## Midterm Exam 1 (7:05 PM – 8:20 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in midterm exam 1 and midterm exam 2. The higher of the two scores will be worth 30% of your grade, and the lower one 15%.
- There are four (4) questions worth 75 points in total. Please answer all of them in the spaces provided.
- There are twenty-two (22) pages, including eight (8) blank pages and one (1) page of appendices. Please use the blank pages if you need additional space for your answers.
- The exam is **open slides** and **open notes** (including **scribe notes**). But **no books** and **no computers** are allowed.

## Good Luck!

| Question                                         | Pages   | Parts     | Points                 | Score |
|--------------------------------------------------|---------|-----------|------------------------|-------|
| 1. Miles and Miles of Tiles                      | 2 - 6   | (a) - (c) | 4 + 15 + 6 = 25        |       |
| 2. Multiply Multiple Multipliers                 | 8 - 10  | (a) - (b) | 6 + 9 = 15             |       |
| 3. Ugly Recurrences                              | 12 - 17 | (a) - (e) | 2 + 2 + 6 + 6 + 9 = 25 |       |
| 4. $(\lor, \land)$ Bitwise Matrix Multiplication | 19 - 20 | (a) - (b) | 3 + 7 = 10             |       |
| Total                                            |         |           | 75                     |       |

NAME:

SBU ID: \_\_\_\_\_



Figure 1: [Question 1] A subtile  $L_i$  of length *i* from the left subtile set  $\mathcal{L}$  can be combined with a subtile  $R_j$  of length *j* from the right subtile set  $\mathcal{R}$  to form a full tile  $T_{i+j}$  of length i+j. Using the subtiles given in this example, one can create exactly three  $T_6$  tiles covering a length of  $3 \times 6 = 18$ , but only two  $T_7$  tiles covering a length of only  $2 \times 7 = 14$ .

Question 1. [25 Points] Miles and Miles of Tiles. You are given subtiles or tile fragments of two specific types – left subtiles and right subtiles. All subtiles have the same width but not necessarily the same length. A left (resp. right) subtile of length k is denoted by  $L_k$  (resp.  $R_k$ ). An  $L_i$  can be combined with an  $R_j$  to form a full tile  $T_{i+j}$  of length i + j. We assume that all subtiles have integral lengths.

You are given an integer n > 0, a left subtile set  $\mathcal{L}$ , and a right subtile set  $\mathcal{R}$ . For every integer  $k \in [1, n]$ ,  $\mathcal{L}$  (resp.  $\mathcal{R}$ ) includes at most one  $L_k$  (resp.  $R_k$ ). Your task is to find for every  $k \in [2, 2n]$ , the total length  $d_k$  you can tile by using only the full tiles of length k (i.e.,  $T_k$ 's) that you can form by combining the left subtiles of  $\mathcal{L}$  with the right subtiles of  $\mathcal{R}$ . Figure 1 shows an example. Using the sets given in the example, one can create exactly three tiles of length 6 (i.e.,  $T_6$ ) covering a total length of  $d_6 = 3 \times 6 = 18$ . But one can create only two tiles of length 7 (i.e.,  $T_7$ ) that cover a total length of only  $d_7 = 2 \times 7 = 14$ .

Now answer the following questions.

(a) [ 4 Points ] Given integer n > 0 and sets  $\mathcal{L}$  and  $\mathcal{R}$ , give an algorithm that can compute all  $d_k$  values for  $2 \le k \le 2n$  in  $\Theta(n + n_l n_r)$  time, where  $n_l$  and  $n_r$  denote the number of subtiles in  $\mathcal{L}$  and  $\mathcal{R}$ , respectively.

(b) [ 15 Points ] Give an algorithm that computes all  $d_k$  values for  $2 \le k \le 2n$ , in  $\Theta(n \log n)$  time.

(c) [ 6 Points ] Now suppose that  $\mathcal{L}$  and  $\mathcal{R}$  can have at most  $m \geq 1$  copies of each subtile<sup>1</sup>, and the number of copies of each subtile appearing in  $\mathcal{L} / \mathcal{R}$  is a power of 2. For this case, give an algorithm that can compute all  $d_k$  values for  $2 \leq k \leq 2n$ , in  $\mathcal{O}(n \log n (\log (m+1))^2)$  time.

<sup>&</sup>lt;sup>1</sup>So,  $\mathcal{L}$  and  $\mathcal{R}$  are multisets in which no item appears more than m times.

Question 2. [15 Points] Multiply Multiple Multipliers. Karatsuba's algorithm multiplies two *n*-bit integers in  $\Theta(n^{\log_2 3})$  time. This problem asks you to use Karatsuba's algorithm to multiply  $m \ge 2$  binary integers each of which is *n* bits long.

```
Input: binary integers x_1, x_2, \ldots, x_m each exactly n bits long
Output: product x_1x_2 \ldots x_m
Algorithm:
1. z \leftarrow x_1
2. for i \leftarrow 2 to m do
3. t \leftarrow z \times x_i computed using Karatsuba's algorithm
4. z \leftarrow t
5. return z
```

Figure 2: [Question 2] Naïvely computing the product of m binary numbers of length n each.

(a) [6 Points] Show that the algorithm given in Figure 2 takes  $\Theta(m(mn)^{\log_2 3})$  time to multiply  $m \ge 2$  binary integers containing n bits each.

(b) [9 Points] Give a recursive divide-and-conquer algorithm that runs in  $\Theta((mn)^{\log_2 3})$  time to multiply  $m \ge 2$  binary integers each of which is n bits long. You must use Karatsuba's algorithm whenever multiplying two integers. Write down the recurrence relation describing the running time of the algorithm and solve it.

**Question 3.** [ **25 Points** ] **Ugly Recurrences.** This problem asks you to use Akra-Bazzi to solve ugly recurrences of the following form<sup>2</sup>.

$$T(n) = \begin{cases} \Theta(1), & \text{if } 2 \le n \le n_0, \\ \sum_{i=1}^k a_i n^{\alpha(1-b_i)} T(n^{b_i}) + \Theta\left(n^{\alpha} (\log n)^{\beta}\right), & \text{otherwise}, \end{cases}$$

where,  $k \ge 1$  is an integer constant;  $a_i > 0$  and  $b_i \in (0, 1)$  are constants for  $1 \le i \le k$ ;  $n \ge 2$  is a real number;  $\alpha$  and  $\beta$  are real constants;  $n_0 \ge 2$  is a constant and  $n_0 \ge 2^{\max\left\{\frac{1}{b_i}, \frac{1}{1-b_i}\right\}}$  for  $1 \le i \le k$ . Let p be the unique real number for which  $\sum_{i=1}^k a_i b_i^p = 1$ .

(a) [ **2 Points** ] Suppose  $T'(n) = \frac{T(n)}{n^{\alpha}}$ . Show that

$$T'(n) = \begin{cases} \Theta(1), & \text{if } 2 \le n \le n_0, \\ \sum_{i=1}^k a_i T'(n^{b_i}) + \Theta\left((\log n)^\beta\right), & \text{otherwise.} \end{cases}$$

<sup>&</sup>lt;sup>2</sup>Recurrences of this form appear in the analysis of running times of several FFT variants, column sort, etc.

(b) [ **2 Points** ] Suppose  $n = 2^x$ ,  $n_0 = 2^{x_0}$ , and  $T''(x) = T'(2^x)$ . Show that

$$T''(x) = \begin{cases} \Theta(1), & \text{if } 1 \le x \le x_0, \\ \sum_{i=1}^k a_i T''(b_i x) + \Theta(x^\beta), & \text{otherwise.} \end{cases}$$

(c) [ **6 Points** ] Use the Akra-Bazzi formula to show that the recurrence from part (b) has the following solutions:

$$T''(x) = \begin{cases} \Theta\left(x^{\beta}\log x\right), & \text{if } p = \beta, \\ \Theta\left(\left(1 - \frac{1}{\beta - p}\right)x^{p} + \left(\frac{1}{\beta - p}\right)x^{\beta}\right), & \text{if } p \neq \beta. \end{cases}$$

(d) [  ${\bf 6}$   ${\bf Points}$  ] Use the solution from part (c) to show that

$$T(n) = \begin{cases} \Theta \left( n^{\alpha} (\log n)^{\beta} \right), & \text{if } p < \beta, \\ \Theta \left( n^{\alpha} (\log n)^{\beta} \log \log n \right), & \text{if } p = \beta, \\ \Theta \left( n^{\alpha} (\log n)^{p} \right), & \text{if } p > \beta. \end{cases}$$

(e) [ 9 Points ] Now use the solution from part (d) to solve the following recurrences:

$$T_{1}(n) = \begin{cases} \Theta(1), & \text{if } 2 \leq n \leq n_{0}, \\ n^{\frac{1}{2}}T_{1}\left(n^{\frac{1}{2}}\right) + \Theta(n), & \text{otherwise}, \end{cases}$$

$$T_{2}(n) = \begin{cases} \Theta(1), & \text{if } 2 \leq n \leq n_{0}, \\ n^{\frac{1}{3}}T_{2}\left(n^{\frac{2}{3}}\right) + n^{\frac{2}{3}}T_{2}\left(n^{\frac{1}{3}}\right) + \Theta(n\log n), & \text{otherwise}, \end{cases}$$

$$T_{3}(n) = \begin{cases} \Theta(1), & \text{if } 2 \leq n \leq n_{0}, \\ 2n^{\frac{15}{8}}T_{3}\left(n^{\frac{1}{16}}\right) + n^{\frac{3}{2}}T_{3}\left(n^{\frac{1}{4}}\right) + \Theta(n^{2}\log n), & \text{otherwise}, \end{cases}$$

| 1 | 1 | 1 |           | 1 | 0 | 1 |   | 1 | 1 | 1 |
|---|---|---|-----------|---|---|---|---|---|---|---|
| 1 | 0 | 1 | $\otimes$ | 1 | 1 | 1 | = | 1 | 0 | 1 |
| 0 | 1 | 0 |           | 0 | 0 | 1 |   | 1 | 1 | 1 |

Figure 3: [Question 4] Bitwise product of two  $3 \times 3$  bit matrices.

Question 4. [10 Points]  $(\lor, \land)$  Bitwise Matrix Multiplication. Suppose for some positive integer n, you are given two  $n \times n$  matrices X and Y in which every entry is a single bit (either 0 or 1). Therefore, each matrix occupies exactly  $n^2$  bits. You multiply X and Y using bitwise OR  $(\lor)$  and bitwise AND  $(\land)$  operators only. You end up with an  $n \times n$  product matrix Z in which each entry is a single bit, and for  $1 \leq i, j \leq n$ , entry  $z_{i,j}$  of Z is defined as follows, where  $x_{i,k}$ 's and  $y_{k,j}$ 's are entries of X and Y, respectively.

$$z_{i,j} = \bigvee_{k=1}^{n} (x_{i,k} \wedge y_{k,j})$$
  
=  $(x_{i,1} \wedge y_{1,j}) \lor (x_{i,2} \wedge y_{2,j}) \lor (x_{i,3} \wedge y_{3,j}) \lor \ldots \lor (x_{i,n} \wedge y_{n,j})$ 

This product is similar to the product in the standard matrix multiplication algorithm we saw in the class, except that we have replaced the '×' and '+' operators with ' $\wedge$ ' and ' $\vee$ ' operators, respectively. Clearly, all entries of Z can be computed in  $\Theta(n^3)$  time using a naïve looping code.

Figure 3 shows an example, where we use the  $\otimes$  operator to indicate that this is not standard matrix multiplication.

Now, answer the following questions.

(a) [ 3 Points ] It turns out that the standard  $\Theta(n^3)$  time recursive matrix multiplication algorithm that we saw in the class can be easily modified (by replacing '×' and '+' with ' $\wedge$ ' and ' $\vee$ ', respectively) to correctly compute the bitwise product of X and Y as defined above using only  $\Theta(n^2)$  bits of space. However, Strassen's algorithm cannot be used to compute Z in  $\Theta(n^2)$  bits of space using those bitwise operators. Why? (b) [**7 Points**] Suppose I allow you to use  $\Theta(n^2 \log n)$  bits of space. Now, can you use Strassen's algorithm without replacing the standard '×' and '+' operators to compute Z correctly? How?

## **Appendix:** Recurrences

**Master Theorem.** Let  $a \ge 1$  and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \le 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise,} \end{cases}$$

where,  $\frac{n}{b}$  is interpreted to mean either  $\left\lfloor \frac{n}{b} \right\rfloor$  or  $\left\lfloor \frac{n}{b} \right\rfloor$ . Then T(n) has the following bounds:

**Case 1:** If  $f(n) = \mathcal{O}\left(n^{\log_b a - \epsilon}\right)$  for some constant  $\epsilon > 0$ , then  $T(n) = \Theta\left(n^{\log_b a}\right)$ .

**Case 2:** If  $f(n) = \Theta\left(n^{\log_b a} \log^k n\right)$  for some constant  $k \ge 0$ , then  $T(n) = \Theta\left(n^{\log_b a} \log^{k+1} n\right)$ .

**Case 3:** If  $f(n) = \Omega\left(n^{\log_b a+\epsilon}\right)$  for some constant  $\epsilon > 0$ , and  $af\left(\frac{n}{b}\right) \leq cf(n)$  for some constant c < 1 and all sufficiently large n, then  $T(n) = \Theta(f(n))$ .

Akra-Bazzi Recurrences. Consider the following recurrence:

$$T(x) = \begin{cases} \Theta(1), & \text{if } 1 \le x \le x_0, \\ \sum_{i=1}^k a_i T(b_i x) + g(x), & \text{otherwise,} \end{cases}$$

where,

- 1.  $k \ge 1$  is an integer constant,
- 2.  $a_i > 0$  is a constant for  $1 \le i \le k$ ,
- 3.  $b_i \in (0, 1)$  is a constant for  $1 \le i \le k$ ,
- 4.  $x \ge 1$  is a real number,
- 5.  $x_0$  is a constant and  $\geq \max\left\{\frac{1}{b_i}, \frac{1}{1-b_i}\right\}$  for  $1 \le i \le k$ , and
- 6. g(x) is a nonnegative function that satisfies a polynomial growth condition (e.g.,  $g(x) = x^{\alpha} \log^{\beta} x$  satisfies the polynomial growth condition for any constants  $\alpha, \beta \in \Re$ ).

Let p be the unique real number for which  $\sum_{i=1}^{k} a_i b_i^p = 1$ . Then  $T(x) = \Theta\left(x^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du\right)\right)$ .

## **Appendix: Computing Products**

**Integer Multiplication.** Karatsuba's algorithm can multiply two *n*-bit integers in  $\Theta(n^{\log_2 3}) = \mathcal{O}(n^{1.6})$  time (improving over the standard  $\Theta(n^2)$  time algorithm).

Matrix Multiplication. Strassen's algorithm can multiply two  $2 \times 2$  matrices using 7 multiplications, and two  $n \times n$  matrices in  $\Theta(n^{\log_2 7}) = \mathcal{O}(n^{2.81})$  time (improving over the standard  $\Theta(n^3)$  time algorithm).

**Polynomial Multiplication.** One can multiply two *n*-degree polynomials in  $\Theta(n \log n)$  time using the FFT (Fast Fourier Transform) algorithm (improving over the standard  $\Theta(n^2)$  time algorithm).