Midterm Exam 2
 (7:05 PM - 8:20 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in midterm exam 1 and midterm exam 2. The higher of the two scores will be worth 30% of your grade, and the lower one 15%.
- There are three (3) questions worth 75 points in total. Please answer all of them in the spaces provided.
- There are twenty-two (22) pages, including nine (9) blank pages and one (1) page of appendices. Please use the blank pages if you need additional space for your answers.
- The exam is open slides and open notes (including scribe notes). But no books and no computers are allowed.

Good Luck!

Question	Pages	Parts	Points	Score
1. "Probabilistic" Staircase Numbers	$2-6$	$(a)-(c)$	$5+10+10=25$	
2. Parallel Recursive Selection Sort	$8-11$	$(a)-(b)$	$10+15=25$	
3. Store-Retrieve Lockers	$14-19$	$(a)-(d)$	$5+5+3+12=25$	
Total			75	

Name: \qquad
SBU ID: \qquad

```
Prob-Staircase ( \(n\) )
    if \(n<1\) then \(x \leftarrow 0\)
    elseif \(n=1\) then \(x \leftarrow 1\)
    else
        \(r \leftarrow \operatorname{RANDOM}() \quad\{\) choose a real number
                uniformly at random from \((0,1]\}\)
        if \(r \leq 0.5\) then
            \(x \leftarrow \operatorname{Prob}-\operatorname{Staircase}(n-1)\)
        else
            \(x \leftarrow\) Prob-Staircase \((n-2)\)
        endif
    endif
    return \(x+1\)
```

Figure 1: When called with an integer $n \geq 0$ as a parameter, Prob-Staircase(n) will return what we will call the n-th "probabilistic" staircase number.

Question 1. [25 Points] "Probabilistic" Staircase Numbers. The function given in Figure 1 computes what we will call "probabilistic" staircase numbers ${ }^{1}$. When supplied with an integer $n \geq 0$ as a parameter, it will return the n-th probabilistic staircase number s_{n}. Clearly, $s_{0}=0$ and $s_{1}=1$, but for $n>1, s_{n}$ does not have a fixed value.
This question asks you to compute the expected running time of $\operatorname{Prob-Staircase}(n)$ for $n \geq 0$.
(a) [5 Points] Let t_{n} be the expected running time of Prob-Staircase (n) for $n \geq 0$. We claim that t_{n} can be described by the following recurrence relation, where c_{1} and c_{2} are positive constants:

$$
t_{n} \leq\left\{\begin{array}{lr}
c_{1}, & \text { if } n \leq 1 \\
\frac{1}{2} t_{n-1}+\frac{1}{2} t_{n-2}+c_{2}, & \text { otherwise }
\end{array}\right.
$$

Justify this recurrence.

[^0]page intentionally left blank (use for your answers, if needed)
(b) [10 Points] Let us simplify the recurrence from part (a) to the following (by choosing $c_{1}=c_{2}=1$ and replacing the ' \leq ' with an ' $=$ '.)
\[

t_{n}=\left\{$$
\begin{array}{lr}
1, & \text { if } n \leq 1, \\
\frac{1}{2} t_{n-1}+\frac{1}{2} t_{n-2}+1, & \text { otherwise }
\end{array}
$$\right.
\]

Let $T(z)$ be the ordinary generating function for t_{n}, i.e.,

$$
T(z)=t_{0}+t_{1} z+t_{2} z^{2}+\ldots+t_{n} z^{n}+\ldots
$$

Show that $T(z)=\frac{z^{2}-z+2}{(z-1)^{2}(z+2)}$.
page intentionally left blank (use for your answers, if needed)
(c) [10 Points] We observe the following (you do not need to prove it):

$$
\frac{z^{2}-z+2}{(z-1)^{2}(z+2)}=\frac{2}{3(1-z)^{2}}-\frac{1}{9(1-z)}+\frac{4}{9\left(1+\frac{z}{2}\right)} .
$$

Use the above and part (b) to show that

$$
t_{n}=\frac{1}{9}\left(6 n+5+4\left(-\frac{1}{2}\right)^{n}\right)
$$

page intentionally left blank (use for your answers, if needed)

```
Partition( A, B, n)
Input: Two non-overlapping arrays A and B containing n numbers each, where n is a power of two.
Output: Rearrange the numbers in A and B such that no number in A is larger than any number in B
    1. if }n=1\mathrm{ then
    2. if the number in A is larger than the one in B then swap the two numbers
    . else
    4. let }\mp@subsup{A}{L}{}\mathrm{ (resp. }\mp@subsup{B}{L}{}\mathrm{ ) denote the left half of A (resp. B) and let }\mp@subsup{A}{R}{}\mathrm{ (resp. }\mp@subsup{B}{R}{}\mathrm{ ) denote its right half
    5. Partition ( }\mp@subsup{A}{L}{},\mp@subsup{B}{L}{},\frac{n}{2}
    6. Partition ( }\mp@subsup{A}{R}{},\mp@subsup{B}{R}{},\frac{n}{2}
    7. Partition ( }\mp@subsup{A}{L}{},\mp@subsup{B}{R}{},\frac{n}{2}
    8. Partition ( }\mp@subsup{A}{R}{},\mp@subsup{B}{L}{},\frac{n}{2}
    9. return
```

Rec-Selection-Sort (A, n)
Input: An array A containing n numbers, where n is a power of two.
Output: The numbers in A rearranged in nondecreasing order of value.
1. if $n>1$ then
2. let A_{L} denote the left half of A and let A_{R} denote its right half
3. Partition $\left(A_{L}, A_{R}, \frac{n}{2}\right)$
4. Rec-Selection-Sort $\left(A_{L}, \frac{n}{2}\right)$
5. Rec-Selection-Sort $\left(A_{R}, \frac{n}{2}\right)$
6. return

Figure 2: The recursive version of the selection sort algorithm.
Question 2. [25 Points] Parallel Recursive Selection Sort. When Pramod ${ }^{2}$ was a student, he designed a recursive version of the selection sort algorithm with improved I/O-complexity. Figure 2 shows the high-level structure of the serial version of the algorithm. This question asks you to parallelize it and derive its parallel performance bounds.

[^1](a) [10 Points] Parallelize the Partition function. You can simply put the spawn and sync keywords at appropriate locations inside the function in Figure 2 to show how to parallelize it. Analyze its work, span, parallelism, and parallel running time (under a greedy scheduler).
page intentionally left blank (use for your answers, if needed)
(b) [15 Points] Parallelize the Rec-Selection-Sort function. As in part (a), you can simply put the spawn and sync keywords at appropriate locations inside the funtion in Figure 2 to show how to parallelize it. Analyze its work, span, parallelism, and parallel running time (under a greedy scheduler).
page intentionally left blank (use for your answers, if needed)
page intentionally left blank (use for your answers, if needed)

```
Resize-Locker( L )
    . m}\leftarrowL.numItem
    if m>0 then
        allocate array newslots of size 2m
        copy the m items from L.slots to the first m slots of newslots and set the remaining m slots to NIL
    else
        newslots }\leftarrow NI
    endif
    free L.slots
    L.slots}\leftarrow\mathrm{ newslots
    L.numSlots }\leftarrow2
```

Locker-Store (L, x)
. if L.numSlots $=0$ then
allocate L.slots with 2 slots
L.numSlots $\leftarrow 2$, L.numItems $\leftarrow 0$
L.slots $[1] \leftarrow$ NIL, L.slots $[2] \leftarrow$ NIL
endif
$f \leftarrow$ FALSE,$n \leftarrow$ L.numSlots
while $f=$ FALSE do
$k \leftarrow \operatorname{Random}(1, n)$
if L.slots $[k]=$ NIL then
$f \leftarrow$ True
L.slots $[k] \leftarrow x$
L.numItems \leftarrow L.numItems +1
endif
endwhile
if L.numItems $\geq \frac{2}{3} \times$ L.numSlots then
Resize-Locker (L)
endif

```
Locker-Retrieve( L )
```

```
if L.numItems \(=0\) then \(x \leftarrow\) NIL
    else
        \(f \leftarrow\) FALSE,\(n \leftarrow\) L.numSlots
        while \(f=\) FALSE do
            \(k \leftarrow \operatorname{Random}(1, n)\)
            if \(L\).slots \([k] \neq\) NIL then
                \(f \leftarrow\) True
                \(x \leftarrow\) L.slots \([k]\)
                L.slots \([k] \leftarrow\) NIL
                L.numItems \(\leftarrow\) L.numItems -1
            endif
        endwhile
    endif
    if L.numItems \(\leq \frac{1}{3} \times\) L.numSlots then
        Resize-Locker( \(L\) )
    endif
    return \(x\)
```

Figure 3: The Locker data structure.
Question 3. [25 Points] Store-Retrieve Lockers. Figure 3 shows the locker data structure L that maintains a resizable array L.slots and supports the following two operations.

- Locker-Store $L(x)$ stores an item x in a random empty slot of L.slots, and
- Locker-Retrieve (L) removes an item from a random nonempty slot of L.slots.

Each slot stores at most one item. The total number of slots in L.slots is given by L.numSlots,
and the number of items currently stored in the data structure is given by L.numItems.
The Resize-Locker(L) function resizes L.slots as soon as one of the following two events occurs.

- Locker-Store(L, x) detects immediately after inserting x that

$$
\text { L.numItems } \geq \frac{2}{3} \times \text { L.numSlots } \quad(\text { see Line } 15)
$$

- Locker-Retrieve(L) detects immediately after removing an item that

$$
\text { L.numItems } \leq \frac{1}{3} \times \text { L.numSlots } \quad(\text { see Line } 14)
$$

In both cases, L.slots is resized to L.numSlots $=2 \times$ L.numItems. Observe that the smallest non-zero size L.slots can have is 2 (see Lines 1-5 of Locker-Store).
To insert an item into L, Locker-Store repeatedly chooses a slot in L.slot uniformly at random until it finds an empty slot and stores the item in that slot (see Lines 6-14).
To retrieve an item from L, Locker-Retrieve repeatedly chooses a slot in L.slot uniformly at random until it finds a nonempty slot and removes the item from that slot (see Lines 3-12).
(a) [5 Points] Show that the expected number of times the while loop in Lines 7-14 of LockerStore needs to execute to find an empty spot in L.slots is $\frac{n}{n-m}$, where $n=$ L.numSlots and $m=$ L.numItems at the time of execution. Also, show that the loop finds an empty spot in $\mathcal{O}(\log n)$ iterations w.h.p. in n.
page intentionally left blank (use for your answers, if needed)
(b) [5 Points] Show that the expected number of times the while loop in Lines 4-12 of LockerRetrieve needs to execute to find a nonempty spot in L.slots is $\frac{n}{m}$, where $n=$ L.numSlots and $m=$ L.numItems at the time of execution. Also, show that the loop finds a nonempty spot in $\mathcal{O}(\log n)$ iterations w.h.p. in n.
(c) [3 Points] In order to find the amortized costs of the operations performed on L we will use the following potential function:

$$
\Phi\left(L_{i}\right)=c \times \mid 2 \times \text { L.numItems }- \text { L.numSlots } \mid,
$$

where, L_{i} is the state of L after the i-th $(i \geq 0)$ operation is performed on it assuming that L was initially empty, and c is a positive constant.
Argue that this potential function guarantees that the total amortized cost will always be an upper bound on the total actual cost.
(d) [12 Points] Use the potential function from part (c) and your results from parts (a) and (b) to show that the amortized costs of

- Resize-Locker is 0 ,
- Locker-Store is $\mathcal{O}(\log n)$ w.h.p. in n, and
- Locker-Retrieve is $\mathcal{O}(\log n)$ w.h.p. in n, where, $n=$ L.numSlots at the time of execution.
page intentionally left blank (use for your answers, if needed)
page intentionally left blank (use for your answers, if needed)

Appendix I: Useful Tail Bounds

Markov's Inequality. Let X be a random variable that assumes only nonnegative values. Then for all $\delta>0, \operatorname{Pr}[X \geq \delta] \leq \frac{E[X]}{\delta}$.

Chebyshev's Inequality. Let X be a random variable with a finite mean $E[X]$ and a finite variance $\operatorname{Var}[X]$. Then for any $\delta>0, \operatorname{Pr}[|X-E[X]| \geq \delta] \leq \frac{\operatorname{Var}[X]}{\delta^{2}}$.

Chernoff Bounds. Let X_{1}, \ldots, X_{n} be independent Poisson trials, that is, each X_{i} is a 0-1 random variable with $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$ for some p_{i}. Let $X=\sum_{i=1}^{n} X_{i}$ and $\mu=E[X]$. Following bounds hold: Lower Tail:

- for $0<\delta<1, \operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}$
- for $0<\delta<1, \operatorname{Pr}[X \leq(1-\delta) \mu] \leq e^{-\frac{\mu \delta^{2}}{2}}$
- for $0<\gamma<\mu, \operatorname{Pr}[X \leq \mu-\gamma] \leq e^{-\frac{\gamma^{2}}{2 \mu}}$

Upper Tail:

- for any $\delta>0, \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$
- for $0<\delta<1, \operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\frac{\mu \delta^{2}}{3}}$
- for $0<\gamma<\mu, \operatorname{Pr}[X \geq \mu+\gamma] \leq e^{-\frac{\gamma^{2}}{3 \mu}}$

Appendix II: The Master Theorem

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

where, $\frac{n}{b}$ is interpreted to mean either $\left\lfloor\frac{n}{b}\right\rfloor$ or $\left\lceil\frac{n}{b}\right\rceil$. Then $T(n)$ has the following bounds:
Case 1: If $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
Case 2: If $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ for some constant $k \geq 0$, then $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$.
Case 3: If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

[^0]: ${ }^{1}$ Let us not confuse these with "Polite Numbers" which are also called "Staircase Numbers."

[^1]: ${ }^{2}$ Pramod Ganapathi - currently a faculty member of SBUCS.

