
CSE548, AMS542: Analysis of Algorithms, Fall 2023 Date: Nov 30, 2023

Midterm Exam 2
( 7:05 PM – 8:20 PM : 75 Minutes )

• This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in midterm exam 1 and midterm exam 2. The higher of the two scores will be
worth 30% of your grade, and the lower one 15%.

• There are three (3) questions worth 75 points in total. Please answer all of them in the spaces
provided.

• There are twenty-two (22) pages, including nine (9) blank pages and one (1) page of appen-
dices. Please use the blank pages if you need additional space for your answers.

• The exam is open slides and open notes (including scribe notes). But no books and
no computers are allowed.

Good Luck!

Question Pages Parts Points Score

1. “Probabilistic” Staircase Numbers 2 – 6 (a) – (c) 5 + 10 + 10 = 25
2. Parallel Recursive Selection Sort 8 – 11 (a) – (b) 10 + 15 = 25
3. Store-Retrieve Lockers 14 – 19 (a) – (d) 5 + 5 + 3 + 12 = 25

Total 75

Name:

SBU ID:



Prob-Staircase( n )

1. if n < 1 then x← 0

2. elseif n = 1 then x← 1

3. else

4. r ← Random( ) {choose a real number

uniformly at random from (0, 1]}
5. if r ≤ 0.5 then

6. x← Prob-Staircase( n− 1 )

7. else

8. x← Prob-Staircase( n− 2 )

9. endif

10. endif

11. return x+ 1

Figure 1: When called with an integer n ≥ 0 as a
parameter, Prob-Staircase( n ) will return what we
will call the n-th “probabilistic” staircase number.

Question 1. [ 25 Points ] “Probabilistic” Staircase Numbers. The function given in Figure
1 computes what we will call “probabilistic” staircase numbers1. When supplied with an integer
n ≥ 0 as a parameter, it will return the n-th probabilistic staircase number sn. Clearly, s0 = 0 and
s1 = 1, but for n > 1, sn does not have a fixed value.

This question asks you to compute the expected running time of Prob-Staircase( n ) for n ≥ 0.

(a) [ 5 Points ] Let tn be the expected running time of Prob-Staircase( n ) for n ≥ 0. We
claim that tn can be described by the following recurrence relation, where c1 and c2 are
positive constants:

tn ≤
{

c1, if n ≤ 1,
1
2 tn−1 +

1
2 tn−2 + c2, otherwise,

Justify this recurrence.

1Let us not confuse these with “Polite Numbers” which are also called “Staircase Numbers.”
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(b) [ 10 Points ] Let us simplify the recurrence from part (a) to the following (by choosing
c1 = c2 = 1 and replacing the ‘≤’ with an ‘=’.)

tn =

{
1, if n ≤ 1,
1
2 tn−1 +

1
2 tn−2 + 1, otherwise,

Let T (z) be the ordinary generating function for tn, i.e.,

T (z) = t0 + t1z + t2z
2 + . . .+ tnz

n + . . .

Show that T (z) = z2−z+2
(z−1)2(z+2)

.
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(c) [ 10 Points ] We observe the following (you do not need to prove it):

z2 − z + 2

(z − 1)2(z + 2)
=

2

3(1− z)2
− 1

9(1− z)
+

4

9(1 + z
2)
.

Use the above and part (b) to show that

tn =
1

9

(
6n+ 5 + 4

(
−1

2

)n)
.
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Partition( A, B, n )

Input: Two non-overlapping arrays A and B containing n numbers each, where n is a power of two.

Output: Rearrange the numbers in A and B such that no number in A is larger than any number in B.

1. if n = 1 then

2. if the number in A is larger than the one in B then swap the two numbers

3. else

4. let AL (resp. BL) denote the left half of A (resp. B) and let AR (resp. BR) denote its right half

5. Partition
(
AL, BL,

n
2

)
6. Partition

(
AR, BR,

n
2

)
7. Partition

(
AL, BR,

n
2

)
8. Partition

(
AR, BL,

n
2

)
9. return

Rec-Selection-Sort( A, n )

Input: An array A containing n numbers, where n is a power of two.

Output: The numbers in A rearranged in nondecreasing order of value.

1. if n > 1 then

2. let AL denote the left half of A and let AR denote its right half

3. Partition
(
AL, AR,

n
2

)
4. Rec-Selection-Sort

(
AL,

n
2

)
5. Rec-Selection-Sort

(
AR,

n
2

)
6. return

Figure 2: The recursive version of the selection sort algorithm.

Question 2. [ 25 Points ] Parallel Recursive Selection Sort. When Pramod2 was a student,
he designed a recursive version of the selection sort algorithm with improved I/O-complexity. Figure
2 shows the high-level structure of the serial version of the algorithm. This question asks you to
parallelize it and derive its parallel performance bounds.

2Pramod Ganapathi – currently a faculty member of SBUCS.
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(a) [ 10 Points ] Parallelize the Partition function. You can simply put the spawn and sync
keywords at appropriate locations inside the function in Figure 2 to show how to parallelize
it. Analyze its work, span, parallelism, and parallel running time (under a greedy scheduler).
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(b) [ 15 Points ] Parallelize the Rec-Selection-Sort function. As in part (a), you can simply
put the spawn and sync keywords at appropriate locations inside the funtion in Figure 2
to show how to parallelize it. Analyze its work, span, parallelism, and parallel running time
(under a greedy scheduler).
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Resize-Locker( L )

1. m← L.numItems

2. if m > 0 then

3. allocate array newslots of size 2m

4. copy the m items from L.slots to the first m slots of newslots and set the remaining m slots to nil

5. else

6. newslots← nil

7. endif

8. free L.slots

9. L.slots← newslots

10. L.numSlots← 2m

Locker-Store( L, x )

1. if L.numSlots = 0 then

2. allocate L.slots with 2 slots

3. L.numSlots← 2, L.numItems← 0

4. L.slots[1]← nil, L.slots[2]← nil

5. endif

6. f ← False , n← L.numSlots

7. while f = False do

8. k ← Random( 1, n )

9. if L.slots[k] = nil then

10. f ← True

11. L.slots[k]← x

12. L.numItems← L.numItems+ 1

13. endif

14. endwhile

15. if L.numItems ≥ 2
3
× L.numSlots then

16. Resize-Locker( L )

17. endif

Locker-Retrieve( L )

1. if L.numItems = 0 then x← nil

2. else

3. f ← False , n← L.numSlots

4. while f = False do

5. k ← Random( 1, n )

6. if L.slots[k] ̸= nil then

7. f ← True

8. x← L.slots[k]

9. L.slots[k]← nil

10. L.numItems← L.numItems− 1

11. endif

12. endwhile

13. endif

14. if L.numItems ≤ 1
3
× L.numSlots then

15. Resize-Locker( L )

16. endif

17. return x

Figure 3: The Locker data structure.

Question 3. [ 25 Points ] Store-Retrieve Lockers. Figure 3 shows the locker data structure
L that maintains a resizable array L.slots and supports the following two operations.

− Locker-Store( L, x ) stores an item x in a random empty slot of L.slots, and

− Locker-Retrieve( L ) removes an item from a random nonempty slot of L.slots.

Each slot stores at most one item. The total number of slots in L.slots is given by L.numSlots,
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and the number of items currently stored in the data structure is given by L.numItems.

The Resize-Locker( L ) function resizes L.slots as soon as one of the following two events occurs.

− Locker-Store( L, x ) detects immediately after inserting x that

L.numItems ≥ 2

3
× L.numSlots (see Line 15)

− Locker-Retrieve( L ) detects immediately after removing an item that

L.numItems ≤ 1

3
× L.numSlots (see Line 14)

In both cases, L.slots is resized to L.numSlots = 2 × L.numItems. Observe that the smallest
non-zero size L.slots can have is 2 (see Lines 1–5 of Locker-Store).

To insert an item into L, Locker-Store repeatedly chooses a slot in L.slot uniformly at random
until it finds an empty slot and stores the item in that slot (see Lines 6–14).

To retrieve an item from L, Locker-Retrieve repeatedly chooses a slot in L.slot uniformly at
random until it finds a nonempty slot and removes the item from that slot (see Lines 3–12).

(a) [ 5 Points ] Show that the expected number of times thewhile loop in Lines 7–14 of Locker-
Store needs to execute to find an empty spot in L.slots is n

n−m , where n = L.numSlots and
m = L.numItems at the time of execution. Also, show that the loop finds an empty spot in
O (log n) iterations w.h.p. in n.
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(b) [ 5 Points ] Show that the expected number of times thewhile loop in Lines 4–12 of Locker-
Retrieve needs to execute to find a nonempty spot in L.slots is n

m , where n = L.numSlots
and m = L.numItems at the time of execution. Also, show that the loop finds a nonempty
spot in O (log n) iterations w.h.p. in n.
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(c) [ 3 Points ] In order to find the amortized costs of the operations performed on L we will
use the following potential function:

Φ ( Li ) = c× | 2× L.numItems− L.numSlots |,

where, Li is the state of L after the i-th (i ≥ 0) operation is performed on it assuming that
L was initially empty, and c is a positive constant.

Argue that this potential function guarantees that the total amortized cost will always be an
upper bound on the total actual cost.

18



(d) [ 12 Points ] Use the potential function from part (c) and your results from parts (a) and
(b) to show that the amortized costs of

- Resize-Locker is 0,

- Locker-Store is O (log n) w.h.p. in n, and

- Locker-retrieve is O (log n) w.h.p. in n,

where, n = L.numSlots at the time of execution.
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Appendix I: Useful Tail Bounds

Markov’s Inequality. Let X be a random variable that assumes only nonnegative values. Then
for all δ > 0, Pr [X ≥ δ] ≤ E[X]

δ .

Chebyshev’s Inequality. Let X be a random variable with a finite mean E[X] and a finite

variance V ar[X]. Then for any δ > 0, Pr [|X − E[X]| ≥ δ] ≤ V ar[X]
δ2

.

Chernoff Bounds. Let X1, . . . , Xn be independent Poisson trials, that is, each Xi is a 0-1 random

variable with Pr[Xi = 1] = pi for some pi. Let X =
n∑

i=1

Xi and µ = E[X]. Following bounds hold:

Lower Tail:

– for 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ

– for 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−
µδ2

2

– for 0 < γ < µ, Pr [X ≤ µ− γ] ≤ e
− γ2

2µ

Upper Tail:

– for any δ > 0, Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ

– for 0 < δ < 1, Pr [X ≥ (1 + δ)µ] ≤ e−
µδ2

3

– for 0 < γ < µ, Pr [X ≥ µ+ γ] ≤ e
− γ2

3µ

Appendix II: The Master Theorem

Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T (n) be defined on the nonnegative
integers by the recurrence

T (n) =

{
Θ(1) , if n ≤ 1,
aT

(
n
b

)
+ f(n), otherwise,

where, n
b is interpreted to mean either

⌊
n
b

⌋
or

⌈
n
b

⌉
. Then T (n) has the following bounds:

Case 1: If f(n) = O
(
nlogb a−ϵ

)
for some constant ϵ > 0, then T (n) = Θ

(
nlogb a

)
.

Case 2: If f(n) = Θ
(
nlogb a logk n

)
for some constant k ≥ 0, then T (n) = Θ

(
nlogb a logk+1 n

)
.

Case 3: If f(n) = Ω
(
nlogb a+ϵ

)
for some constant ϵ > 0, and af

(
n
b

)
≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T (n) = Θ (f(n)).


