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A Recurrence for Recursive Divide & Conquer

2

RECURSIVE-DIVIDE-AND-CONQUER ( 𝑃𝑃, 𝑛𝑛 )

1.  if 𝑛𝑛 = 1 then

2.      𝑆𝑆 ← solution of 𝑃𝑃 computed directly w/o divide & conquer

3.  else

4.      DIVIDE: 

5.         divide 𝑃𝑃 into 𝑎𝑎 subproblems 𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑎𝑎 of size 𝑛𝑛
𝑏𝑏
 each

6.      CONQUER:

7.         for 𝑖𝑖 = 1 to 𝑎𝑎 do

8.              𝑆𝑆𝑖𝑖 ← RECURSIVE-DIVIDE-AND-CONQUER ( 𝑃𝑃𝑖𝑖, 
𝑛𝑛
𝑏𝑏
 )

9.      COMBINE:

10.          𝑆𝑆 ← solution of 𝑃𝑃 obtained by combining 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑎𝑎
11.  endif 

12.  return 𝑆𝑆

INPUT: A problem 𝑃𝑃 of size 𝑛𝑛 ≥ 1

OUTPUT: Solution 𝑆𝑆 of 𝑃𝑃 computed using recursive divide and conquer

𝑇𝑇 𝑛𝑛

Θ 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

𝑓𝑓𝑑𝑑 𝑛𝑛

𝑓𝑓𝑐𝑐 𝑛𝑛

𝑓𝑓 𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏 + 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.



The recurrence:

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜;

where, 𝑎𝑎 ≥ 1 and 𝑏𝑏 > 1.

Arises frequently in the analyses of divide-and-conquer algorithms.

Consider the following recurrences.

Karatsuba’s Integer Multiplication Algorithm: 𝑇𝑇 𝑛𝑛 = 3𝑇𝑇 𝑛𝑛
2

+ Θ 𝑛𝑛

Strassen’s Matrix Multiplication Algorithm: 𝑇𝑇 𝑛𝑛 = 7𝑇𝑇 𝑛𝑛
2

+ Θ 𝑛𝑛2

Fast Fourier Transform: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ Θ 𝑛𝑛
3
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How the Recurrence Unfolds

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.
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How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

𝒇𝒇 𝒏𝒏  +  𝒂𝒂𝑻𝑻
𝒏𝒏
𝒃𝒃

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.
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How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

𝒇𝒇 𝒏𝒏  +  𝒂𝒂𝑻𝑻
𝒏𝒏
𝒃𝒃

𝒂𝒂

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.
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How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

𝒇𝒇 𝒏𝒏  +  𝒂𝒂𝑻𝑻
𝒏𝒏
𝒃𝒃

𝒇𝒇
𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐

𝒂𝒂

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

… 
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How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

… 
𝒇𝒇 𝒏𝒏  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃

𝒇𝒇
𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐

𝒂𝒂

𝒂𝒂𝒂𝒂 𝒂𝒂

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.
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How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

… 
𝒇𝒇 𝒏𝒏  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃

𝒇𝒇
𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐

𝒇𝒇
𝒏𝒏
𝒃𝒃𝟐𝟐  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑 𝒇𝒇

𝒏𝒏
𝒃𝒃𝟐𝟐  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑

… 

𝒂𝒂

𝒂𝒂𝒂𝒂 𝒂𝒂

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.
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How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

… 
𝒇𝒇 𝒏𝒏  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃

𝒇𝒇
𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐

𝒇𝒇
𝒏𝒏
𝒃𝒃𝟐𝟐  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑 𝒇𝒇

𝒏𝒏
𝒃𝒃𝟐𝟐  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑

… 

𝒂𝒂

𝒂𝒂𝒂𝒂 𝒂𝒂

𝒂𝒂 𝒂𝒂

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.
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How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

… 
𝒇𝒇 𝒏𝒏  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃

𝒇𝒇
𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐

𝒇𝒇
𝒏𝒏
𝒃𝒃𝟐𝟐  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑 𝒇𝒇

𝒏𝒏
𝒃𝒃𝟐𝟐  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑

… 

𝒂𝒂

𝒂𝒂𝒂𝒂 𝒂𝒂

𝒂𝒂 𝒂𝒂

𝑻𝑻 𝟏𝟏𝑻𝑻 𝟏𝟏 …
…

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.
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𝒇𝒇 𝒏𝒏

𝒂𝒂𝒇𝒇
𝒏𝒏
𝒃𝒃

𝒂𝒂𝟐𝟐𝒇𝒇
𝒏𝒏
𝒃𝒃𝟐𝟐

𝒂𝒂𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃𝒏𝒏
 
𝑻𝑻 𝟏𝟏

= Θ 𝒏𝒏𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃𝒂𝒂
 

…
 

How the Recurrence Unfolds

𝑻𝑻 𝒏𝒏

… 
𝒇𝒇 𝒏𝒏  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃

𝒇𝒇
𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐 𝒇𝒇

𝒏𝒏
𝒃𝒃  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟐𝟐

𝒇𝒇
𝒏𝒏
𝒃𝒃𝟐𝟐  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑 𝒇𝒇

𝒏𝒏
𝒃𝒃𝟐𝟐  +  𝒂𝒂𝑻𝑻

𝒏𝒏
𝒃𝒃𝟑𝟑

… 

𝒂𝒂

𝒂𝒂𝒂𝒂 𝒂𝒂

𝒂𝒂 𝒂𝒂

𝑻𝑻 𝟏𝟏𝑻𝑻 𝟏𝟏 …
…

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃𝒏𝒏
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How the Recurrence Unfolds

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.
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How the Recurrence Unfolds: Case 1

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

Sum Geometrically Increases
Level by Level.

𝑓𝑓 𝑛𝑛 = Ο 𝑛𝑛log𝑏𝑏𝑎𝑎 _ 𝜖𝜖 

for some constant 𝜖𝜖 > 0.

𝑻𝑻 𝒏𝒏 = Θ 𝒏𝒏𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃𝒂𝒂
 

Last Level Dominates.
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How the Recurrence Unfolds: Case 2

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

Sum Changes by at Most a Constant 
Factor from Root to Leaves.

𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎 
.

𝑻𝑻 𝒏𝒏 = Θ 𝒏𝒏𝐥𝐥𝐥𝐥𝐥𝐥𝒃𝒃𝒂𝒂
 
𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏

No Level Dominates.
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How the Recurrence Unfolds: Case 3

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.

𝑻𝑻 𝒏𝒏 = Θ 𝒇𝒇 𝒏𝒏

Sum Geometrically decreases
Level by Level.

𝑓𝑓 𝑛𝑛 = Ω 𝑛𝑛log𝑏𝑏𝑎𝑎 + 𝜖𝜖 
& 𝑎𝑎𝑓𝑓 𝑛𝑛

𝑏𝑏
≤ 𝑐𝑐𝑓𝑓 𝑛𝑛

for constants 𝜖𝜖 > 0 & 𝑐𝑐 < 1.

First Level 
Dominates.



𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜 𝑎𝑎 ≥ 1,𝑏𝑏 > 1 .

    Case 1: 𝑓𝑓 𝑛𝑛 = Ο 𝑛𝑛log𝑏𝑏𝑎𝑎 _ 𝜖𝜖 
for some constant 𝜖𝜖 > 0

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎 

The Master Theorem
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    Case 2: 𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎 

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑛𝑛

    Case 3: 𝑓𝑓 𝑛𝑛 = Ω 𝑛𝑛log𝑏𝑏𝑎𝑎 + 𝜖𝜖 
and 𝑎𝑎𝑓𝑓 𝑛𝑛

𝑏𝑏
≤ 𝑐𝑐𝑓𝑓 𝑛𝑛  

                        for constants 𝜖𝜖 > 0 and 𝑐𝑐 < 1.

𝑇𝑇 𝑛𝑛 = Θ 𝑓𝑓 𝑛𝑛



𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 ≤ 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜 𝑎𝑎 ≥ 1,𝑏𝑏 > 1 .

    Case 1: 𝑓𝑓 𝑛𝑛 = Ο 𝑛𝑛log𝑏𝑏𝑎𝑎 _ 𝜖𝜖 
for some constant 𝜖𝜖 > 0

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎 

The Master Theorem

18

    Case 2: 𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎 
lg𝑘𝑘𝑛𝑛  for some constant 𝑘𝑘 ≥ 0.

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑘𝑘+1 𝑛𝑛

    Case 3: 𝑓𝑓 𝑛𝑛 = Ω 𝑛𝑛log𝑏𝑏𝑎𝑎 + 𝜖𝜖 
and 𝑎𝑎𝑓𝑓 𝑛𝑛

𝑏𝑏
≤ 𝑐𝑐𝑓𝑓 𝑛𝑛  

                        for constants 𝜖𝜖 > 0 and 𝑐𝑐 < 1.

𝑇𝑇 𝑛𝑛 = Θ 𝑓𝑓 𝑛𝑛



Example Applications of Master Theorem
Example 1: 𝑇𝑇 𝑛𝑛 = 3𝑇𝑇 𝑛𝑛

2
+ Θ 𝑛𝑛                                            

       Master Theorem Case 1: 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log2 3

Example 2: 𝑇𝑇 𝑛𝑛 = 7𝑇𝑇 𝑛𝑛
2

+ Θ 𝑛𝑛2

       Master Theorem Case 1: 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log2 7

Example 3: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ Θ 𝑛𝑛

             Master Theorem Case 2: 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑛𝑛

Assuming that we have an infinite number of processors, and all 
recursive calls in example 2 above can be executed in parallel:

Example 4: 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛
2

+ Θ 𝑛𝑛2

             Master Theorem Case 3: 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛2 19



Recurrences not Solvable using the Master Theorem
Example 1: 𝑇𝑇 𝑛𝑛 = 𝑛𝑛 𝑇𝑇 𝑛𝑛

2
+ 𝑛𝑛                                           

       𝑎𝑎 = 𝑛𝑛 is not a constant

Example 2: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
log 𝑛𝑛 

+ 𝑛𝑛2

       𝑏𝑏 = log𝑛𝑛 is not a constant

Example 3: 𝑇𝑇 𝑛𝑛 = 1
2
𝑇𝑇 𝑛𝑛

2
+ 𝑛𝑛2

             𝑎𝑎 = 1
2
 is not ≥ 1

Example 4: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 4𝑛𝑛
3

+ 𝑛𝑛

             𝑏𝑏 = 3
4
 is not > 1.

20



Recurrences not Solvable using the Master Theorem
Example 5: 𝑇𝑇 𝑛𝑛 = 3𝑇𝑇 𝑛𝑛

2
− 𝑛𝑛

             𝑓𝑓 𝑛𝑛 = −𝑛𝑛 is not positive
 

Example 6: 𝑇𝑇 𝑛𝑛 = 2 𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛2 sin𝑛𝑛                                           

       violates regularity condition of case 3

Example 7: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2 

+ 𝑛𝑛
log 𝑛𝑛

       𝑓𝑓 𝑛𝑛 = Ο 𝑛𝑛log𝑏𝑏 𝑎𝑎 , but ≠ Ο 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖  for any constant 𝜖𝜖 > 0

Example 8: 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛
2

+ 2𝑇𝑇 𝑛𝑛
4

+ 𝑛𝑛
             𝑎𝑎 and 𝑏𝑏 are not fixed

21
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Proof of 
The Master Theorem



    LEMMA 1: Let 𝑎𝑎 ≥ 1 and 𝑏𝑏 > 1 be constants, and let 𝑓𝑓 𝑛𝑛  be a   
          nonnegative function defined on exact powers of 𝑏𝑏. Define 𝑇𝑇 𝑛𝑛  
          on exact powers of 𝑏𝑏 by the recurrence

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 = 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 = 𝑏𝑏𝑖𝑖 ,

          where 𝑖𝑖 is a positive integer. 
    Then 

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎 + �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓
𝑛𝑛
𝑏𝑏𝑗𝑗

.

Proof of the Master Theorem for Exact Powers of 𝒃𝒃
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Proof of the Master Theorem for Exact Powers of 𝒃𝒃

24



    LEMMA 2: Let 𝑎𝑎 ≥ 1 and 𝑏𝑏 > 1 be constants, and let 𝑓𝑓 𝑛𝑛  be a   
          nonnegative function defined on exact powers of 𝑏𝑏. A function 
        𝑔𝑔 𝑛𝑛  defined over exact powers of 𝑏𝑏 by

𝑔𝑔 𝑛𝑛 = �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓
𝑛𝑛
𝑏𝑏𝑗𝑗

          has the following asymptotic bounds for exact powers of 𝑏𝑏:

1.   If 𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖  for some constant 𝜖𝜖 > 0, then 
   𝑔𝑔 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎 .

2. If 𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 , then 
   𝑔𝑔 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑛𝑛 .
3. If 𝑎𝑎𝑓𝑓 𝑛𝑛/𝑏𝑏 ≤ 𝑐𝑐𝑓𝑓 𝑛𝑛  for some constant 𝑐𝑐 < 1 and all sufficiently 

large 𝑛𝑛, then 
   𝑔𝑔 𝑛𝑛 = Θ 𝑓𝑓 𝑛𝑛 .

Proof of the Master Theorem for Exact Powers of 𝒃𝒃
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    PROOF OF LEMMA 2:

          Case 1: We have:

𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 ⇒ 𝑓𝑓 𝑛𝑛/𝑏𝑏𝑗𝑗 = 𝑂𝑂 𝑛𝑛/𝑏𝑏𝑗𝑗 log𝑏𝑏 𝑎𝑎−𝜖𝜖 .

          Substituting: 𝑔𝑔 𝑛𝑛 = 𝑂𝑂 ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑎𝑎𝑗𝑗 𝑛𝑛

𝑏𝑏𝑗𝑗
log𝑏𝑏 𝑎𝑎−𝜖𝜖

.

          Now, ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑎𝑎𝑗𝑗 𝑛𝑛

𝑏𝑏𝑗𝑗
log𝑏𝑏 𝑎𝑎−𝜖𝜖

= 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑎𝑎𝑏𝑏𝜖𝜖

𝑏𝑏log𝑏𝑏 𝑎𝑎

𝑗𝑗

             = 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑏𝑏𝜖𝜖 𝑗𝑗 

             = 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 𝑏𝑏𝜖𝜖 log𝑏𝑏 𝑛𝑛−1
𝑏𝑏𝜖𝜖−1

 

             = 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 𝑛𝑛𝜖𝜖−1
𝑏𝑏𝜖𝜖−1

  
             = 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖𝑂𝑂 𝑛𝑛𝜖𝜖 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎

    Hence, 𝑔𝑔 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎 .

Proof of the Master Theorem for Exact Powers of 𝒃𝒃
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    PROOF OF LEMMA 2:

          Case 2: We have:

𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 ⇒ 𝑓𝑓 𝑛𝑛/𝑏𝑏𝑗𝑗 = Θ 𝑛𝑛/𝑏𝑏𝑗𝑗 log𝑏𝑏 𝑎𝑎 .

          Substituting: 𝑔𝑔 𝑛𝑛 = Θ ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑎𝑎𝑗𝑗 𝑛𝑛

𝑏𝑏𝑗𝑗
log𝑏𝑏 𝑎𝑎

.

          Now, ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑎𝑎𝑗𝑗 𝑛𝑛

𝑏𝑏𝑗𝑗
log𝑏𝑏 𝑎𝑎

= 𝑛𝑛log𝑏𝑏 𝑎𝑎 ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑎𝑎

𝑏𝑏log𝑏𝑏 𝑎𝑎

𝑗𝑗

           = 𝑛𝑛log𝑏𝑏 𝑎𝑎 ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−11  

                     = 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑏𝑏 𝑛𝑛

    Hence, 𝑔𝑔 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑏𝑏 𝑛𝑛  = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑛𝑛 .

Proof of the Master Theorem for Exact Powers of 𝒃𝒃
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    PROOF OF LEMMA 2:

          Case 3: Since 𝑓𝑓 𝑛𝑛  appears in the definition of 𝑔𝑔 𝑛𝑛  and all terms 
          of 𝑔𝑔 𝑛𝑛  are nonnegative, we conclude that for exact powers of 𝑏𝑏:

𝑔𝑔 𝑛𝑛 = Ω 𝑓𝑓 𝑛𝑛 .
    Given that for some constant 𝑐𝑐 < 1 and all sufficiently large 𝑛𝑛: 

 𝑎𝑎𝑓𝑓 𝑛𝑛
𝑏𝑏
≤ 𝑐𝑐𝑓𝑓 𝑛𝑛

 ⇒ 𝑓𝑓 𝑛𝑛
𝑏𝑏
≤ 𝑐𝑐

𝑎𝑎
𝑓𝑓 𝑛𝑛

  ⇒ 𝑓𝑓 𝑛𝑛
𝑏𝑏𝑗𝑗

≤ 𝑐𝑐
𝑎𝑎

𝑗𝑗
𝑓𝑓 𝑛𝑛

  ⇒ 𝑎𝑎𝑗𝑗𝑓𝑓 𝑛𝑛
𝑏𝑏𝑗𝑗

≤ 𝑐𝑐𝑗𝑗𝑓𝑓 𝑛𝑛 ,

          where we assume that the values we iterate on are sufficiently large.
          Since the last, and smallest such value is 𝑛𝑛

𝑏𝑏𝑗𝑗−1
, it is enough to assume    

          that 𝑛𝑛
𝑏𝑏𝑗𝑗−1

 is sufficiently large.

Proof of the Master Theorem for Exact Powers of 𝒃𝒃
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    PROOF OF LEMMA 2:

          Case 3 (continued): Substituting into the expression for 𝑔𝑔 𝑛𝑛 , and  
          adding an 𝑂𝑂 1  term to capture the terms that are not covered by 
          our assumption that 𝑛𝑛 is sufficiently large, we get:

𝑔𝑔 𝑛𝑛 = �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓
𝑛𝑛
𝑏𝑏𝑗𝑗

      ≤ ∑𝑗𝑗=0
log𝑏𝑏𝑛𝑛−1 𝑐𝑐𝑗𝑗𝑓𝑓 𝑛𝑛 + 𝑂𝑂 1   

            ≤ 𝑓𝑓 𝑛𝑛 ∑𝑗𝑗=0∞ 𝑐𝑐𝑗𝑗 + 𝑂𝑂 1   
            = 𝑓𝑓 𝑛𝑛 1

1−𝑐𝑐
+ 𝑂𝑂 1    

            = 𝑂𝑂 𝑓𝑓 𝑛𝑛

    Hence, for exact powers of 𝑏𝑏: 𝑔𝑔 𝑛𝑛 = Θ 𝑓𝑓 𝑛𝑛 .

Proof of the Master Theorem for Exact Powers of 𝒃𝒃
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    LEMMA 3: Let 𝑎𝑎 ≥ 1 and 𝑏𝑏 > 1 be constants, and let 𝑓𝑓 𝑛𝑛  be a   
          nonnegative function defined on exact powers of 𝑏𝑏. Define 𝑇𝑇 𝑛𝑛  
          on exact powers of 𝑏𝑏 by the recurrence

𝑇𝑇 𝑛𝑛 = �
Θ 1 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 = 1,

𝑎𝑎𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 ,  𝑖𝑖𝑓𝑓 𝑛𝑛 = 𝑏𝑏𝑖𝑖 ,

          where 𝑖𝑖 > 0 is an integer. 
    Then 𝑇𝑇 𝑛𝑛  has the asymptotic bounds below for exact powers of 𝑏𝑏,  
    and some constants 𝜖𝜖 > 0 and 𝑐𝑐 < 0:

1.   If 𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎−𝜖𝜖 , then 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 .

2. If 𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 , then 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑛𝑛 .

3. If 𝑓𝑓 𝑛𝑛 = Ω 𝑛𝑛log𝑏𝑏 𝑎𝑎+𝜖𝜖 , and if 𝑎𝑎𝑓𝑓 𝑛𝑛/𝑏𝑏 ≤ 𝑐𝑐𝑓𝑓 𝑛𝑛  for all 
       sufficiently large 𝑛𝑛, then 𝑇𝑇 𝑛𝑛 = Θ 𝑓𝑓 𝑛𝑛 .

Proof of the Master Theorem for Exact Powers of 𝒃𝒃

   PROOF OF LEMMA 3: Follows from Lemma 1 and Lemma 2. 30



    We need to extend our analysis to allow situations in which floors 
          and ceilings appear in the Master recurrence:

       𝑇𝑇 𝑛𝑛 = 𝑎𝑎𝑇𝑇 𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛  ⋯⋯ (1) 

and 𝑇𝑇 𝑛𝑛 = 𝑎𝑎𝑇𝑇 𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛  ⋯⋯ (2)

    Obtaining a lower bound on recurrence 1  and an upper bound on   
          recurrence 2  are not difficult because we can use 𝑛𝑛

𝑏𝑏
≥ 𝑛𝑛

𝑏𝑏
 in the 

          first case and 𝑛𝑛
𝑏𝑏
≤ 𝑛𝑛

𝑏𝑏
 in the second case.

          Upper bounding recurrence 1  and lower bounding recurrence 2     
          require more effort, but they use similar techniques.

    So, we will only try to prove an upper bound on recurrence 1 .

Extending the Master Theorem to All Integral 𝒏𝒏

31



Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏

As we go down the recursion tree we encounter a sequence of    
          recursive invocations on the arguments:

𝑛𝑛, 𝑛𝑛/𝑏𝑏 , 𝑛𝑛/𝑏𝑏 /𝑏𝑏 , 𝑛𝑛/𝑏𝑏 /𝑏𝑏 /𝑏𝑏 , … … …
32



Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏

Let’s define the 𝑗𝑗𝑡𝑡𝑡 element in the sequence by 𝑛𝑛𝑗𝑗, where

𝑛𝑛𝑗𝑗 = �
𝑛𝑛,  𝑖𝑖𝑓𝑓 𝑗𝑗 = 0,
𝑛𝑛𝑗𝑗−1/𝑏𝑏 ,  𝑖𝑖𝑓𝑓 𝑗𝑗 > 0.
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Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏

Let’s first determine a depth 𝑜 such that 𝑛𝑛𝑡 is a constant. 

    Using the inequality 𝑥𝑥 ≤ 𝑥𝑥 + 1 , we obtain:
           𝑛𝑛0 ≤ 𝑛𝑛,

     𝑛𝑛1 ≤
𝑛𝑛
𝑏𝑏

+ 1,

     𝑛𝑛2 ≤
𝑛𝑛
𝑏𝑏2

+ 1
𝑏𝑏

+ 1,

     𝑛𝑛3 ≤
𝑛𝑛
𝑏𝑏3

+ 1
𝑏𝑏2

+ 1
𝑏𝑏

+ 1,

    and so on.
    In general,

     𝑛𝑛𝑗𝑗 ≤
𝑛𝑛
𝑏𝑏𝑗𝑗

+ ∑𝑖𝑖=0
𝑗𝑗−1 1

𝑏𝑏𝑖𝑖

        < 𝑛𝑛
𝑏𝑏𝑗𝑗

+ ∑𝑖𝑖=0∞ 1
𝑏𝑏𝑖𝑖

             = 𝑛𝑛
𝑏𝑏𝑗𝑗

+ 𝑏𝑏
𝑏𝑏−1

.
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Letting 𝑜 = log𝑏𝑏 𝑛𝑛  we obtain: 

     𝑛𝑛 log𝑏𝑏 𝑛𝑛 < 𝑛𝑛

𝑏𝑏 log𝑏𝑏 𝑛𝑛 + 𝑏𝑏
𝑏𝑏−1

 

       < 𝑛𝑛
𝑏𝑏log𝑏𝑏 𝑛𝑛−1 + 𝑏𝑏

𝑏𝑏−1
 

       < 𝑛𝑛
𝑛𝑛/𝑏𝑏

+ 𝑏𝑏
𝑏𝑏−1

 

       = 𝑏𝑏 + 𝑏𝑏
𝑏𝑏−1

 
       = 𝑂𝑂 1  
    Hence, at depth 𝑜 = log𝑏𝑏 𝑛𝑛  the problem size is at most a constant. 
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Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏

From the figure above we get:

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎 + �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓 𝑛𝑛𝑗𝑗
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Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏
We have:

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏𝑎𝑎 + �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓 𝑛𝑛𝑗𝑗

We will have to evaluate the following sum:

𝑔𝑔 𝑛𝑛 = �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓 𝑛𝑛𝑗𝑗
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Upper Bounding 𝑻𝑻 𝒏𝒏 = 𝒂𝒂𝑻𝑻 𝒏𝒏/𝒃𝒃 + 𝒇𝒇 𝒏𝒏
We will evaluate the following sum:

𝑔𝑔 𝑛𝑛 = �
𝑗𝑗=0

log𝑏𝑏𝑛𝑛−1

𝑎𝑎𝑗𝑗𝑓𝑓 𝑛𝑛𝑗𝑗

          Case 2: We have: 𝑓𝑓 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 .

    If we can show that 𝑓𝑓 𝑛𝑛𝑗𝑗 = 𝑂𝑂 𝑛𝑛
𝑏𝑏𝑗𝑗

log𝑏𝑏 𝑎𝑎
, then case 2 of 

          Lemma 2  will go through.

    Observe that 𝑗𝑗 ≤ log𝑏𝑏 𝑛𝑛 ⇒ 𝑏𝑏𝑗𝑗

𝑛𝑛
≤ 1.

          Also, 𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎  implies that there exists a constant 
          𝑐𝑐′ > 0 such that for all sufficiently large 𝑛𝑛𝑗𝑗 the following holds: 

𝑓𝑓 𝑛𝑛𝑗𝑗 ≤ 𝑐𝑐′ 𝑛𝑛
𝑏𝑏𝑗𝑗

+ 𝑏𝑏
𝑏𝑏−1

log𝑏𝑏 𝑎𝑎
.
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          Case 2 (continued): We have:

   𝑓𝑓 𝑛𝑛𝑗𝑗 ≤ 𝑐𝑐′ 𝑛𝑛
𝑏𝑏𝑗𝑗

+ 𝑏𝑏
𝑏𝑏−1

log𝑏𝑏 𝑎𝑎

             = 𝑐𝑐′ 𝑛𝑛
𝑏𝑏𝑗𝑗

1 + 𝑏𝑏𝑗𝑗

𝑛𝑛
𝑏𝑏

𝑏𝑏−1

log𝑏𝑏 𝑎𝑎

.

             = 𝑐𝑐′ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑎𝑎𝑗𝑗
1 + 𝑏𝑏𝑗𝑗

𝑛𝑛
𝑏𝑏

𝑏𝑏−1

log𝑏𝑏 𝑎𝑎
.

             ≤ 𝑐𝑐′ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑎𝑎𝑗𝑗
1 + 𝑏𝑏

𝑏𝑏−1

log𝑏𝑏 𝑎𝑎
.

             = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑎𝑎𝑗𝑗

             = 𝑂𝑂 𝑛𝑛
𝑏𝑏𝑗𝑗

log𝑏𝑏 𝑎𝑎
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          Case 1: The proof is similar to that of case 2. The key is to prove the   

          bound 𝑓𝑓 𝑛𝑛𝑗𝑗 = 𝑂𝑂 𝑛𝑛
𝑏𝑏𝑗𝑗

log𝑏𝑏 𝑎𝑎−𝜖𝜖
 which is similar to what we did in 

          case 2 though the algebra is more intricate.
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          Case 3: If 𝑎𝑎𝑓𝑓 𝑛𝑛
𝑏𝑏

≤ 𝑐𝑐𝑓𝑓 𝑛𝑛  for 𝑛𝑛 > 𝑏𝑏 + 𝑏𝑏
𝑏𝑏−1

, where 𝑐𝑐 < 1 is a 
          constant then it follows that 𝑎𝑎𝑗𝑗𝑓𝑓 𝑛𝑛𝑗𝑗 ≤ 𝑐𝑐𝑗𝑗𝑓𝑓 𝑛𝑛 . 

          Therefore, we can evaluate 𝑔𝑔 𝑛𝑛  as in the proof of Lemma 2.
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