
CSE 548: Analysis of Algorithms

Lecture 5
(Divide-and-Conquer Algorithms:

The Master Theorem)

Rezaul A. Chowdhury
Department of Computer Science

SUNY Stony Brook
Fall 2023

1

A Recurrence for Recursive Divide & Conquer

2

RECURSIVE-DIVIDE-AND-CONQUER (𝑃𝑃, 𝑛𝑛)

1. if 𝑛𝑛 = 1 then

2. 𝑆𝑆 ← solution of 𝑃𝑃 computed directly w/o divide & conquer

3. else

4. DIVIDE:

5. divide 𝑃𝑃 into 𝑎𝑎 subproblems 𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑎𝑎 of size 𝑛𝑛
𝑏𝑏
 each

6. CONQUER:

7. for 𝑖𝑖 = 1 to 𝑎𝑎 do

8. 𝑆𝑆𝑖𝑖 ← RECURSIVE-DIVIDE-AND-CONQUER (𝑃𝑃𝑖𝑖,
𝑛𝑛
𝑏𝑏
)

9. COMBINE:

10. 𝑆𝑆 ← solution of 𝑃𝑃 obtained by combining 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑎𝑎
11. endif

12. return 𝑆𝑆

INPUT: A problem 𝑃𝑃 of size 𝑛𝑛 ≥ 1

OUTPUT: Solution 𝑆𝑆 of 𝑃𝑃 computed using recursive divide and conquer

𝑇𝑇 𝑛𝑛

Θ 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

𝑓𝑓𝑑𝑑 𝑛𝑛

𝑓𝑓𝑐𝑐 𝑛𝑛

𝑓𝑓 𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏 + 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

The recurrence:

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜;

where, 𝑎𝑎 ≥ 1 and 𝑏𝑏 > 1.

Arises frequently in the analyses of divide-and-conquer algorithms.

Consider the following recurrences.

Karatsuba’s Integer Multiplication Algorithm: 𝑇𝑇 𝑛𝑛 = 3𝑇𝑇 𝑛𝑛
2

+ Θ 𝑛𝑛

Strassen’s Matrix Multiplication Algorithm: 𝑇𝑇 𝑛𝑛 = 7𝑇𝑇 𝑛𝑛
2

+ Θ 𝑛𝑛2

Fast Fourier Transform: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ Θ 𝑛𝑛
3

A Recurrence for Recursive Divide & Conquer

How the Recurrence Unfolds

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

4

How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

𝒇𝒇 𝒏𝒏 + 𝒂𝒂𝑻𝑻
𝒏𝒏
𝒃𝒃

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

5

How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

𝒇𝒇 𝒏𝒏 + 𝒂𝒂𝑻𝑻
𝒏𝒏
𝒃𝒃

𝒂𝒂

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

6

How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

𝒇𝒇 𝒏𝒏 + 𝒂𝒂𝑻𝑻
𝒏𝒏
𝒃𝒃

𝒇𝒇
𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐

𝒂𝒂

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

…

7

How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

…
𝒇𝒇 𝒏𝒏 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃

𝒇𝒇
𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐

𝒂𝒂

𝒂𝒂𝒂𝒂 𝒂𝒂

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

8

How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

…
𝒇𝒇 𝒏𝒏 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃

𝒇𝒇
𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐

𝒇𝒇
𝒏𝒏
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑 𝒇𝒇

𝒏𝒏
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑

…

𝒂𝒂

𝒂𝒂𝒂𝒂 𝒂𝒂

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

9

How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

…
𝒇𝒇 𝒏𝒏 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃

𝒇𝒇
𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐

𝒇𝒇
𝒏𝒏
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑 𝒇𝒇

𝒏𝒏
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑

…

𝒂𝒂

𝒂𝒂𝒂𝒂 𝒂𝒂

𝒂𝒂 𝒂𝒂

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

10

How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

…
𝒇𝒇 𝒏𝒏 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃

𝒇𝒇
𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐

𝒇𝒇
𝒏𝒏
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑 𝒇𝒇

𝒏𝒏
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑

…

𝒂𝒂

𝒂𝒂𝒂𝒂 𝒂𝒂

𝒂𝒂 𝒂𝒂

𝑻𝑻 𝟏𝟏𝑻𝑻 𝟏𝟏 …
…

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

11

𝒇𝒇 𝒏𝒏

𝒂𝒂𝒇𝒇
𝒏𝒏
𝒃𝒃

𝒂𝒂𝟐𝟐𝒇𝒇
𝒏𝒏
𝒃𝒃𝟐𝟐

𝒂𝒂𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃𝒏𝒏

𝑻𝑻 𝟏𝟏

= Θ 𝒏𝒏𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃𝒂𝒂

…

How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

…
𝒇𝒇 𝒏𝒏 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃

𝒇𝒇
𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐

𝒇𝒇
𝒏𝒏
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑 𝒇𝒇

𝒏𝒏
𝒃𝒃𝟐𝟐 + 𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑

…

𝒂𝒂

𝒂𝒂𝒂𝒂 𝒂𝒂

𝒂𝒂 𝒂𝒂

𝑻𝑻 𝟏𝟏𝑻𝑻 𝟏𝟏 …
…

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃𝒏𝒏

12

13

How the Recurrence Unfolds

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

14

How the Recurrence Unfolds: Case 1

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

Sum Geometrically Increases
Level by Level.

𝑓𝑓 𝑛𝑛 = Ο 𝑛𝑛log𝑏𝑏𝑎𝑎 _ 𝜖𝜖

for some constant 𝜖𝜖 > 0.

𝑻𝑻 𝒏𝒏 = Θ 𝒏𝒏𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃𝒂𝒂

Last Level Dominates.

15

How the Recurrence Unfolds: Case 2

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

Sum Changes by at Most a Constant
Factor from Root to Leaves.

𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎
.

𝑻𝑻 𝒏𝒏 = Θ 𝒏𝒏𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃𝒂𝒂

𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏

No Level Dominates.

16

How the Recurrence Unfolds: Case 3

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

𝑻𝑻 𝒏𝒏 = Θ 𝒇𝒇 𝒏𝒏

Sum Geometrically decreases
Level by Level.

𝑓𝑓 𝑛𝑛 = Ω 𝑛𝑛log𝑏𝑏𝑎𝑎 + 𝜖𝜖
& 𝑎𝑎𝑓𝑓 𝑛𝑛

𝑏𝑏
≤ 𝑐𝑐𝑓𝑓 𝑛𝑛

for constants 𝜖𝜖 > 0 & 𝑐𝑐 < 1.

First Level
Dominates.

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜 𝑎𝑎 ≥ 1,𝑏𝑏 > 1 .

 Case 1: 𝑓𝑓 𝑛𝑛 = Ο 𝑛𝑛log𝑏𝑏𝑎𝑎 _ 𝜖𝜖
for some constant 𝜖𝜖 > 0

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎

The Master Theorem

17

 Case 2: 𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑛𝑛

 Case 3: 𝑓𝑓 𝑛𝑛 = Ω 𝑛𝑛log𝑏𝑏𝑎𝑎 + 𝜖𝜖
and 𝑎𝑎𝑓𝑓 𝑛𝑛

𝑏𝑏
≤ 𝑐𝑐𝑓𝑓 𝑛𝑛

 for constants 𝜖𝜖 > 0 and 𝑐𝑐 < 1.

𝑇𝑇 𝑛𝑛 = Θ 𝑓𝑓 𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜 𝑎𝑎 ≥ 1,𝑏𝑏 > 1 .

 Case 1: 𝑓𝑓 𝑛𝑛 = Ο 𝑛𝑛log𝑏𝑏𝑎𝑎 _ 𝜖𝜖
for some constant 𝜖𝜖 > 0

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎

The Master Theorem

18

 Case 2: 𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎
lg𝑘𝑘𝑛𝑛 for some constant 𝑘𝑘 ≥ 0.

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑘𝑘+1 𝑛𝑛

 Case 3: 𝑓𝑓 𝑛𝑛 = Ω 𝑛𝑛log𝑏𝑏𝑎𝑎 + 𝜖𝜖
and 𝑎𝑎𝑓𝑓 𝑛𝑛

𝑏𝑏
≤ 𝑐𝑐𝑓𝑓 𝑛𝑛

 for constants 𝜖𝜖 > 0 and 𝑐𝑐 < 1.

𝑇𝑇 𝑛𝑛 = Θ 𝑓𝑓 𝑛𝑛

Example Applications of Master Theorem
Example 1: 𝑇𝑇 𝑛𝑛 = 3𝑇𝑇 𝑛𝑛

2
+ Θ 𝑛𝑛

 Master Theorem Case 1: 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log2 3

Example 2: 𝑇𝑇 𝑛𝑛 = 7𝑇𝑇 𝑛𝑛
2

+ Θ 𝑛𝑛2

 Master Theorem Case 1: 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log2 7

Example 3: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ Θ 𝑛𝑛

 Master Theorem Case 2: 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑛𝑛

Assuming that we have an infinite number of processors, and all
recursive calls in example 2 above can be executed in parallel:

Example 4: 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛
2

+ Θ 𝑛𝑛2

 Master Theorem Case 3: 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛2 19

Recurrences not Solvable using the Master Theorem
Example 1: 𝑇𝑇 𝑛𝑛 = 𝑛𝑛 𝑇𝑇 𝑛𝑛

2
+ 𝑛𝑛

 𝑎𝑎 = 𝑛𝑛 is not a constant

Example 2: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
log 𝑛𝑛

+ 𝑛𝑛2

 𝑏𝑏 = log𝑛𝑛 is not a constant

Example 3: 𝑇𝑇 𝑛𝑛 = 1
2
𝑇𝑇 𝑛𝑛

2
+ 𝑛𝑛2

 𝑎𝑎 = 1
2
 is not ≥ 1

Example 4: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 4𝑛𝑛
3

+ 𝑛𝑛

 𝑏𝑏 = 3
4
 is not > 1.

20

Recurrences not Solvable using the Master Theorem
Example 5: 𝑇𝑇 𝑛𝑛 = 3𝑇𝑇 𝑛𝑛

2
− 𝑛𝑛

 𝑓𝑓 𝑛𝑛 = −𝑛𝑛 is not positive

Example 6: 𝑇𝑇 𝑛𝑛 = 2 𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛2 sin𝑛𝑛

 violates regularity condition of case 3

Example 7: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛
log 𝑛𝑛

 𝑓𝑓 𝑛𝑛 = Ο 𝑛𝑛log𝑏𝑏 𝑎𝑎 , but ≠ Ο 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 for any constant 𝜖𝜖 > 0

Example 8: 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛
2

+ 2𝑇𝑇 𝑛𝑛
4

+ 𝑛𝑛
 𝑎𝑎 and 𝑏𝑏 are not fixed

21

22

Proof of
The Master Theorem

 LEMMA 1: Let 𝑎𝑎 ≥ 1 and 𝑏𝑏 > 1 be constants, and let 𝑓𝑓 𝑛𝑛 be a
 nonnegative function defined on exact powers of 𝑏𝑏. Define 𝑇𝑇 𝑛𝑛
 on exact powers of 𝑏𝑏 by the recurrence

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 = 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑖𝑖𝑓𝑓 𝑛𝑛 = 𝑏𝑏𝑖𝑖 ,

 where 𝑖𝑖 is a positive integer.
 Then

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎 + �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓
𝑛𝑛
𝑏𝑏𝑗𝑗

.

Proof of the Master Theorem for Exact Powers of 𝒃𝒃

23

Proof of the Master Theorem for Exact Powers of 𝒃𝒃

24

 LEMMA 2: Let 𝑎𝑎 ≥ 1 and 𝑏𝑏 > 1 be constants, and let 𝑓𝑓 𝑛𝑛 be a
 nonnegative function defined on exact powers of 𝑏𝑏. A function
 𝑔𝑔 𝑛𝑛 defined over exact powers of 𝑏𝑏 by

𝑔𝑔 𝑛𝑛 = �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓
𝑛𝑛
𝑏𝑏𝑗𝑗

 has the following asymptotic bounds for exact powers of 𝑏𝑏:

1. If 𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 for some constant 𝜖𝜖 > 0, then
 𝑔𝑔 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎 .

2. If 𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 , then
 𝑔𝑔 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑛𝑛 .
3. If 𝑎𝑎𝑓𝑓 𝑛𝑛/𝑏𝑏 ≤ 𝑐𝑐𝑓𝑓 𝑛𝑛 for some constant 𝑐𝑐 < 1 and all sufficiently

large 𝑛𝑛, then
 𝑔𝑔 𝑛𝑛 = Θ 𝑓𝑓 𝑛𝑛 .

Proof of the Master Theorem for Exact Powers of 𝒃𝒃

25

 PROOF OF LEMMA 2:

 Case 1: We have:

𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 ⇒ 𝑓𝑓 𝑛𝑛/𝑏𝑏𝑗𝑗 = 𝑂𝑂 𝑛𝑛/𝑏𝑏𝑗𝑗 log𝑏𝑏 𝑎𝑎−𝜖𝜖 .

 Substituting: 𝑔𝑔 𝑛𝑛 = 𝑂𝑂 ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑎𝑎𝑗𝑗 𝑛𝑛

𝑏𝑏𝑗𝑗
log𝑏𝑏 𝑎𝑎−𝜖𝜖

.

 Now, ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑎𝑎𝑗𝑗 𝑛𝑛

𝑏𝑏𝑗𝑗
log𝑏𝑏 𝑎𝑎−𝜖𝜖

= 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑎𝑎𝑏𝑏𝜖𝜖

𝑏𝑏log𝑏𝑏 𝑎𝑎

𝑗𝑗

 = 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑏𝑏𝜖𝜖 𝑗𝑗

 = 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 𝑏𝑏𝜖𝜖 log𝑏𝑏 𝑛𝑛−1
𝑏𝑏𝜖𝜖−1

 = 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 𝑛𝑛𝜖𝜖−1
𝑏𝑏𝜖𝜖−1

 = 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖𝑂𝑂 𝑛𝑛𝜖𝜖 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎

 Hence, 𝑔𝑔 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎 .

Proof of the Master Theorem for Exact Powers of 𝒃𝒃

26

 PROOF OF LEMMA 2:

 Case 2: We have:

𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 ⇒ 𝑓𝑓 𝑛𝑛/𝑏𝑏𝑗𝑗 = Θ 𝑛𝑛/𝑏𝑏𝑗𝑗 log𝑏𝑏 𝑎𝑎 .

 Substituting: 𝑔𝑔 𝑛𝑛 = Θ ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑎𝑎𝑗𝑗 𝑛𝑛

𝑏𝑏𝑗𝑗
log𝑏𝑏 𝑎𝑎

.

 Now, ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑎𝑎𝑗𝑗 𝑛𝑛

𝑏𝑏𝑗𝑗
log𝑏𝑏 𝑎𝑎

= 𝑛𝑛log𝑏𝑏 𝑎𝑎 ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑎𝑎

𝑏𝑏log𝑏𝑏 𝑎𝑎

𝑗𝑗

 = 𝑛𝑛log𝑏𝑏 𝑎𝑎 ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−11

 = 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑏𝑏 𝑛𝑛

 Hence, 𝑔𝑔 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑏𝑏 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑛𝑛 .

Proof of the Master Theorem for Exact Powers of 𝒃𝒃

27

 PROOF OF LEMMA 2:

 Case 3: Since 𝑓𝑓 𝑛𝑛 appears in the definition of 𝑔𝑔 𝑛𝑛 and all terms
 of 𝑔𝑔 𝑛𝑛 are nonnegative, we conclude that for exact powers of 𝑏𝑏:

𝑔𝑔 𝑛𝑛 = Ω 𝑓𝑓 𝑛𝑛 .
 Given that for some constant 𝑐𝑐 < 1 and all sufficiently large 𝑛𝑛:

 𝑎𝑎𝑓𝑓 𝑛𝑛
𝑏𝑏
≤ 𝑐𝑐𝑓𝑓 𝑛𝑛

 ⇒ 𝑓𝑓 𝑛𝑛
𝑏𝑏
≤ 𝑐𝑐

𝑎𝑎
𝑓𝑓 𝑛𝑛

 ⇒ 𝑓𝑓 𝑛𝑛
𝑏𝑏𝑗𝑗

≤ 𝑐𝑐
𝑎𝑎

𝑗𝑗
𝑓𝑓 𝑛𝑛

 ⇒ 𝑎𝑎𝑗𝑗𝑓𝑓 𝑛𝑛
𝑏𝑏𝑗𝑗

≤ 𝑐𝑐𝑗𝑗𝑓𝑓 𝑛𝑛 ,

 where we assume that the values we iterate on are sufficiently large.
 Since the last, and smallest such value is 𝑛𝑛

𝑏𝑏𝑗𝑗−1
, it is enough to assume

 that 𝑛𝑛
𝑏𝑏𝑗𝑗−1

 is sufficiently large.

Proof of the Master Theorem for Exact Powers of 𝒃𝒃

28

 PROOF OF LEMMA 2:

 Case 3 (continued): Substituting into the expression for 𝑔𝑔 𝑛𝑛 , and
 adding an 𝑂𝑂 1 term to capture the terms that are not covered by
 our assumption that 𝑛𝑛 is sufficiently large, we get:

𝑔𝑔 𝑛𝑛 = �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓
𝑛𝑛
𝑏𝑏𝑗𝑗

 ≤ ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑐𝑐𝑗𝑗𝑓𝑓 𝑛𝑛 + 𝑂𝑂 1

 ≤ 𝑓𝑓 𝑛𝑛 ∑𝑗𝑗=0∞ 𝑐𝑐𝑗𝑗 + 𝑂𝑂 1
 = 𝑓𝑓 𝑛𝑛 1

1−𝑐𝑐
+ 𝑂𝑂 1

 = 𝑂𝑂 𝑓𝑓 𝑛𝑛

 Hence, for exact powers of 𝑏𝑏: 𝑔𝑔 𝑛𝑛 = Θ 𝑓𝑓 𝑛𝑛 .

Proof of the Master Theorem for Exact Powers of 𝒃𝒃

29

 LEMMA 3: Let 𝑎𝑎 ≥ 1 and 𝑏𝑏 > 1 be constants, and let 𝑓𝑓 𝑛𝑛 be a
 nonnegative function defined on exact powers of 𝑏𝑏. Define 𝑇𝑇 𝑛𝑛
 on exact powers of 𝑏𝑏 by the recurrence

𝑇𝑇 𝑛𝑛 = �
Θ 1 , 𝑖𝑖𝑓𝑓 𝑛𝑛 = 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑖𝑖𝑓𝑓 𝑛𝑛 = 𝑏𝑏𝑖𝑖 ,

 where 𝑖𝑖 > 0 is an integer.
 Then 𝑇𝑇 𝑛𝑛 has the asymptotic bounds below for exact powers of 𝑏𝑏,
 and some constants 𝜖𝜖 > 0 and 𝑐𝑐 < 0:

1. If 𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 , then 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 .

2. If 𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 , then 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑛𝑛 .

3. If 𝑓𝑓 𝑛𝑛 = Ω 𝑛𝑛log𝑏𝑏 𝑎𝑎+𝜖𝜖 , and if 𝑎𝑎𝑓𝑓 𝑛𝑛/𝑏𝑏 ≤ 𝑐𝑐𝑓𝑓 𝑛𝑛 for all
 sufficiently large 𝑛𝑛, then 𝑇𝑇 𝑛𝑛 = Θ 𝑓𝑓 𝑛𝑛 .

Proof of the Master Theorem for Exact Powers of 𝒃𝒃

 PROOF OF LEMMA 3: Follows from Lemma 1 and Lemma 2. 30

 We need to extend our analysis to allow situations in which floors
 and ceilings appear in the Master recurrence:

 𝑇𝑇 𝑛𝑛 = 𝑎𝑎𝑇𝑇 𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 ⋯⋯ (1)

and 𝑇𝑇 𝑛𝑛 = 𝑎𝑎𝑇𝑇 𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 ⋯⋯ (2)

 Obtaining a lower bound on recurrence 1 and an upper bound on
 recurrence 2 are not difficult because we can use 𝑛𝑛

𝑏𝑏
≥ 𝑛𝑛

𝑏𝑏
 in the

 first case and 𝑛𝑛
𝑏𝑏
≤ 𝑛𝑛

𝑏𝑏
 in the second case.

 Upper bounding recurrence 1 and lower bounding recurrence 2
 require more effort, but they use similar techniques.

 So, we will only try to prove an upper bound on recurrence 1 .

Extending the Master Theorem to All Integral 𝒏𝒏

31

Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏

As we go down the recursion tree we encounter a sequence of
 recursive invocations on the arguments:

𝑛𝑛, 𝑛𝑛/𝑏𝑏 , 𝑛𝑛/𝑏𝑏 /𝑏𝑏 , 𝑛𝑛/𝑏𝑏 /𝑏𝑏 /𝑏𝑏 , … … …
32

Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏

Let’s define the 𝑗𝑗𝑡𝑡𝑡 element in the sequence by 𝑛𝑛𝑗𝑗, where

𝑛𝑛𝑗𝑗 = �
𝑛𝑛, 𝑖𝑖𝑓𝑓 𝑗𝑗 = 0,
𝑛𝑛𝑗𝑗−1/𝑏𝑏 , 𝑖𝑖𝑓𝑓 𝑗𝑗 > 0.

33

Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏

Let’s first determine a depth 𝑜 such that 𝑛𝑛𝑡 is a constant.

 Using the inequality 𝑥𝑥 ≤ 𝑥𝑥 + 1 , we obtain:
 𝑛𝑛0 ≤ 𝑛𝑛,

 𝑛𝑛1 ≤
𝑛𝑛
𝑏𝑏

+ 1,

 𝑛𝑛2 ≤
𝑛𝑛
𝑏𝑏2

+ 1
𝑏𝑏

+ 1,

 𝑛𝑛3 ≤
𝑛𝑛
𝑏𝑏3

+ 1
𝑏𝑏2

+ 1
𝑏𝑏

+ 1,

 and so on.
 In general,

 𝑛𝑛𝑗𝑗 ≤
𝑛𝑛
𝑏𝑏𝑗𝑗

+ ∑𝑖𝑖=0
𝑗𝑗−1 1

𝑏𝑏𝑖𝑖

 < 𝑛𝑛
𝑏𝑏𝑗𝑗

+ ∑𝑖𝑖=0∞ 1
𝑏𝑏𝑖𝑖

 = 𝑛𝑛
𝑏𝑏𝑗𝑗

+ 𝑏𝑏
𝑏𝑏−1

.
34

Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏

Letting 𝑜 = log𝑏𝑏 𝑛𝑛 we obtain:

 𝑛𝑛 log𝑏𝑏 𝑛𝑛 < 𝑛𝑛

𝑏𝑏 log𝑏𝑏 𝑛𝑛 + 𝑏𝑏
𝑏𝑏−1

 < 𝑛𝑛
𝑏𝑏log𝑏𝑏 𝑛𝑛−1 + 𝑏𝑏

𝑏𝑏−1

 < 𝑛𝑛
𝑛𝑛/𝑏𝑏

+ 𝑏𝑏
𝑏𝑏−1

 = 𝑏𝑏 + 𝑏𝑏
𝑏𝑏−1

 = 𝑂𝑂 1
 Hence, at depth 𝑜 = log𝑏𝑏 𝑛𝑛 the problem size is at most a constant.

35

Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏

From the figure above we get:

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎 + �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓 𝑛𝑛𝑗𝑗
36

Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏
We have:

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎 + �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓 𝑛𝑛𝑗𝑗

We will have to evaluate the following sum:

𝑔𝑔 𝑛𝑛 = �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓 𝑛𝑛𝑗𝑗

37

Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏
We will evaluate the following sum:

𝑔𝑔 𝑛𝑛 = �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓 𝑛𝑛𝑗𝑗

 Case 2: We have: 𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 .

 If we can show that 𝑓𝑓 𝑛𝑛𝑗𝑗 = 𝑂𝑂 𝑛𝑛
𝑏𝑏𝑗𝑗

log𝑏𝑏 𝑎𝑎
, then case 2 of

 Lemma 2 will go through.

 Observe that 𝑗𝑗 ≤ log𝑏𝑏 𝑛𝑛 ⇒ 𝑏𝑏𝑗𝑗

𝑛𝑛
≤ 1.

 Also, 𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎 implies that there exists a constant
 𝑐𝑐′ > 0 such that for all sufficiently large 𝑛𝑛𝑗𝑗 the following holds:

𝑓𝑓 𝑛𝑛𝑗𝑗 ≤ 𝑐𝑐′ 𝑛𝑛
𝑏𝑏𝑗𝑗

+ 𝑏𝑏
𝑏𝑏−1

log𝑏𝑏 𝑎𝑎
.

38

Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏

 Case 2 (continued): We have:

 𝑓𝑓 𝑛𝑛𝑗𝑗 ≤ 𝑐𝑐′ 𝑛𝑛
𝑏𝑏𝑗𝑗

+ 𝑏𝑏
𝑏𝑏−1

log𝑏𝑏 𝑎𝑎

 = 𝑐𝑐′ 𝑛𝑛
𝑏𝑏𝑗𝑗

1 + 𝑏𝑏𝑗𝑗

𝑛𝑛
𝑏𝑏

𝑏𝑏−1

log𝑏𝑏 𝑎𝑎

.

 = 𝑐𝑐′ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑎𝑎𝑗𝑗
1 + 𝑏𝑏𝑗𝑗

𝑛𝑛
𝑏𝑏

𝑏𝑏−1

log𝑏𝑏 𝑎𝑎
.

 ≤ 𝑐𝑐′ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑎𝑎𝑗𝑗
1 + 𝑏𝑏

𝑏𝑏−1

log𝑏𝑏 𝑎𝑎
.

 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑎𝑎𝑗𝑗

 = 𝑂𝑂 𝑛𝑛
𝑏𝑏𝑗𝑗

log𝑏𝑏 𝑎𝑎

39

Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏

 Case 1: The proof is similar to that of case 2. The key is to prove the

 bound 𝑓𝑓 𝑛𝑛𝑗𝑗 = 𝑂𝑂 𝑛𝑛
𝑏𝑏𝑗𝑗

log𝑏𝑏 𝑎𝑎−𝜖𝜖
 which is similar to what we did in

 case 2 though the algebra is more intricate.

40

Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏

 Case 3: If 𝑎𝑎𝑓𝑓 𝑛𝑛
𝑏𝑏

≤ 𝑐𝑐𝑓𝑓 𝑛𝑛 for 𝑛𝑛 > 𝑏𝑏 + 𝑏𝑏
𝑏𝑏−1

, where 𝑐𝑐 < 1 is a
 constant then it follows that 𝑎𝑎𝑗𝑗𝑓𝑓 𝑛𝑛𝑗𝑗 ≤ 𝑐𝑐𝑗𝑗𝑓𝑓 𝑛𝑛 .

 Therefore, we can evaluate 𝑔𝑔 𝑛𝑛 as in the proof of Lemma 2.

41

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41

