
1

CSE 548 / AMS 542: Analysis of Algorithms

Prerequisites Review 3
(Deterministic Quicksort

and Average-case Analysis)

Rezaul Chowdhury
Department of Computer Science

SUNY Stony Brook
Fall 2023

The Divide-and-Conquer Process in Merge Sort
Suppose we want to sort a typical subarray 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 .

DIVIDE: Split 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 at midpoint 𝑞𝑞 into two subarrays 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 and
𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟 of equal or almost equal length.

CONQUER: Recursively sort 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 and 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟 .

COMBINE: Merge the two sorted subarrays 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 and 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟
to obtain a longer sorted subarray 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 .

 The DIVIDE step is cheap ― takes only Θ 1 time.
 But the COMBINE step is costly ― takes Θ 𝑛𝑛 time, where 𝑛𝑛 is the
length of 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 .

2

The Divide-and-Conquer Process in Quicksort
Suppose we want to sort a typical subarray 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 .

DIVIDE: Partition 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 into two (possibly empty) subarrays
𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1 and 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟 and find index 𝑞𝑞 such that

• each element of 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1 is ≤ 𝐴𝐴 𝑞𝑞 , and
• each element of 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟 is ≥ 𝐴𝐴 𝑞𝑞 .

CONQUER: Recursively sort 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1 and 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟 .

COMBINE: Since 𝐴𝐴 𝑞𝑞 is “equal or larger” and “equal or smaller” than
everything to its left and right, respectively, and both left and right
parts are sorted, subarray 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 is also sorted.

 The COMBINE step is cheap ― takes only Θ 1 time.
 But the DIVIDE step is costly ― takes Θ 𝑛𝑛 time, where 𝑛𝑛 is the
length of 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 . 3

Quicksort
Input: A subarray 𝐴𝐴[𝑝𝑝 ∶ 𝑟𝑟] of 𝑟𝑟 − 𝑝𝑝 + 1 numbers, where 𝑝𝑝 ≤ 𝑟𝑟.

Output: Elements of 𝐴𝐴[𝑝𝑝 ∶ 𝑟𝑟] rearranged in non-decreasing order of value.

QUICKSORT (A, p, r)

1. if 𝑝𝑝 < 𝑟𝑟 then

2. // partition 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 into 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1 and 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟 such that everything in

 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1 is ≤ 𝐴𝐴 𝑞𝑞 and everything in 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟 is ≥ 𝐴𝐴 𝑞𝑞

3. 𝑞𝑞 = PARTITION (A, p, r)

4. // recursively sort the left part

5. QUICKSORT (A, p, q ‒ 1)

6. // recursively sort the right part

7. QUICKSORT (A, q + 1, r)

4

Partition

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 1

𝑖𝑖 = 0

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 1

𝑖𝑖 = 0

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 2

𝑖𝑖 = 1

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 2

𝑖𝑖 = 1

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 3

𝑖𝑖 = 2

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 3

𝑖𝑖 = 2

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 4

𝑖𝑖 = 2

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 4

𝑖𝑖 = 2

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 5

𝑖𝑖 = 2

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 5

𝑖𝑖 = 2

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 5

𝑖𝑖 = 3

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 5

𝑖𝑖 = 3

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 6

𝑖𝑖 = 3

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 6

𝑖𝑖 = 3

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 7

𝑖𝑖 = 3

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 7

𝑖𝑖 = 3

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 8

𝑖𝑖 = 3

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 8

𝑖𝑖 = 3

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 8

𝑖𝑖 = 4

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 13 15 19 20 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 8

𝑖𝑖 = 4

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 13 15 19 20 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 9

𝑖𝑖 = 4

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 13 15 19 20 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 9

𝑖𝑖 = 4

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 13 15 19 20 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 10

𝑖𝑖 = 4

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 13 15 19 20 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 10

𝑖𝑖 = 4

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 13 15 19 20 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 10

𝑖𝑖 = 5

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 15 19 20 12 13 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 10

𝑖𝑖 = 5

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 15 19 20 12 13 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 11

𝑖𝑖 = 5

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 15 19 20 12 13 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 11

𝑖𝑖 = 5

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 15 19 20 12 13 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 11

𝑖𝑖 = 6

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 11

𝑖𝑖 = 6

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 12

𝑖𝑖 = 6

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 12

𝑖𝑖 = 6

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 13

𝑖𝑖 = 6

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 13

𝑖𝑖 = 6

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 14

𝑖𝑖 = 6

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 14

𝑖𝑖 = 6

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 14

𝑖𝑖 = 7

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 20 12 13 15 17 15 19 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑗𝑗 = 14

𝑖𝑖 = 7

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 20 12 13 15 17 15 19 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑖𝑖 = 7

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 20 12 13 15 17 15 19 10Input:

𝑥𝑥 = 𝐴𝐴 15
 = 10

𝑖𝑖 = 7

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 10 12 13 15 17 15 19 20Input:

𝑖𝑖 = 7

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition

46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 10 12 13 15 17 15 19 20Input:

𝑖𝑖 = 7

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥

Partition
Input: A subarray 𝐴𝐴[𝑝𝑝 ∶ 𝑟𝑟] of 𝑟𝑟 − 𝑝𝑝 + 1 numbers, where 𝑝𝑝 ≤ 𝑟𝑟.

Output: Elements of 𝐴𝐴[𝑝𝑝 ∶ 𝑟𝑟] are rearranged such that for some 𝑞𝑞 ∈ 𝑝𝑝, 𝑟𝑟
everything in 𝐴𝐴[𝑝𝑝 ∶ 𝑞𝑞 − 1] is ≤ 𝐴𝐴 𝑞𝑞 and everything in 𝐴𝐴[𝑞𝑞 + 1: 𝑟𝑟] is ≥
𝐴𝐴 𝑞𝑞 . Index 𝑞𝑞 is returned.

PARTITION (A, p, r)

1. 𝑥𝑥 = 𝐴𝐴 𝑟𝑟

2. 𝑖𝑖 = 𝑝𝑝 − 1

3. for 𝑗𝑗 = 𝑝𝑝 to 𝑟𝑟 − 1

4. if 𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

5. 𝑖𝑖 = 𝑖𝑖 + 1

6. exchange 𝐴𝐴 𝑖𝑖 with 𝐴𝐴 𝑗𝑗

7. exchange 𝐴𝐴 𝑖𝑖 + 1 with 𝐴𝐴 𝑟𝑟

8. return 𝑖𝑖 + 1

47

Running Time of Partition
Input: A subarray 𝐴𝐴[𝑝𝑝 ∶ 𝑟𝑟] of 𝑟𝑟 − 𝑝𝑝 + 1 numbers, where 𝑝𝑝 ≤ 𝑟𝑟.

Output: Elements of 𝐴𝐴[𝑝𝑝 ∶ 𝑟𝑟] are rearranged such that for some 𝑞𝑞 ∈ 𝑝𝑝, 𝑟𝑟
everything in 𝐴𝐴[𝑝𝑝 ∶ 𝑞𝑞 − 1] is ≤ 𝐴𝐴 𝑞𝑞 and everything in 𝐴𝐴[𝑞𝑞 + 1: 𝑟𝑟] is ≥
𝐴𝐴 𝑞𝑞 . Index 𝑞𝑞 is returned.

Let 𝑛𝑛 = 𝑟𝑟 − 𝑝𝑝 + 1.

The loop of lines 3‒6 takes
Θ 𝑟𝑟 − 1 − 𝑝𝑝 + 1 = Θ 𝑛𝑛 time.

Lines 1, 2, 7 and 8 take Θ 1 time each.

Hence, the overall running time is Θ 𝑛𝑛 .

48

Running Time of Partition
Input: A subarray 𝐴𝐴[𝑝𝑝 ∶ 𝑟𝑟] of 𝑟𝑟 − 𝑝𝑝 + 1 numbers, where 𝑝𝑝 ≤ 𝑟𝑟.

Output: Elements of 𝐴𝐴[𝑝𝑝 ∶ 𝑟𝑟] are rearranged such that for some 𝑞𝑞 ∈ 𝑝𝑝, 𝑟𝑟
everything in 𝐴𝐴[𝑝𝑝 ∶ 𝑞𝑞 − 1] is ≤ 𝐴𝐴 𝑞𝑞 and everything in 𝐴𝐴[𝑞𝑞 + 1: 𝑟𝑟] is ≥
𝐴𝐴 𝑞𝑞 . Index 𝑞𝑞 is returned.

Let 𝑛𝑛 = 𝑟𝑟 − 𝑝𝑝 + 1.

The loop of lines 3‒6 takes
Θ 𝑟𝑟 − 1 − 𝑝𝑝 + 1 = Θ 𝑛𝑛 time.

Lines 1, 2, 7 and 8 take Θ 1 time each.

Hence, the overall running time is Θ 𝑛𝑛 .

49

Quicksort

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

item determined to be at correct sorted location

Quicksort

51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

Partition 𝐴𝐴 1. . 15 around 10

item determined to be at correct sorted location

Quicksort

52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 1. . 15 around 10

item determined to be at correct sorted location

Quicksort

53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 1. . 7 around 5

item determined to be at correct sorted location

Quicksort

54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 4 3 5 6 9 6 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 1. . 7 around 5

item determined to be at correct sorted location

Quicksort

55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 4 3 5 6 9 6 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 1. . 3 around 3

item determined to be at correct sorted location

Quicksort

56

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 9 6 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 1. . 3 around 3

item determined to be at correct sorted location

Quicksort

57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 9 6 10 12 13 15 17 15 19 20Input:

𝐴𝐴 1. . 1 is trivially sorted

item determined to be at correct sorted location

Quicksort

58

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 9 6 10 12 13 15 17 15 19 20Input:

𝐴𝐴 1. . 1 is trivially sorted

item determined to be at correct sorted location

Quicksort

59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 9 6 10 12 13 15 17 15 19 20Input:

𝐴𝐴 3. . 3 is trivially sorted

item determined to be at correct sorted location

Quicksort

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 9 6 10 12 13 15 17 15 19 20Input:

𝐴𝐴 3. . 3 is trivially sorted

item determined to be at correct sorted location

Quicksort

61

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 9 6 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 5. . 7 around 6

item determined to be at correct sorted location

Quicksort

62

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 5. . 7 around 6

item determined to be at correct sorted location

Quicksort

63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

𝐴𝐴 5. . 5 is trivially sorted

item determined to be at correct sorted location

Quicksort

64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

𝐴𝐴 5. . 5 is trivially sorted

item determined to be at correct sorted location

Quicksort

65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

𝐴𝐴 7. . 7 is trivially sorted

item determined to be at correct sorted location

Quicksort

66

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

𝐴𝐴 7. . 7 is trivially sorted

item determined to be at correct sorted location

Quicksort

67

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 9. . 15 around 20

item determined to be at correct sorted location

Quicksort

68

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 9. . 15 around 20

item determined to be at correct sorted location

Quicksort

69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 9. . 14 around 19

item determined to be at correct sorted location

Quicksort

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 9. . 14 around 19

item determined to be at correct sorted location

Quicksort

71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 9. . 13 around 15

item determined to be at correct sorted location

Quicksort

72

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

Partition 𝐴𝐴 9. . 13 around 15

item determined to be at correct sorted location

Quicksort

73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

Partition 𝐴𝐴 9. . 11 around 15

item determined to be at correct sorted location

Quicksort

74

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

Partition 𝐴𝐴 9. . 11 around 15

item determined to be at correct sorted location

Quicksort

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

Partition 𝐴𝐴 9. . 10 around 13

item determined to be at correct sorted location

Quicksort

76

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

Partition 𝐴𝐴 9. . 10 around 13

item determined to be at correct sorted location

Quicksort

77

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

𝐴𝐴 9. . 9 is trivially sorted

item determined to be at correct sorted location

Quicksort

78

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

𝐴𝐴 9. . 9 is trivially sorted

item determined to be at correct sorted location

Quicksort

79

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

𝐴𝐴 13. . 13 is trivially sorted

item determined to be at correct sorted location

Quicksort

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

𝐴𝐴 13. . 13 is trivially sorted

item determined to be at correct sorted location

Quicksort

81

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

item determined to be at correct sorted location

𝐴𝐴 1. . 15 is now fully sorted

Quicksort
Input: A subarray 𝐴𝐴[𝑝𝑝 ∶ 𝑟𝑟] of 𝑟𝑟 − 𝑝𝑝 + 1 numbers, where 𝑝𝑝 ≤ 𝑟𝑟.

Output: Elements of 𝐴𝐴[𝑝𝑝 ∶ 𝑟𝑟] rearranged in non-decreasing order of value.

QUICKSORT (A, p, r)

1. if 𝑝𝑝 < 𝑟𝑟 then

2. // partition 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 into 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1 and 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟 such that everything in

 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1 is ≤ 𝐴𝐴 𝑞𝑞 and everything in 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟 is ≥ 𝐴𝐴 𝑞𝑞

3. 𝑞𝑞 = PARTITION (A, p, r)

4. // recursively sort the left part

5. QUICKSORT (A, p, q ‒ 1)

6. // recursively sort the right part

7. QUICKSORT (A, q + 1, r)

82

Worst-case Running Time of Quicksort

𝑇𝑇 𝑛𝑛 = �
Θ 1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1,

max
𝑝𝑝≤𝑞𝑞≤𝑟𝑟

𝑇𝑇 𝑞𝑞 − 𝑝𝑝 + 𝑇𝑇 𝑟𝑟 − 𝑞𝑞 + Θ 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑛𝑛 > 1.

𝑇𝑇 𝑛𝑛 = �
Θ 1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1,

max
1≤𝑘𝑘≤𝑛𝑛

𝑇𝑇 𝑘𝑘 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑘𝑘 + Θ 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑛𝑛 > 1.

Replacing 𝑞𝑞 with 𝑘𝑘 + 𝑝𝑝 − 1, we get:

Assuming 𝑛𝑛 = 𝑟𝑟 − 𝑝𝑝 + 1, the worst-case running time of quicksort:

83

Worst-case Running Time of Quicksort (Upper Bound)
For 𝑛𝑛 > 1 and a constant 𝑐𝑐 > 0,

 𝑇𝑇 𝑛𝑛 = max
1≤𝑘𝑘≤𝑛𝑛

𝑇𝑇 𝑘𝑘 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑘𝑘 + 𝑐𝑐𝑛𝑛

Our guess for upper bound: 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2 for constant 𝑐𝑐1 > 0.
Using this bound on the right side of the recurrence equation, we get.

 𝑇𝑇 𝑛𝑛 ≤ max
1≤𝑘𝑘≤𝑛𝑛

𝑐𝑐1 𝑘𝑘 − 1 2 + 𝑐𝑐1 𝑛𝑛 − 𝑘𝑘 2 + 𝑐𝑐𝑛𝑛

 ⇒ 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1 max
1≤𝑘𝑘≤𝑛𝑛

𝑘𝑘 − 1 2 + 𝑛𝑛 − 𝑘𝑘 2 + 𝑐𝑐𝑛𝑛

But 𝑘𝑘 − 1 2 + 𝑛𝑛 − 𝑘𝑘 2 reaches its maximum value for 𝑘𝑘 = 1 and 𝑘𝑘 = 𝑛𝑛.
Hence,

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1 1 − 1 2 + 𝑛𝑛 − 1 2 + 𝑐𝑐𝑛𝑛
 ⇒ 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1 𝑛𝑛 − 1 2 + 𝑐𝑐𝑛𝑛
 ⇒ 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2 − 𝑐𝑐1 2𝑛𝑛 − 1 − 𝑐𝑐𝑛𝑛

84

But for 𝑐𝑐1 ≥ 𝑐𝑐, we have,
 𝑐𝑐1 2𝑛𝑛 − 1 ≥ 𝑐𝑐 2𝑛𝑛 − 1
 ⇒ 𝑐𝑐1 2𝑛𝑛 − 1 ≥ 2𝑐𝑐𝑛𝑛 − 𝑐𝑐
 ⇒ 𝑐𝑐1 2𝑛𝑛 − 1 − 𝑐𝑐𝑛𝑛 ≥ 𝑐𝑐𝑛𝑛 − 𝑐𝑐

But 𝑛𝑛 ≥ 1 ⇒ 𝑐𝑐𝑛𝑛 ≥ 𝑐𝑐 ⇒ 𝑐𝑐𝑛𝑛 − 𝑐𝑐 ≥ 0, and thus
 𝑐𝑐1 2𝑛𝑛 − 1 − 𝑐𝑐𝑛𝑛 ≥ 0

⇒ − 𝑐𝑐1 2𝑛𝑛 − 1 − 𝑐𝑐𝑛𝑛 ≤ 0
 ⇒ 𝑐𝑐1𝑛𝑛2 − 𝑐𝑐1 2𝑛𝑛 − 1 − 𝑐𝑐𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2

But 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2 − 𝑐𝑐1 2𝑛𝑛 − 1 − 𝑐𝑐𝑛𝑛 .

Hence, 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2 for 𝑐𝑐1 ≥ 𝑐𝑐.

Worst-case Running Time of Quicksort (Upper Bound)

85

For 𝑛𝑛 > 1 and a constant 𝑐𝑐 > 0,

 𝑇𝑇 𝑛𝑛 = max
1≤𝑘𝑘≤𝑛𝑛

𝑇𝑇 𝑘𝑘 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑘𝑘 + 𝑐𝑐𝑛𝑛

Our guess for lower bound: 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2𝑛𝑛2 for constant 𝑐𝑐2 > 0.
Using this bound on the right side of the recurrence equation, we get.

 𝑇𝑇 𝑛𝑛 ≥ max
1≤𝑘𝑘≤𝑛𝑛

𝑐𝑐2 𝑘𝑘 − 1 2 + 𝑐𝑐1 𝑛𝑛 − 𝑘𝑘 2 + 𝑐𝑐𝑛𝑛

 ⇒ 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2 max
1≤𝑘𝑘≤𝑛𝑛

𝑘𝑘 − 1 2 + 𝑛𝑛 − 𝑘𝑘 2 + 𝑐𝑐𝑛𝑛

But 𝑘𝑘 − 1 2 + 𝑛𝑛 − 𝑘𝑘 2 reaches its maximum value for 𝑘𝑘 = 1 and 𝑘𝑘 = 𝑛𝑛.
Hence,

 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2 1 − 1 2 + 𝑛𝑛 − 1 2 + 𝑐𝑐𝑛𝑛
 ⇒ 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2 𝑛𝑛 − 1 2 + 𝑐𝑐𝑛𝑛
 ⇒ 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2𝑛𝑛2 + 𝑐𝑐𝑛𝑛 − 𝑐𝑐2 2𝑛𝑛 − 1

Worst-case Running Time of Quicksort (Lower Bound)

86

But for 𝑐𝑐2 ≤
𝑐𝑐
2
, we have,

 𝑐𝑐2 2𝑛𝑛 − 1 ≤ 𝑐𝑐
2
2𝑛𝑛 − 1

 ⇒ 𝑐𝑐2 2𝑛𝑛 − 1 ≤ 𝑐𝑐𝑛𝑛 − 𝑐𝑐
2

 ⇒ 𝑐𝑐𝑛𝑛 − 𝑐𝑐2 2𝑛𝑛 − 1 ≥ 𝑐𝑐
2

But 𝑐𝑐 > 0, and thus
 𝑐𝑐𝑛𝑛 − 𝑐𝑐2 2𝑛𝑛 − 1 > 0

⇒ 𝑐𝑐2𝑛𝑛2 + 𝑐𝑐𝑛𝑛 − 𝑐𝑐2 2𝑛𝑛 − 1 > 𝑐𝑐2𝑛𝑛2

But 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2𝑛𝑛2 + 𝑐𝑐𝑛𝑛 − 𝑐𝑐2 2𝑛𝑛 − 1 .

Hence, 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2𝑛𝑛2 for 𝑐𝑐2 ≤
𝑐𝑐
2
.

Worst-case Running Time of Quicksort (Lower Bound)

87

We have proved that
 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2 for 𝑐𝑐1 ≥ 𝑐𝑐,

 and 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2𝑛𝑛2 for 𝑐𝑐2 ≤
𝑐𝑐
2
.

Worst-case Running Time of Quicksort (Tight Bound)

Thus 𝑐𝑐2𝑛𝑛2 ≤ 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2 for constants 𝑐𝑐1 ≥ 𝑐𝑐 and 𝑐𝑐2 ≤
𝑐𝑐
2
.

Hence, 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛2 .

88

[Optional]
Average Case

Running Time of Quicksort

89

Average Case Running Time of Quicksort

𝑇𝑇 𝑛𝑛 = �
Θ 1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1,

1
𝑛𝑛 �
1≤𝑘𝑘≤𝑛𝑛

𝑇𝑇 𝑘𝑘 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑘𝑘 + Θ 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑛𝑛 > 1.

90

Average Case Running Time of Quicksort
For 𝑛𝑛 > 1 and a constant 𝑐𝑐 > 0,

 𝑇𝑇 𝑛𝑛 = 1
𝑛𝑛
∑1≤𝑘𝑘≤𝑛𝑛 𝑇𝑇 𝑘𝑘 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑘𝑘 + 𝑐𝑐𝑛𝑛

 ⇒ 𝑛𝑛𝑇𝑇 𝑛𝑛 = ∑1≤𝑘𝑘≤𝑛𝑛 𝑇𝑇 𝑘𝑘 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑘𝑘 + 𝑐𝑐𝑛𝑛2
 ⇒ 𝑛𝑛𝑇𝑇 𝑛𝑛 = 2∑0≤𝑘𝑘≤𝑛𝑛−1 𝑇𝑇 𝑘𝑘 + 𝑐𝑐𝑛𝑛2 ⋯ 1

Replacing 𝑛𝑛 with 𝑛𝑛 − 1,
 ⇒ 𝑛𝑛 − 1 𝑇𝑇 𝑛𝑛 − 1 = 2∑0≤𝑘𝑘≤𝑛𝑛−2 𝑇𝑇 𝑘𝑘 + 𝑐𝑐 𝑛𝑛 − 1 2 ⋯ 2

Subtracting equation 2 from equation 1 , we get
 𝑛𝑛𝑇𝑇 𝑛𝑛 − 𝑛𝑛 − 1 𝑇𝑇 𝑛𝑛 − 1 = 2𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐 2𝑛𝑛 − 1
 ⇒ 𝑛𝑛𝑇𝑇 𝑛𝑛 − 𝑛𝑛 + 1 𝑇𝑇 𝑛𝑛 − 1 = 𝑐𝑐 2𝑛𝑛 − 1

Dividing both sides by 𝑛𝑛 𝑛𝑛 + 1 , we get

 𝑇𝑇 𝑛𝑛
𝑛𝑛+1

− 𝑇𝑇 𝑛𝑛−1
𝑛𝑛

= 𝑐𝑐 2𝑛𝑛−1
𝑛𝑛 𝑛𝑛+1

91

Average Case Running Time of Quicksort

Assuming 𝑇𝑇 𝑛𝑛
𝑛𝑛+1

= 𝐴𝐴 𝑛𝑛 , we get from the equation from the previous slide,

 𝐴𝐴 𝑛𝑛 − 𝐴𝐴 𝑛𝑛 − 1 = 𝑐𝑐 2𝑛𝑛−1
𝑛𝑛 𝑛𝑛+1

 ⇒ 𝐴𝐴 𝑛𝑛 = 𝐴𝐴 𝑛𝑛 − 1 + 𝑐𝑐 2𝑛𝑛−1
𝑛𝑛 𝑛𝑛+1

 ⇒ 𝐴𝐴 𝑛𝑛 = 𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐
𝑛𝑛+1

− 𝑐𝑐
𝑛𝑛 𝑛𝑛+1

 ⇒ 𝐴𝐴 𝑛𝑛 < 𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐
𝑛𝑛+1

 ⇒ 𝐴𝐴 𝑛𝑛 < 𝐴𝐴 𝑛𝑛 − 2 + 2𝑐𝑐
𝑛𝑛

+ 2𝑐𝑐
𝑛𝑛+1

 ⇒ 𝐴𝐴 𝑛𝑛 < 𝐴𝐴 𝑛𝑛 − 3 + 2𝑐𝑐
𝑛𝑛−1

+ 2𝑐𝑐
𝑛𝑛

+ 2𝑐𝑐
𝑛𝑛+1

 ⇒ 𝐴𝐴 𝑛𝑛 < 𝐴𝐴 𝑛𝑛 − 𝑘𝑘 + 2𝑐𝑐
𝑛𝑛−𝑘𝑘+2

+ 2𝑐𝑐
𝑛𝑛−𝑘𝑘+3

+ ⋯+ 2𝑐𝑐
𝑛𝑛

+ 2𝑐𝑐
𝑛𝑛+1

 ⇒ 𝐴𝐴 𝑛𝑛 < 𝐴𝐴 1 + 2𝑐𝑐
3

+ 2𝑐𝑐
4

+ ⋯+ 2𝑐𝑐
𝑛𝑛

+ 2𝑐𝑐
𝑛𝑛+1

92

Average Case Running Time of Quicksort

Since 𝐴𝐴 1 = 𝑇𝑇 1
2

= Θ 1 , we get,

 ⇒ 𝐴𝐴 𝑛𝑛 < Θ 1 + 2𝑐𝑐 1
3

+ 1
4

+ ⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

 ⇒ 𝐴𝐴 𝑛𝑛 < Θ 1 + 2𝑐𝑐 1 + 1
2

+ 1
3

+ ⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

− 2𝑐𝑐 1 + 1
2

But 𝐻𝐻𝑛𝑛+1 = 1 + 1
2

+ 1
3

+ ⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

 is the 𝑛𝑛 + 1’st Harmonic Number,

and lim
𝑛𝑛→∞

𝐻𝐻𝑛𝑛+1 = ln 𝑛𝑛 + 1 + 𝛾𝛾, where 𝛾𝛾 ≈ 0.5772 is known as the

Euler-Mascheroni constant.
Hence, for 𝑛𝑛 → ∞: 𝐴𝐴 𝑛𝑛 < 2𝑐𝑐 ln 𝑛𝑛 + 1 + 𝛾𝛾 − 3𝑐𝑐 + Θ 1
 ⇒ 𝐴𝐴 𝑛𝑛 < 2𝑐𝑐 ln 𝑛𝑛 + 1 + Θ 1

 ⇒ 𝑇𝑇 𝑛𝑛
𝑛𝑛+1

< 2𝑐𝑐 ln 𝑛𝑛 + 1 + Θ 1

 ⇒ 𝑇𝑇 𝑛𝑛 < 2𝑐𝑐 𝑛𝑛 + 1 ln 𝑛𝑛 + 1 + Θ 𝑛𝑛
 ⇒ 𝑇𝑇 𝑛𝑛 = 𝑂𝑂 𝑛𝑛 log𝑛𝑛

93

[Optional]
Proof of Correctness

of Partition

94

Correctness of Partition
Input: A subarray 𝐴𝐴[𝑝𝑝 ∶ 𝑟𝑟] of 𝑟𝑟 − 𝑝𝑝 + 1 numbers, where 𝑝𝑝 ≤ 𝑟𝑟.

Output: Elements of 𝐴𝐴[𝑝𝑝 ∶ 𝑟𝑟] are rearranged such that for some 𝑞𝑞 ∈ 𝑝𝑝, 𝑟𝑟
everything in 𝐴𝐴[𝑝𝑝 ∶ 𝑞𝑞 − 1] is ≤ 𝐴𝐴 𝑞𝑞 and everything in 𝐴𝐴[𝑞𝑞 + 1: 𝑟𝑟] is ≥
𝐴𝐴 𝑞𝑞 . Index 𝑞𝑞 is returned.

Loop Invariant
At the start of each iteration of the
for loop of lines 3‒6, for any array
index 𝑘𝑘,

1. if 𝑝𝑝 ≤ 𝑘𝑘 ≤ 𝑖𝑖,
 then 𝐴𝐴 𝑘𝑘 ≤ 𝑥𝑥.

2. if 𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑗𝑗 − 1,
 then 𝐴𝐴 𝑘𝑘 > 𝑥𝑥.

3. if 𝑘𝑘 = 𝑟𝑟,
 then 𝐴𝐴 𝑘𝑘 = 𝑥𝑥.

95

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95

