
CSE548, AMS542: Analysis of Algorithms, Fall 2023 Date: Nov 30, 2023

Midterm Exam 2
(7:05 PM – 8:20 PM : 75 Minutes)

• This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in midterm exam 1 and midterm exam 2. The higher of the two scores will be
worth 30% of your grade, and the lower one 15%.

• There are three (3) questions worth 75 points in total. Please answer all of them in the spaces
provided.

• There are twenty-two (22) pages, including nine (9) blank pages and one (1) page of appen-
dices. Please use the blank pages if you need additional space for your answers.

• The exam is open slides and open notes (including scribe notes). But no books and
no computers are allowed.

Good Luck!

Question Pages Parts Points Score

1. “Probabilistic” Staircase Numbers 2 – 6 (a) – (c) 5 + 10 + 10 = 25
2. Parallel Recursive Selection Sort 8 – 11 (a) – (b) 10 + 15 = 25
3. Store-Retrieve Lockers 14 – 19 (a) – (d) 5 + 5 + 3 + 12 = 25

Total 75

Name:

SBU ID:

Prob-Staircase(n)

1. if n < 1 then x← 0

2. elseif n = 1 then x← 1

3. else

4. r ← Random() {choose a real number

uniformly at random from (0, 1]}
5. if r ≤ 0.5 then

6. x← Prob-Staircase(n− 1)

7. else

8. x← Prob-Staircase(n− 2)

9. endif

10. endif

11. return x+ 1

Figure 1: When called with an integer n ≥ 0 as a
parameter, Prob-Staircase(n) will return what we
will call the n-th “probabilistic” staircase number.

Question 1. [25 Points] “Probabilistic” Staircase Numbers. The function given in Figure
1 computes what we will call “probabilistic” staircase numbers1. When supplied with an integer
n ≥ 0 as a parameter, it will return the n-th probabilistic staircase number sn. Clearly, s0 = 0 and
s1 = 1, but for n > 1, sn does not have a fixed value.

This question asks you to compute the expected running time of Prob-Staircase(n) for n ≥ 0.

(a) [5 Points] Let tn be the expected running time of Prob-Staircase(n) for n ≥ 0. We
claim that tn can be described by the following recurrence relation, where c1 and c2 are
positive constants:

tn ≤
{

c1, if n ≤ 1,
1
2 tn−1 +

1
2 tn−2 + c2, otherwise,

Justify this recurrence.

1Let us not confuse these with “Polite Numbers” which are also called “Staircase Numbers.”

2

page intentionally left blank (use for your answers, if needed)

3

(b) [10 Points] Let us simplify the recurrence from part (a) to the following (by choosing
c1 = c2 = 1 and replacing the ‘≤’ with an ‘=’.)

tn =

{
1, if n ≤ 1,
1
2 tn−1 +

1
2 tn−2 + 1, otherwise,

Let T (z) be the ordinary generating function for tn, i.e.,

T (z) = t0 + t1z + t2z
2 + . . .+ tnz

n + . . .

Show that T (z) = z2−z+2
(z−1)2(z+2)

.

4

page intentionally left blank (use for your answers, if needed)

5

(c) [10 Points] We observe the following (you do not need to prove it):

z2 − z + 2

(z − 1)2(z + 2)
=

2

3(1− z)2
− 1

9(1− z)
+

4

9(1 + z
2)
.

Use the above and part (b) to show that

tn =
1

9

(
6n+ 5 + 4

(
−1

2

)n)
.

6

page intentionally left blank (use for your answers, if needed)

7

Partition(A, B, n)

Input: Two non-overlapping arrays A and B containing n numbers each, where n is a power of two.

Output: Rearrange the numbers in A and B such that no number in A is larger than any number in B.

1. if n = 1 then

2. if the number in A is larger than the one in B then swap the two numbers

3. else

4. let AL (resp. BL) denote the left half of A (resp. B) and let AR (resp. BR) denote its right half

5. Partition
(
AL, BL,

n
2

)
6. Partition

(
AR, BR,

n
2

)
7. Partition

(
AL, BR,

n
2

)
8. Partition

(
AR, BL,

n
2

)
9. return

Rec-Selection-Sort(A, n)

Input: An array A containing n numbers, where n is a power of two.

Output: The numbers in A rearranged in nondecreasing order of value.

1. if n > 1 then

2. let AL denote the left half of A and let AR denote its right half

3. Partition
(
AL, AR,

n
2

)
4. Rec-Selection-Sort

(
AL,

n
2

)
5. Rec-Selection-Sort

(
AR,

n
2

)
6. return

Figure 2: The recursive version of the selection sort algorithm.

Question 2. [25 Points] Parallel Recursive Selection Sort. When Pramod2 was a student,
he designed a recursive version of the selection sort algorithm with improved I/O-complexity. Figure
2 shows the high-level structure of the serial version of the algorithm. This question asks you to
parallelize it and derive its parallel performance bounds.

2Pramod Ganapathi – currently a faculty member of SBUCS.

8

(a) [10 Points] Parallelize the Partition function. You can simply put the spawn and sync
keywords at appropriate locations inside the function in Figure 2 to show how to parallelize
it. Analyze its work, span, parallelism, and parallel running time (under a greedy scheduler).

9

page intentionally left blank (use for your answers, if needed)

10

(b) [15 Points] Parallelize the Rec-Selection-Sort function. As in part (a), you can simply
put the spawn and sync keywords at appropriate locations inside the funtion in Figure 2
to show how to parallelize it. Analyze its work, span, parallelism, and parallel running time
(under a greedy scheduler).

11

page intentionally left blank (use for your answers, if needed)

12

page intentionally left blank (use for your answers, if needed)

13

Resize-Locker(L)

1. m← L.numItems

2. if m > 0 then

3. allocate array newslots of size 2m

4. copy the m items from L.slots to the first m slots of newslots and set the remaining m slots to nil

5. else

6. newslots← nil

7. endif

8. free L.slots

9. L.slots← newslots

10. L.numSlots← 2m

Locker-Store(L, x)

1. if L.numSlots = 0 then

2. allocate L.slots with 2 slots

3. L.numSlots← 2, L.numItems← 0

4. L.slots[1]← nil, L.slots[2]← nil

5. endif

6. f ← False , n← L.numSlots

7. while f = False do

8. k ← Random(1, n)

9. if L.slots[k] = nil then

10. f ← True

11. L.slots[k]← x

12. L.numItems← L.numItems+ 1

13. endif

14. endwhile

15. if L.numItems ≥ 2
3
× L.numSlots then

16. Resize-Locker(L)

17. endif

Locker-Retrieve(L)

1. if L.numItems = 0 then x← nil

2. else

3. f ← False , n← L.numSlots

4. while f = False do

5. k ← Random(1, n)

6. if L.slots[k] ̸= nil then

7. f ← True

8. x← L.slots[k]

9. L.slots[k]← nil

10. L.numItems← L.numItems− 1

11. endif

12. endwhile

13. endif

14. if L.numItems ≤ 1
3
× L.numSlots then

15. Resize-Locker(L)

16. endif

17. return x

Figure 3: The Locker data structure.

Question 3. [25 Points] Store-Retrieve Lockers. Figure 3 shows the locker data structure
L that maintains a resizable array L.slots and supports the following two operations.

− Locker-Store(L, x) stores an item x in a random empty slot of L.slots, and

− Locker-Retrieve(L) removes an item from a random nonempty slot of L.slots.

Each slot stores at most one item. The total number of slots in L.slots is given by L.numSlots,

14

and the number of items currently stored in the data structure is given by L.numItems.

The Resize-Locker(L) function resizes L.slots as soon as one of the following two events occurs.

− Locker-Store(L, x) detects immediately after inserting x that

L.numItems ≥ 2

3
× L.numSlots (see Line 15)

− Locker-Retrieve(L) detects immediately after removing an item that

L.numItems ≤ 1

3
× L.numSlots (see Line 14)

In both cases, L.slots is resized to L.numSlots = 2 × L.numItems. Observe that the smallest
non-zero size L.slots can have is 2 (see Lines 1–5 of Locker-Store).

To insert an item into L, Locker-Store repeatedly chooses a slot in L.slot uniformly at random
until it finds an empty slot and stores the item in that slot (see Lines 6–14).

To retrieve an item from L, Locker-Retrieve repeatedly chooses a slot in L.slot uniformly at
random until it finds a nonempty slot and removes the item from that slot (see Lines 3–12).

(a) [5 Points] Show that the expected number of times thewhile loop in Lines 7–14 of Locker-
Store needs to execute to find an empty spot in L.slots is n

n−m , where n = L.numSlots and
m = L.numItems at the time of execution. Also, show that the loop finds an empty spot in
O (log n) iterations w.h.p. in n.

15

page intentionally left blank (use for your answers, if needed)

16

(b) [5 Points] Show that the expected number of times thewhile loop in Lines 4–12 of Locker-
Retrieve needs to execute to find a nonempty spot in L.slots is n

m , where n = L.numSlots
and m = L.numItems at the time of execution. Also, show that the loop finds a nonempty
spot in O (log n) iterations w.h.p. in n.

17

(c) [3 Points] In order to find the amortized costs of the operations performed on L we will
use the following potential function:

Φ (Li) = c× | 2× L.numItems− L.numSlots |,

where, Li is the state of L after the i-th (i ≥ 0) operation is performed on it assuming that
L was initially empty, and c is a positive constant.

Argue that this potential function guarantees that the total amortized cost will always be an
upper bound on the total actual cost.

18

(d) [12 Points] Use the potential function from part (c) and your results from parts (a) and
(b) to show that the amortized costs of

- Resize-Locker is 0,

- Locker-Store is O (log n) w.h.p. in n, and

- Locker-retrieve is O (log n) w.h.p. in n,

where, n = L.numSlots at the time of execution.

19

page intentionally left blank (use for your answers, if needed)

20

page intentionally left blank (use for your answers, if needed)

21

Appendix I: Useful Tail Bounds

Markov’s Inequality. Let X be a random variable that assumes only nonnegative values. Then
for all δ > 0, Pr [X ≥ δ] ≤ E[X]

δ .

Chebyshev’s Inequality. Let X be a random variable with a finite mean E[X] and a finite

variance V ar[X]. Then for any δ > 0, Pr [|X − E[X]| ≥ δ] ≤ V ar[X]
δ2

.

Chernoff Bounds. Let X1, . . . , Xn be independent Poisson trials, that is, each Xi is a 0-1 random

variable with Pr[Xi = 1] = pi for some pi. Let X =
n∑

i=1

Xi and µ = E[X]. Following bounds hold:

Lower Tail:

– for 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ

– for 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−
µδ2

2

– for 0 < γ < µ, Pr [X ≤ µ− γ] ≤ e
− γ2

2µ

Upper Tail:

– for any δ > 0, Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ

– for 0 < δ < 1, Pr [X ≥ (1 + δ)µ] ≤ e−
µδ2

3

– for 0 < γ < µ, Pr [X ≥ µ+ γ] ≤ e
− γ2

3µ

Appendix II: The Master Theorem

Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T (n) be defined on the nonnegative
integers by the recurrence

T (n) =

{
Θ(1) , if n ≤ 1,
aT

(
n
b

)
+ f(n), otherwise,

where, n
b is interpreted to mean either

⌊
n
b

⌋
or

⌈
n
b

⌉
. Then T (n) has the following bounds:

Case 1: If f(n) = O
(
nlogb a−ϵ

)
for some constant ϵ > 0, then T (n) = Θ

(
nlogb a

)
.

Case 2: If f(n) = Θ
(
nlogb a logk n

)
for some constant k ≥ 0, then T (n) = Θ

(
nlogb a logk+1 n

)
.

Case 3: If f(n) = Ω
(
nlogb a+ϵ

)
for some constant ϵ > 0, and af

(
n
b

)
≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T (n) = Θ (f(n)).

