
CSE548, AMS542: Analysis of Algorithms, Fall 2023 Date: Oct 12, 2023

Midterm Exam 1
(7:05 PM – 8:20 PM : 75 Minutes)

• This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in midterm exam 1 and midterm exam 2. The higher of the two scores will be
worth 30% of your grade, and the lower one 15%.

• There are four (4) questions worth 75 points in total. Please answer all of them in the spaces
provided.

• There are twenty-two (22) pages, including eight (8) blank pages and one (1) page of appen-
dices. Please use the blank pages if you need additional space for your answers.

• The exam is open slides and open notes (including scribe notes). But no books and
no computers are allowed.

Good Luck!

Question Pages Parts Points Score

1. Miles and Miles of Tiles 2 – 6 (a) – (c) 4 + 15 + 6 = 25
2. Multiply Multiple Multipliers 8 – 10 (a) – (b) 6 + 9 = 15
3. Ugly Recurrences 12 – 17 (a) – (e) 2 + 2 + 6 + 6 + 9 = 25
4. (∨,∧) Bitwise Matrix Multiplication 19 – 20 (a) – (b) 3 + 7 = 10

Total 75

Name:

SBU ID:

Figure 1: [Question 1] A subtile Li of length i from the left subtile set L can be combined with a
subtile Rj of length j from the right subtile set R to form a full tile Ti+j of length i+ j. Using the
subtiles given in this example, one can create exactly three T6 tiles covering a length of 3× 6 = 18,
but only two T7 tiles covering a length of only 2× 7 = 14.

Question 1. [25 Points] Miles and Miles of Tiles. You are given subtiles or tile fragments
of two specific types – left subtiles and right subtiles. All subtiles have the same width but not
necessarily the same length. A left (resp. right) subtile of length k is denoted by Lk (resp. Rk).
An Li can be combined with an Rj to form a full tile Ti+j of length i + j. We assume that all
subtiles have integral lengths.

You are given an integer n > 0, a left subtile set L, and a right subtile set R. For every integer
k ∈ [1, n], L (resp. R) includes at most one Lk (resp. Rk). Your task is to find for every k ∈ [2, 2n],
the total length dk you can tile by using only the full tiles of length k (i.e., Tk’s) that you can form
by combining the left subtiles of L with the right subtiles of R. Figure 1 shows an example. Using
the sets given in the example, one can create exactly three tiles of length 6 (i.e.,, T6) covering a
total length of d6 = 3× 6 = 18. But one can create only two tiles of length 7 (i.e., T7) that cover a
total length of only d7 = 2× 7 = 14.

Now answer the following questions.

(a) [4 Points] Given integer n > 0 and sets L and R, give an algorithm that can compute all
dk values for 2 ≤ k ≤ 2n in Θ (n+ nlnr) time, where nl and nr denote the number of subtiles
in L and R, respectively.

2

page intentionally left blank (use for your answers, if needed)

3

(b) [15 Points] Give an algorithm that computes all dk values for 2 ≤ k ≤ 2n, in Θ (n log n)
time.

4

page intentionally left blank (use for your answers, if needed)

5

(c) [6 Points] Now suppose that L and R can have at most m ≥ 1 copies of each subtile1, and
the number of copies of each subtile appearing in L / R is a power of 2. For this case, give an
algorithm that can compute all dk values for 2 ≤ k ≤ 2n, in O

(
n log n(log (m+ 1))2

)
time.

1So, L and R are multisets in which no item appears more than m times.

6

page intentionally left blank (use for your answers, if needed)

7

Question 2. [15 Points] Multiply Multiple Multipliers. Karatsuba’s algorithm multiplies
two n-bit integers in Θ

(
nlog2 3

)
time. This problem asks you to use Karatsuba’s algorithm to

multiply m ≥ 2 binary integers each of which is n bits long.

Input: binary integers x1, x2, . . . , xm each exactly n bits long
Output: product x1x2 . . . xm

Algorithm:

1. z ← x1

2. for i← 2 to m do

3. t← z × xi computed using Karatsuba’s algorithm

4. z ← t

5. return z

Figure 2: [Question 2] Näıvely computing the product of m binary numbers of length n each.

(a) [6 Points] Show that the algorithm given in Figure 2 takes Θ
(
m(mn)log2 3

)
time to multiply

m ≥ 2 binary integers containing n bits each.

8

page intentionally left blank (use for your answers, if needed)

9

(b) [9 Points] Give a recursive divide-and-conquer algorithm that runs in Θ
(
(mn)log2 3

)
time

to multiply m ≥ 2 binary integers each of which is n bits long. You must use Karatsuba’s
algorithm whenever multiplying two integers. Write down the recurrence relation describing
the running time of the algorithm and solve it.

10

page intentionally left blank (use for your answers, if needed)

11

Question 3. [25 Points] Ugly Recurrences. This problem asks you to use Akra-Bazzi to
solve ugly recurrences of the following form2.

T (n) =

{
Θ(1) , if 2 ≤ n ≤ n0,∑k

i=1 ain
α(1−bi)T

(
nbi

)
+Θ

(
nα (log n)β

)
, otherwise,

where, k ≥ 1 is an integer constant; ai > 0 and bi ∈ (0, 1) are constants for 1 ≤ i ≤ k; n ≥ 2 is a

real number; α and β are real constants; n0 ≥ 2 is a constant and n0 ≥ 2
max

{
1
bi
, 1
1−bi

}
for 1 ≤ i ≤ k.

Let p be the unique real number for which
∑k

i=1 aib
p
i = 1.

(a) [2 Points] Suppose T ′(n) = T (n)
nα . Show that

T ′(n) =

{
Θ(1) , if 2 ≤ n ≤ n0,∑k

i=1 aiT
′ (nbi

)
+Θ

(
(log n)β

)
, otherwise.

2Recurrences of this form appear in the analysis of running times of several FFT variants, column sort, etc.

12

(b) [2 Points] Suppose n = 2x, n0 = 2x0 , and T ′′(x) = T ′(2x). Show that

T ′′(x) =

{
Θ(1) , if 1 ≤ x ≤ x0,∑k

i=1 aiT
′′ (bix) + Θ

(
xβ

)
, otherwise.

13

(c) [6 Points] Use the Akra-Bazzi formula to show that the recurrence from part (b) has the
following solutions:

T ′′(x) =

{
Θ
(
xβ log x

)
, if p = β,

Θ
((

1− 1
β−p

)
xp +

(
1

β−p

)
xβ

)
, if p ̸= β.

14

page intentionally left blank (use for your answers, if needed)

15

(d) [6 Points] Use the solution from part (c) to show that

T (n) =

 Θ
(
nα(log n)β

)
, if p < β,

Θ
(
nα(log n)β log logn

)
, if p = β,

Θ (nα(log n)p) , if p > β.

16

(e) [9 Points] Now use the solution from part (d) to solve the following recurrences:

T1(n) =

{
Θ(1) , if 2 ≤ n ≤ n0,

n
1
2T1

(
n

1
2

)
+Θ(n) , otherwise,

T2(n) =

{
Θ(1) , if 2 ≤ n ≤ n0,

n
1
3T2

(
n

2
3

)
+ n

2
3T2

(
n

1
3

)
+Θ(n log n) , otherwise,

T3(n) =

{
Θ(1) , if 2 ≤ n ≤ n0,

2n
15
8 T3

(
n

1
16

)
+ n

3
2T3

(
n

1
4

)
+Θ

(
n2 log n

)
, otherwise,

17

page intentionally left blank (use for your answers, if needed)

18

Figure 3: [Question 4] Bitwise product of two 3× 3 bit matrices.

Question 4. [10 Points] (∨,∧) Bitwise Matrix Multiplication. Suppose for some positive
integer n, you are given two n× n matrices X and Y in which every entry is a single bit (either 0
or 1). Therefore, each matrix occupies exactly n2 bits. You multiply X and Y using bitwise OR
(∨) and bitwise AND (∧) operators only. You end up with an n × n product matrix Z in which
each entry is a single bit, and for 1 ≤ i, j ≤ n, entry zi,j of Z is defined as follows, where xi,k’s and
yk,j ’s are entries of X and Y , respectively.

zi,j =
∨n

k=1 (xi,k ∧ yk,j)

= (xi,1 ∧ y1,j) ∨ (xi,2 ∧ y2,j) ∨ (xi,3 ∧ y3,j) ∨ . . . ∨ (xi,n ∧ yn,j)

This product is similar to the product in the standard matrix multiplication algorithm we saw
in the class, except that we have replaced the ‘×’ and ‘+’ operators with ‘∧’ and ‘∨’ operators,
respectively. Clearly, all entries of Z can be computed in Θ

(
n3

)
time using a näıve looping code.

Figure 3 shows an example, where we use the ⊗ operator to indicate that this is not standard
matrix multiplication.

Now, answer the following questions.

(a) [3 Points] It turns out that the standard Θ
(
n3

)
time recursive matrix multiplication

algorithm that we saw in the class can be easily modified (by replacing ‘×’ and ‘+’ with ‘∧’
and ‘∨’, respectively) to correctly compute the bitwise product of X and Y as defined above
using only Θ

(
n2

)
bits of space. However, Strassen’s algorithm cannot be used to compute Z

in Θ
(
n2

)
bits of space using those bitwise operators. Why?

19

(b) [7 Points] Suppose I allow you to use Θ
(
n2 log n

)
bits of space. Now, can you use Strassen’s

algorithm without replacing the standard ‘×’ and ‘+’ operators to compute Z correctly? How?

20

page intentionally left blank (use for your answers, if needed)

21

Appendix: Recurrences

Master Theorem. Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T (n) be
defined on the nonnegative integers by the recurrence

T (n) =

{
Θ(1) , if n ≤ 1,
aT

(
n
b

)
+ f(n), otherwise,

where, n
b is interpreted to mean either

⌊
n
b

⌋
or

⌈
n
b

⌉
. Then T (n) has the following bounds:

Case 1: If f(n) = O
(
nlogb a−ϵ

)
for some constant ϵ > 0, then T (n) = Θ

(
nlogb a

)
.

Case 2: If f(n) = Θ
(
nlogb a logk n

)
for some constant k ≥ 0, then T (n) = Θ

(
nlogb a logk+1 n

)
.

Case 3: If f(n) = Ω
(
nlogb a+ϵ

)
for some constant ϵ > 0, and af

(
n
b

)
≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T (n) = Θ (f(n)).

Akra-Bazzi Recurrences. Consider the following recurrence:

T (x) =

{
Θ(1) , if 1 ≤ x ≤ x0,∑k

i=1 aiT (bix) + g(x), otherwise,

where,

1. k ≥ 1 is an integer constant,

2. ai > 0 is a constant for 1 ≤ i ≤ k,

3. bi ∈ (0, 1) is a constant for 1 ≤ i ≤ k,

4. x ≥ 1 is a real number,

5. x0 is a constant and ≥ max
{

1
bi
, 1
1−bi

}
for 1 ≤ i ≤ k, and

6. g(x) is a nonnegative function that satisfies a polynomial growth condition (e.g., g(x) =
xα logβ x satisfies the polynomial growth condition for any constants α, β ∈ ℜ).

Let p be the unique real number for which
∑k

i=1 aib
p
i = 1. Then T (x) = Θ

(
xp

(
1 +

∫ x
1

g(u)
up+1du

))
.

Appendix: Computing Products

Integer Multiplication. Karatsuba’s algorithm can multiply two n-bit integers in Θ
(
nlog2 3

)
=

O
(
n1.6

)
time (improving over the standard Θ

(
n2

)
time algorithm).

Matrix Multiplication. Strassen’s algorithm can multiply two 2× 2 matrices using 7 multiplica-
tions, and two n× n matrices in Θ

(
nlog2 7

)
= O

(
n2.81

)
time (improving over the standard Θ

(
n3

)
time algorithm).

Polynomial Multiplication. One can multiply two n-degree polynomials in Θ (n log n) time using
the FFT (Fast Fourier Transform) algorithm (improving over the standard Θ

(
n2

)
time algorithm).

