )

MAKE-HEAP Θ 1 Θ 1

INSERT Ο log𝑛𝑛 Θ 1

MINIMUM Θ 1 Θ 1

EXTRACT-MIN Ο log𝑛𝑛 Ο log𝑛𝑛

UNION Θ 𝑛𝑛 Θ 1

DECREASE-KEY Ο log𝑛𝑛 −

DELETE Ο log𝑛𝑛 −

A Fibonacci heap can be viewed as an extension of Binomial heaps 
which supports DECREASE-KEY and DELETE operations efficiently.
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 , 𝑤𝑤, 𝑠𝑠 )

1.  for each 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉  do 𝑣𝑣.𝑑𝑑 ← ∞

2.  𝑠𝑠. 𝑑𝑑 ← 0

3.  𝐻𝐻 ← 𝜙𝜙          { empty min-heap }

4.  for each 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉  do INSERT( 𝐻𝐻, 𝑣𝑣 )

5.  while 𝐻𝐻 ≠ ∅ do

6.  𝑢𝑢 ← EXTRACT-MIN( 𝐻𝐻 )

7.  for each 𝑣𝑣 ∈ 𝐴𝐴𝑑𝑑𝐴𝐴 𝑢𝑢  do

8.        if 𝑣𝑣. 𝑑𝑑 > 𝑢𝑢.𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣 then 

9.           DECREASE-KEY( 𝐻𝐻, 𝑣𝑣, 𝑢𝑢. 𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣 ) 

10.           𝑣𝑣.𝑑𝑑 ← 𝑢𝑢.𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣

Input: Weighted graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  with vertex set 𝑉𝑉 and edge set 𝐸𝐸, a 
weight function 𝑤𝑤, and a source vertex 𝑠𝑠 ∈ 𝐺𝐺 𝑉𝑉 . 

Output: For all 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉 , 𝑣𝑣.𝑑𝑑 is set to the shortest distance from 𝑠𝑠 to 𝑣𝑣.
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 , 𝑤𝑤, 𝑠𝑠 )

1.  for each 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉  do 𝑣𝑣.𝑑𝑑 ← ∞

2.  𝑠𝑠. 𝑑𝑑 ← 0

3.  𝐻𝐻 ← 𝜙𝜙          { empty min-heap }

4.  for each 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉  do INSERT( 𝐻𝐻, 𝑣𝑣 )

5.  while 𝐻𝐻 ≠ ∅ do

6.  𝑢𝑢 ← EXTRACT-MIN( 𝐻𝐻 )

7.  for each 𝑣𝑣 ∈ 𝐴𝐴𝑑𝑑𝐴𝐴 𝑢𝑢  do

8.        if 𝑣𝑣. 𝑑𝑑 > 𝑢𝑢.𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣 then 

9.           DECREASE-KEY( 𝐻𝐻, 𝑣𝑣, 𝑢𝑢. 𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣 ) 

10.           𝑣𝑣.𝑑𝑑 ← 𝑢𝑢.𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣

Input: Weighted graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  with vertex set 𝑉𝑉 and edge set 𝐸𝐸, a 
weight function 𝑤𝑤, and a source vertex 𝑠𝑠 ∈ 𝐺𝐺 𝑉𝑉 . 

Output: For all 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉 , 𝑣𝑣.𝑑𝑑 is set to the shortest distance from 𝑠𝑠 to 𝑣𝑣.

Let 𝑛𝑛 = 𝐺𝐺 𝑉𝑉  and 𝑚𝑚 = 𝐺𝐺 𝐸𝐸

# INSERTS = 𝑛𝑛
# EXTRACT-MINS = 𝑛𝑛
# DECREASE-KEYS ≤ 𝑚𝑚

Total cost
    ≤  𝑛𝑛 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐼𝐼−𝑀𝑀𝑀𝑀𝐼𝐼
    + 𝑚𝑚 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐷𝐷𝐼𝐼𝐸𝐸𝐼𝐼𝐼𝐼𝐸𝐸𝐼𝐼𝐼𝐼−𝐾𝐾𝐼𝐼𝐾𝐾
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 , 𝑤𝑤, 𝑠𝑠 )

1.  for each 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉  do 𝑣𝑣.𝑑𝑑 ← ∞

2.  𝑠𝑠. 𝑑𝑑 ← 0

3.  𝐻𝐻 ← 𝜙𝜙          { empty min-heap }

4.  for each 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉  do INSERT( 𝐻𝐻, 𝑣𝑣 )

5.  while 𝐻𝐻 ≠ ∅ do

6.  𝑢𝑢 ← EXTRACT-MIN( 𝐻𝐻 )

7.  for each 𝑣𝑣 ∈ 𝐴𝐴𝑑𝑑𝐴𝐴 𝑢𝑢  do

8.        if 𝑣𝑣. 𝑑𝑑 > 𝑢𝑢.𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣 then 

9.           DECREASE-KEY( 𝐻𝐻, 𝑣𝑣, 𝑢𝑢. 𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣 ) 

10.           𝑣𝑣.𝑑𝑑 ← 𝑢𝑢.𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣

Input: Weighted graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  with vertex set 𝑉𝑉 and edge set 𝐸𝐸, a 
weight function 𝑤𝑤, and a source vertex 𝑠𝑠 ∈ 𝐺𝐺 𝑉𝑉 . 

Output: For all 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉 , 𝑣𝑣.𝑑𝑑 is set to the shortest distance from 𝑠𝑠 to 𝑣𝑣.

Let 𝑛𝑛 = 𝐺𝐺 𝑉𝑉  and 𝑚𝑚 = 𝐺𝐺 𝐸𝐸

For Binary Heap ( worst-case costs ):

       𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = Ο log𝑛𝑛  
       𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐼𝐼−𝑀𝑀𝑀𝑀𝐼𝐼 = Ο log𝑛𝑛
       𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐷𝐷𝐼𝐼𝐸𝐸𝐼𝐼𝐼𝐼𝐸𝐸𝐼𝐼𝐼𝐼−𝐾𝐾𝐼𝐼𝐾𝐾 = Ο log𝑛𝑛

∴ Total cost ( worst-case ) 
= Ο 𝑚𝑚 + 𝑛𝑛 log𝑛𝑛
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 , 𝑤𝑤, 𝑠𝑠 )

1.  for each 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉  do 𝑣𝑣.𝑑𝑑 ← ∞

2.  𝑠𝑠. 𝑑𝑑 ← 0

3.  𝐻𝐻 ← 𝜙𝜙          { empty min-heap }

4.  for each 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉  do INSERT( 𝐻𝐻, 𝑣𝑣 )

5.  while 𝐻𝐻 ≠ ∅ do

6.  𝑢𝑢 ← EXTRACT-MIN( 𝐻𝐻 )

7.  for each 𝑣𝑣 ∈ 𝐴𝐴𝑑𝑑𝐴𝐴 𝑢𝑢  do

8.        if 𝑣𝑣. 𝑑𝑑 > 𝑢𝑢.𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣 then 

9.           DECREASE-KEY( 𝐻𝐻, 𝑣𝑣, 𝑢𝑢. 𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣 ) 

10.           𝑣𝑣.𝑑𝑑 ← 𝑢𝑢.𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣

Input: Weighted graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  with vertex set 𝑉𝑉 and edge set 𝐸𝐸, a 
weight function 𝑤𝑤, and a source vertex 𝑠𝑠 ∈ 𝐺𝐺 𝑉𝑉 . 

Output: For all 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉 , 𝑣𝑣.𝑑𝑑 is set to the shortest distance from 𝑠𝑠 to 𝑣𝑣.

Let 𝑛𝑛 = 𝐺𝐺 𝑉𝑉  and 𝑚𝑚 = 𝐺𝐺 𝐸𝐸

For Binomial Heap ( amortized costs ):

       𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = Ο 1  
       𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐼𝐼−𝑀𝑀𝑀𝑀𝐼𝐼 = Ο log𝑛𝑛
       𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐷𝐷𝐼𝐼𝐸𝐸𝐼𝐼𝐼𝐼𝐸𝐸𝐼𝐼𝐼𝐼−𝐾𝐾𝐼𝐼𝐾𝐾 = Ο log𝑛𝑛
                 ( worst-case )

∴ Total cost ( worst-case ) 
= Ο 𝑚𝑚 + 𝑛𝑛 log𝑛𝑛
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 , 𝑤𝑤, 𝑠𝑠 )

1.  for each 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉  do 𝑣𝑣.𝑑𝑑 ← ∞

2.  𝑠𝑠. 𝑑𝑑 ← 0

3.  𝐻𝐻 ← 𝜙𝜙          { empty min-heap }

4.  for each 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉  do INSERT( 𝐻𝐻, 𝑣𝑣 )

5.  while 𝐻𝐻 ≠ ∅ do

6.  𝑢𝑢 ← EXTRACT-MIN( 𝐻𝐻 )

7.  for each 𝑣𝑣 ∈ 𝐴𝐴𝑑𝑑𝐴𝐴 𝑢𝑢  do

8.        if 𝑣𝑣. 𝑑𝑑 > 𝑢𝑢.𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣 then 

9.           DECREASE-KEY( 𝐻𝐻, 𝑣𝑣, 𝑢𝑢. 𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣 ) 

10.           𝑣𝑣.𝑑𝑑 ← 𝑢𝑢.𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣

Input: Weighted graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  with vertex set 𝑉𝑉 and edge set 𝐸𝐸, a 
weight function 𝑤𝑤, and a source vertex 𝑠𝑠 ∈ 𝐺𝐺 𝑉𝑉 . 

Output: For all 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉 , 𝑣𝑣.𝑑𝑑 is set to the shortest distance from 𝑠𝑠 to 𝑣𝑣.

Let 𝑛𝑛 = 𝐺𝐺 𝑉𝑉  and 𝑚𝑚 = 𝐺𝐺 𝐸𝐸

Total cost
    ≤  𝑛𝑛 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐼𝐼−𝑀𝑀𝑀𝑀𝐼𝐼
    + 𝑚𝑚 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐷𝐷𝐼𝐼𝐸𝐸𝐼𝐼𝐼𝐼𝐸𝐸𝐼𝐼𝐼𝐼−𝐾𝐾𝐼𝐼𝐾𝐾
Observation: 
Obtaining a worst-case bound for a 
sequence of 𝑛𝑛 INSERTS, 𝑛𝑛 EXTRACT-MINS 
and 𝑚𝑚 DECREASE-KEYS is enough.
 

∴ Amortized bound per operation is 
sufficient.
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 , 𝑤𝑤, 𝑠𝑠 )

1.  for each 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉  do 𝑣𝑣.𝑑𝑑 ← ∞

2.  𝑠𝑠. 𝑑𝑑 ← 0

3.  𝐻𝐻 ← 𝜙𝜙          { empty min-heap }

4.  for each 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉  do INSERT( 𝐻𝐻, 𝑣𝑣 )

5.  while 𝐻𝐻 ≠ ∅ do

6.  𝑢𝑢 ← EXTRACT-MIN( 𝐻𝐻 )

7.  for each 𝑣𝑣 ∈ 𝐴𝐴𝑑𝑑𝐴𝐴 𝑢𝑢  do

8.        if 𝑣𝑣. 𝑑𝑑 > 𝑢𝑢.𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣 then 

9.           DECREASE-KEY( 𝐻𝐻, 𝑣𝑣, 𝑢𝑢. 𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣 ) 

10.           𝑣𝑣.𝑑𝑑 ← 𝑢𝑢.𝑑𝑑 + 𝑤𝑤𝑢𝑢,𝑣𝑣

Input: Weighted graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  with vertex set 𝑉𝑉 and edge set 𝐸𝐸, a 
weight function 𝑤𝑤, and a source vertex 𝑠𝑠 ∈ 𝐺𝐺 𝑉𝑉 . 

Output: For all 𝑣𝑣 ∈ 𝐺𝐺 𝑉𝑉 , 𝑣𝑣.𝑑𝑑 is set to the shortest distance from 𝑠𝑠 to 𝑣𝑣.

Let 𝑛𝑛 = 𝐺𝐺 𝑉𝑉  and 𝑚𝑚 = 𝐺𝐺 𝐸𝐸

Total cost
    ≤  𝑛𝑛 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐼𝐼−𝑀𝑀𝑀𝑀𝐼𝐼
    + 𝑚𝑚 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐷𝐷𝐼𝐼𝐸𝐸𝐼𝐼𝐼𝐼𝐸𝐸𝐼𝐼𝐼𝐼−𝐾𝐾𝐼𝐼𝐾𝐾
Observation: 
For 𝑛𝑛 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐼𝐼−𝑀𝑀𝑀𝑀𝐼𝐼  
the best possible bound is Θ 𝑛𝑛 log𝑛𝑛 . 
( else violates sorting lower bound ) 

Perhaps 𝑚𝑚 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝐷𝐷𝐼𝐼𝐸𝐸𝐼𝐼𝐼𝐼𝐸𝐸𝐼𝐼𝐼𝐼−𝐾𝐾𝐼𝐼𝐾𝐾  can be 
improved to o 𝑚𝑚 log𝑛𝑛 .
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Fibonacci Heaps from Binomial Heaps
A Fibonacci heap can be viewed as an extension of Binomial heaps 
which supports DECREASE-KEY and DELETE operations efficiently.

But the trees in a Fibonacci heap are no longer binomial trees as we 
will be cutting subtrees out of them.

However, all operations ( except DECREASE-KEY and DELETE ) are still 
performed in the same way as in binomial heaps. 

The rank of a tree is still defined as the number of children of the root, 
and we still link two trees if they have the same rank.
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Implementing DECREASE-KEY( 𝑯𝑯,𝒙𝒙,𝒌𝒌 )

DECREASE-KEY( 𝑯𝑯,𝒙𝒙,𝒌𝒌 ): One possible approach is to cut out the 
subtree rooted at 𝑥𝑥 from 𝐻𝐻, reduce the value of 𝑥𝑥 to 𝑘𝑘, and insert that 
subtree into the root list of 𝐻𝐻. 

Problem: If we cut out a lot of subtrees from a tree its size will no 
longer be exponential in its rank. Since our analysis of EXTRACT-MIN in 
binomial heaps was highly dependent on this exponential relationship, 
that analysis will no longer hold.

Solution: Limit #cuts among the children of any node to 2. We will 
show that the size of each tree will still remain exponential in its rank. 

When a 2nd child is cut from a node 𝑥𝑥, we also cut 𝑥𝑥 from its parent 
leading to a possible sequence of cuts moving up towards the root.
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Analysis of Fibonacci Heap Operations

𝑓𝑓𝐼𝐼 = �
0 𝑖𝑖𝑓𝑓 𝑛𝑛 = 0,
1 𝑖𝑖𝑓𝑓 𝑛𝑛 = 1,

𝑓𝑓𝐼𝐼−1 + 𝑓𝑓𝐼𝐼−2 𝑐𝑐𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑤𝑤𝑖𝑖𝑠𝑠𝑜𝑜.
Recurrence for Fibonacci numbers:

We showed in a pervious lecture:  𝑓𝑓𝐼𝐼 = 1
5
𝜙𝜙𝐼𝐼 − �𝜙𝜙𝐼𝐼 ,

where 𝜙𝜙 = 1+ 5
2

 and �𝜙𝜙 = 1− 5
2

 are the roots 𝑧𝑧2 − 𝑧𝑧 − 1 = 0.
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Analysis of Fibonacci Heap Operations

𝑓𝑓0 0
𝑓𝑓1 1
𝑓𝑓2 1
𝑓𝑓3 2
𝑓𝑓4 3
𝑓𝑓5 5
𝑓𝑓6 8
𝑓𝑓7 13
𝑓𝑓8 21
𝑓𝑓9 34
𝑓𝑓10 55

< 1 1 + 𝑓𝑓0
< 2 1 + 𝑓𝑓0 + 𝑓𝑓1
< 3 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2
< 5 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3
< 8 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4
< 13 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5
< 21 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6
< 34 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6 + 𝑓𝑓7
< 55 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6 + 𝑓𝑓7 + 𝑓𝑓8
< 89 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6 + 𝑓𝑓7 + 𝑓𝑓8 + 𝑓𝑓9
< 144 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6 + 𝑓𝑓7 + 𝑓𝑓8 + 𝑓𝑓9 + 𝑓𝑓10
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Analysis of Fibonacci Heap Operations

𝑓𝑓0 0
𝑓𝑓1 1
𝑓𝑓2 1
𝑓𝑓3 2
𝑓𝑓4 3
𝑓𝑓5 5
𝑓𝑓6 8
𝑓𝑓7 13
𝑓𝑓8 21
𝑓𝑓9 34
𝑓𝑓10 55
𝑓𝑓11 89

= 1 1 + 𝑓𝑓0
< 2 1 + 𝑓𝑓0 + 𝑓𝑓1
< 3 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2
< 5 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3
< 8 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4
< 13 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5
< 21 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6
< 34 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6 + 𝑓𝑓7
< 55 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6 + 𝑓𝑓7 + 𝑓𝑓8
< 89 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6 + 𝑓𝑓7 + 𝑓𝑓8 + 𝑓𝑓9
< 144 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6 + 𝑓𝑓7 + 𝑓𝑓8 + 𝑓𝑓9 + 𝑓𝑓10
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Analysis of Fibonacci Heap Operations

𝑓𝑓0 0
𝑓𝑓1 1
𝑓𝑓2 1
𝑓𝑓3 2
𝑓𝑓4 3
𝑓𝑓5 5
𝑓𝑓6 8
𝑓𝑓7 13
𝑓𝑓8 21
𝑓𝑓9 34
𝑓𝑓10 55
𝑓𝑓11 89
𝑓𝑓12 144

= 1 1 + 𝑓𝑓0
= 2 1 + 𝑓𝑓0 + 𝑓𝑓1
= 3 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2
= 5 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3
= 8 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4
= 13 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5
= 21 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6
= 34 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6 + 𝑓𝑓7
= 55 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6 + 𝑓𝑓7 + 𝑓𝑓8
= 89 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6 + 𝑓𝑓7 + 𝑓𝑓8 + 𝑓𝑓9
= 144 1 + 𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓5 + 𝑓𝑓6 + 𝑓𝑓7 + 𝑓𝑓8 + 𝑓𝑓9 + 𝑓𝑓10

Lemma 1: For all integers 𝑛𝑛 ≥ 0, 𝑓𝑓𝐼𝐼+2 = 1 + ∑𝑀𝑀=0𝐼𝐼 𝑓𝑓𝑀𝑀.
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Lemma 1: For all integers 𝑛𝑛 ≥ 0, 𝑓𝑓𝐼𝐼+2 = 1 + ∑𝑀𝑀=0𝐼𝐼 𝑓𝑓𝑀𝑀.

Inductive hypothesis:  𝑓𝑓𝑘𝑘+2 = 1 + ∑𝑀𝑀=0𝑘𝑘 𝑓𝑓𝑀𝑀  for 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1.

Then 𝑓𝑓𝐼𝐼+2 = 𝑓𝑓𝐼𝐼+1 + 𝑓𝑓𝐼𝐼 = 𝑓𝑓𝐼𝐼 + 1 + ∑𝑀𝑀=0𝐼𝐼−1 𝑓𝑓𝑀𝑀 = 1 + ∑𝑀𝑀=0𝐼𝐼 𝑓𝑓𝑀𝑀.

Proof: By induction on 𝑛𝑛. 

Base case: 𝑓𝑓2 = 1 = 1 + 0 = 1 + 𝑓𝑓0 = 1 + ∑𝑀𝑀=0𝐼𝐼 𝑓𝑓𝑀𝑀.
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Analysis of Fibonacci Heap Operations

𝑓𝑓0 0
𝑓𝑓1 1
𝑓𝑓2 1
𝑓𝑓3 2
𝑓𝑓4 3
𝑓𝑓5 5
𝑓𝑓6 8
𝑓𝑓7 13
𝑓𝑓8 21
𝑓𝑓9 34
𝑓𝑓10 55

< 1.00 𝜙𝜙0

< 1.62 𝜙𝜙1

< 2.62 𝜙𝜙2

< 4.24 𝜙𝜙3

< 6.85 𝜙𝜙4

< 11.09 𝜙𝜙5

< 17.94 𝜙𝜙6

< 29.03 𝜙𝜙7

< 46.98 𝜙𝜙8

< 76.01 𝜙𝜙9

< 122.99 𝜙𝜙10
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Analysis of Fibonacci Heap Operations

𝑓𝑓0 0
𝑓𝑓1 1
𝑓𝑓2 1
𝑓𝑓3 2
𝑓𝑓4 3
𝑓𝑓5 5
𝑓𝑓6 8
𝑓𝑓7 13
𝑓𝑓8 21
𝑓𝑓9 34
𝑓𝑓10 55
𝑓𝑓11 89

≥ 1.00 𝜙𝜙0

< 1.62 𝜙𝜙1

< 2.62 𝜙𝜙2

< 4.24 𝜙𝜙3

< 6.85 𝜙𝜙4

< 11.09 𝜙𝜙5

< 17.94 𝜙𝜙6

< 29.03 𝜙𝜙7

< 46.98 𝜙𝜙8

< 76.01 𝜙𝜙9

< 122.99 𝜙𝜙10
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Analysis of Fibonacci Heap Operations

𝑓𝑓0 0
𝑓𝑓1 1
𝑓𝑓2 1
𝑓𝑓3 2
𝑓𝑓4 3
𝑓𝑓5 5
𝑓𝑓6 8
𝑓𝑓7 13
𝑓𝑓8 21
𝑓𝑓9 34
𝑓𝑓10 55
𝑓𝑓11 89
𝑓𝑓12 144

≥ 1.00 𝜙𝜙0

≥ 1.62 𝜙𝜙1

≥ 2.62 𝜙𝜙2

≥ 4.24 𝜙𝜙3

≥ 6.85 𝜙𝜙4

≥ 11.09 𝜙𝜙5

≥ 17.94 𝜙𝜙6

≥ 29.03 𝜙𝜙7

≥ 46.98 𝜙𝜙8

≥ 76.01 𝜙𝜙9

≥ 122.99 𝜙𝜙10

Lemma 2: For all integers 𝑛𝑛 ≥ 0, 𝑓𝑓𝐼𝐼+2 ≥ 𝜙𝜙𝐼𝐼.
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Lemma 2: For all integers 𝑛𝑛 ≥ 0, 𝑓𝑓𝐼𝐼+2 ≥ 𝜙𝜙𝐼𝐼.

Inductive hypothesis:  𝑓𝑓𝑘𝑘+2 ≥ 𝜙𝜙𝑘𝑘  for 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1.

Then 𝑓𝑓𝐼𝐼+2 = 𝑓𝑓𝐼𝐼+1 + 𝑓𝑓𝐼𝐼
                ≥ 𝜙𝜙𝐼𝐼−1 + 𝜙𝜙𝐼𝐼−2

                = 𝜙𝜙 + 1 𝜙𝜙𝐼𝐼−2

                = 𝜙𝜙2𝜙𝜙𝐼𝐼−2

                = 𝜙𝜙𝐼𝐼

Proof: By induction on 𝑛𝑛. 

Base case: 𝑓𝑓2 = 1 = 𝜙𝜙0 and 𝑓𝑓3 = 2 > 𝜙𝜙1.
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Lemma 3: Let 𝑥𝑥 be any node in a Fibonacci heap, and suppose that 
𝑘𝑘 = 𝑜𝑜𝑟𝑟𝑛𝑛𝑘𝑘 𝑥𝑥 .  Let 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑘𝑘 be the children of 𝑥𝑥 in the order in 
which they were linked to 𝑥𝑥, from the earliest to the latest. Then 
𝑜𝑜𝑟𝑟𝑛𝑛𝑘𝑘 𝑦𝑦𝑀𝑀 ≥ max 0, 𝑖𝑖 − 2  for 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘.

Proof: Obviously, 𝑜𝑜𝑟𝑟𝑛𝑛𝑘𝑘 𝑦𝑦1 ≥ 0. 

For 𝑖𝑖 > 1, when 𝑦𝑦𝑀𝑀 was linked to 𝑥𝑥, all of 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑀𝑀−1 were children 
of 𝑥𝑥. So, 𝑜𝑜𝑟𝑟𝑛𝑛𝑘𝑘 𝑥𝑥 ≥ 𝑖𝑖 − 1. 

Because 𝑦𝑦𝑀𝑀 is linked to 𝑥𝑥 only if 𝑜𝑜𝑟𝑟𝑛𝑛𝑘𝑘 𝑦𝑦𝑀𝑀 = 𝑜𝑜𝑟𝑟𝑛𝑛𝑘𝑘 𝑥𝑥 , we must have 
had 𝑜𝑜𝑟𝑟𝑛𝑛𝑘𝑘 𝑦𝑦𝑀𝑀 ≥ 𝑖𝑖 − 1 at that time.

Since then, at most one child has been removed from 𝑦𝑦𝑀𝑀, 
and hence 𝑜𝑜𝑟𝑟𝑛𝑛𝑘𝑘 𝑦𝑦𝑀𝑀 ≥ 𝑖𝑖 − 2.

𝑥𝑥

𝑦𝑦1𝑦𝑦2𝑦𝑦3𝑦𝑦𝑘𝑘−1𝑦𝑦𝑘𝑘
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Lemma 4: Let 𝑧𝑧 be any node in a Fibonacci heap with 𝑛𝑛 = 𝑠𝑠𝑖𝑖𝑧𝑧𝑜𝑜 𝑧𝑧  
and 𝑜𝑜 = 𝑜𝑜𝑟𝑟𝑛𝑛𝑘𝑘 𝑧𝑧 . Then 𝑜𝑜 ≤ log𝜙𝜙 𝑛𝑛.

Proof: Let 𝑠𝑠𝑘𝑘  be the minimum possible size of any node of rank 𝑘𝑘 in 
any Fibonacci heap. 

Trivially, 𝑠𝑠0 = 1 and 𝑠𝑠1 = 2.

Since adding children to a node cannot decrease its size, 𝑠𝑠𝑘𝑘  increases 
monotonically with 𝑘𝑘.

Let 𝑥𝑥 be a node in any Fibonacci heap with 𝑜𝑜𝑟𝑟𝑛𝑛𝑘𝑘 𝑥𝑥 = 𝑜𝑜 and 
𝑠𝑠𝑖𝑖𝑧𝑧𝑜𝑜 𝑥𝑥 = 𝑠𝑠𝐼𝐼.
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Proof ( continued ): Let 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝐼𝐼  be the children of 𝑥𝑥 in the order 
in which they were linked to 𝑥𝑥, from the earliest to the latest. 

Then 𝑠𝑠𝐼𝐼 ≥ 1 + ∑𝑀𝑀=1𝐼𝐼 𝑠𝑠𝐼𝐼𝐸𝐸𝐼𝐼𝑘𝑘 𝐾𝐾𝑖𝑖 ≥ 1 + ∑𝑀𝑀=1𝐼𝐼 𝑠𝑠max 0,𝑀𝑀−2 = 2 + ∑𝑀𝑀=2𝐼𝐼 𝑠𝑠𝑀𝑀−2

We now show by induction on 𝑜𝑜 that 𝑠𝑠𝐼𝐼 ≥ 𝑓𝑓𝐼𝐼+2 for all integer 𝑜𝑜 ≥ 0.

Base case: 𝑠𝑠0 = 1 = 𝑓𝑓2 and 𝑠𝑠1 = 2 = 𝑓𝑓3. 

Inductive hypothesis:  𝑠𝑠𝑘𝑘 ≥ 𝑓𝑓𝑘𝑘+2  for 0 ≤ 𝑘𝑘 ≤ 𝑜𝑜 − 1.

Then 𝑠𝑠𝐼𝐼 ≥ 2 + ∑𝑀𝑀=2𝐼𝐼 𝑠𝑠𝑀𝑀−2 ≥ 2 + ∑𝑀𝑀=2𝐼𝐼 𝑓𝑓𝑀𝑀 = 1 + ∑𝑀𝑀=1𝐼𝐼 𝑓𝑓𝑀𝑀 = 𝑓𝑓𝐼𝐼+2.

Hence 𝑛𝑛 ≥ 𝑠𝑠𝐼𝐼 ≥ 𝑓𝑓𝐼𝐼+2 ≥ 𝜙𝜙𝐼𝐼 ⇒ 𝑜𝑜 ≤ log𝜙𝜙 𝑛𝑛 .

Lemma 4: Let 𝑧𝑧 be any node in a Fibonacci heap with 𝑛𝑛 = 𝑠𝑠𝑖𝑖𝑧𝑧𝑜𝑜 𝑧𝑧  
and 𝑜𝑜 = 𝑜𝑜𝑟𝑟𝑛𝑛𝑘𝑘 𝑧𝑧 . Then 𝑜𝑜 ≤ log𝜙𝜙 𝑛𝑛.
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Proof: Let 𝑧𝑧 be any node in the heap. 

Then from Lemma 4, 

 𝑑𝑑𝑜𝑜𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 𝑧𝑧 = 𝑜𝑜𝑟𝑟𝑛𝑛𝑘𝑘 𝑧𝑧 ≤ log𝜙𝜙 𝑠𝑠𝑖𝑖𝑧𝑧𝑜𝑜 𝑧𝑧 ≤ log𝜙𝜙 𝑛𝑛 = Ο log𝑛𝑛 .

Corollary: The maximum degree of any node in an 𝑛𝑛 node Fibonacci 
heap is Ο log𝑛𝑛 .
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We extend the potential function used for binomial heaps:

Φ 𝐷𝐷𝑀𝑀 = 2𝑡𝑡 𝐷𝐷𝑀𝑀 + 3𝑚𝑚 𝐷𝐷𝑀𝑀 ,

where 𝐷𝐷𝑀𝑀  is the state of the data structure after the 𝑖𝑖𝐼𝐼𝑡 operation,
   𝑡𝑡 𝐷𝐷𝑀𝑀  is the number of trees in the root list, and
   𝑚𝑚 𝐷𝐷𝑀𝑀  is the number of marked nodes. 

Analysis of Fibonacci Heap Operations

We mark a node when
−  a child is removed from it for the first time

We unmark a node when
−  a child is removed from it for the second time, or
−  becomes the child of another node ( e.g., LINKed )

All nodes are initially unmarked.
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∴ overall actual cost, 𝑐𝑐𝑀𝑀 = 1 + 𝑘𝑘

DECREASE-KEY( 𝑯𝑯,𝒙𝒙,𝒌𝒌𝒙𝒙 ): Let 𝑘𝑘 = #cascading cuts performed. 

We extend the potential function used for binomial heaps:

Φ 𝐷𝐷𝑀𝑀 = 2𝑡𝑡 𝐷𝐷𝑀𝑀 + 3𝑚𝑚 𝐷𝐷𝑀𝑀 ,

where 𝐷𝐷𝑀𝑀  is the state of the data structure after the 𝑖𝑖𝐼𝐼𝑡 operation,
   𝑡𝑡 𝐷𝐷𝑀𝑀  is the number of trees in the root list, and
   𝑚𝑚 𝐷𝐷𝑀𝑀  is the number of marked nodes. 

Then the actual cost of cutting the tree rooted at 𝑥𝑥 is 1, and
          the actual cost of each of the cascading cuts is also 1.
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Fibonacci Heaps from Binomial Heaps

∴ 𝑡𝑡 𝐷𝐷𝑀𝑀 − 𝑡𝑡 𝐷𝐷𝑀𝑀−1 = 1 + 𝑘𝑘

DECREASE-KEY( 𝑯𝑯,𝒙𝒙,𝒌𝒌𝒙𝒙 ):

Potential function: Φ 𝐷𝐷𝑀𝑀 = 2𝑡𝑡 𝐷𝐷𝑀𝑀 + 3𝑚𝑚 𝐷𝐷𝑀𝑀

New trees: 1 tree rooted at 𝑥𝑥, and
                     1 tree produced by each of the 𝑘𝑘 cascading cuts.

∴ 𝑚𝑚 𝐷𝐷𝑀𝑀 − 𝑚𝑚 𝐷𝐷𝑀𝑀−1 ≤ −𝑘𝑘 + 1

Marked nodes: 1 node unmarked by each cascading cut, and
                            at most 1 node marked by the last cut/cascading cut.

Potential drop, Δ𝑀𝑀 = Φ 𝐷𝐷𝑀𝑀 − Φ 𝐷𝐷𝑀𝑀−1
                           = 2 𝑡𝑡 𝐷𝐷𝑀𝑀 − 𝑡𝑡 𝐷𝐷𝑀𝑀−1 + 3 𝑚𝑚 𝐷𝐷𝑀𝑀 −𝑚𝑚 𝐷𝐷𝑀𝑀−1
      ≤ 2 1 + 𝑘𝑘 + 3 −𝑘𝑘 + 1
   = −𝑘𝑘 + 5
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Fibonacci Heaps from Binomial Heaps

Amortized cost, �̂�𝑐𝑀𝑀 = 𝑐𝑐𝑀𝑀 + Δ𝑀𝑀
                           ≤ 1 + 𝑘𝑘 + −𝑘𝑘 + 5
      = 6
   = Ο 1

Potential function: Φ 𝐷𝐷𝑀𝑀 = 2𝑡𝑡 𝐷𝐷𝑀𝑀 + 3𝑚𝑚 𝐷𝐷𝑀𝑀
DECREASE-KEY( 𝑯𝑯,𝒙𝒙,𝒌𝒌𝒙𝒙 ):
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Fibonacci Heaps from Binomial Heaps
Potential function: Φ 𝐷𝐷𝑀𝑀 = 2𝑡𝑡 𝐷𝐷𝑀𝑀 + 3𝑚𝑚 𝐷𝐷𝑀𝑀
EXTRACT-MIN( 𝑯𝑯 ):

Let 𝑑𝑑𝐼𝐼 be the max degree of any node in an 𝑛𝑛-node Fibonacci heap. 

The amortized cost of performing EXTRACT-MIN on the array version and 
that of converting from the array version to the doubly linked list 
version both can be easily shown to be Ο 𝑑𝑑𝐼𝐼 = Ο log𝑛𝑛 .

Hence, here we will only analyze the amortized cost of converting from 
the doubly linked list version to the array version.

Cost of creating the array of pointers is ≤ 𝑑𝑑𝐼𝐼 +1.

Suppose we start with 𝑘𝑘 trees in the doubly linked list and perform 𝑙𝑙 
link operations during the conversion from linked list to array version.  

So, we perform 𝑘𝑘 + 𝑙𝑙 work and end up with 𝑘𝑘 − 𝑙𝑙 trees.
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Fibonacci Heaps from Binomial Heaps
Potential function: Φ 𝐷𝐷𝑀𝑀 = 2𝑡𝑡 𝐷𝐷𝑀𝑀 + 3𝑚𝑚 𝐷𝐷𝑀𝑀
EXTRACT-MIN( 𝑯𝑯 ):

actual cost, 𝑐𝑐𝑀𝑀 ≤ 𝑑𝑑𝐼𝐼 + 1 + 𝑘𝑘 + 𝑙𝑙 = 𝑘𝑘 + 𝑑𝑑𝐼𝐼 + 𝑙𝑙 + 1

potential change, Δ𝑀𝑀 = Φ 𝐷𝐷𝑀𝑀 − Φ 𝐷𝐷𝑀𝑀−1 = −2𝑙𝑙

amortized cost, �̂�𝑐𝑀𝑀 = 𝑐𝑐𝑀𝑀 + Δ𝑀𝑀 ≤ 𝑘𝑘 − 𝑙𝑙 + 𝑑𝑑𝐼𝐼 + 1

But  𝑘𝑘 − 𝑙𝑙 ≤ 𝑑𝑑𝐼𝐼 + 1   ( as we have at most one tree of each rank )

So, �̂�𝑐𝑀𝑀 ≤ 2𝑑𝑑𝐼𝐼 + 2 = Ο log𝑛𝑛 .

32



Fibonacci Heaps from Binomial Heaps
Potential function: Φ 𝐷𝐷𝑀𝑀 = 2𝑡𝑡 𝐷𝐷𝑀𝑀 + 3𝑚𝑚 𝐷𝐷𝑀𝑀
DELETE( 𝑯𝑯,𝒙𝒙 ):

STEP 1: DECREASE-KEY( 𝐻𝐻, 𝑥𝑥,−∞)
STEP 2: EXTRACT-MIN( 𝐻𝐻 )

amortized cost, �̂�𝑐𝑀𝑀 = amortized cost of DECREASE-KEY

                           + amortized cost of EXTRACT-MIN

             = Ο 1 + Ο log𝑛𝑛
      = Ο log𝑛𝑛
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