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The Divide-and-Conquer Process in Merge Sort
Suppose we want to sort a typical subarray 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 .

DIVIDE: Split 𝐴𝐴 𝑝𝑝. . 𝑟𝑟  at midpoint 𝑞𝑞 into two subarrays 𝐴𝐴 𝑝𝑝. . 𝑞𝑞  and 
𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟  of equal or almost equal length.
 

CONQUER: Recursively sort 𝐴𝐴 𝑝𝑝. . 𝑞𝑞  and 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟 .     

COMBINE: Merge the two sorted subarrays 𝐴𝐴 𝑝𝑝. . 𝑞𝑞  and 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟  
to obtain a longer sorted subarray 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 .

       The DIVIDE step is cheap ― takes only Θ 1  time.
       But the COMBINE step is costly ― takes Θ 𝑛𝑛  time, where 𝑛𝑛 is the 
length of 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 .
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The Divide-and-Conquer Process in Quicksort
Suppose we want to sort a typical subarray 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 .

DIVIDE: Partition 𝐴𝐴 𝑝𝑝. . 𝑟𝑟  into two ( possibly empty ) subarrays 
𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1  and 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟  and find index 𝑞𝑞 such that 

• each element of 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1  is ≤ 𝐴𝐴 𝑞𝑞 , and
• each element of 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟  is ≥ 𝐴𝐴 𝑞𝑞 .

 

CONQUER: Recursively sort 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1  and 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟 . 

COMBINE: Since 𝐴𝐴 𝑞𝑞  is “equal or larger” and “equal or smaller” than 
everything to its left and right, respectively, and both left and right 
parts are sorted, subarray 𝐴𝐴 𝑝𝑝. . 𝑟𝑟  is also sorted.

       The COMBINE step is cheap ― takes only Θ 1  time.
       But the DIVIDE step is costly ― takes Θ 𝑛𝑛  time, where 𝑛𝑛 is the 
length of 𝐴𝐴 𝑝𝑝. . 𝑟𝑟 . 3



Quicksort
Input: A subarray 𝐴𝐴[ 𝑝𝑝 ∶ 𝑟𝑟 ] of 𝑟𝑟 − 𝑝𝑝 + 1 numbers, where 𝑝𝑝 ≤ 𝑟𝑟.
 

Output: Elements of 𝐴𝐴[ 𝑝𝑝 ∶ 𝑟𝑟 ] rearranged in non-decreasing order of value.

QUICKSORT ( A, p, r )

1.  if 𝑝𝑝 < 𝑟𝑟 then

2.      // partition 𝐴𝐴 𝑝𝑝. . 𝑟𝑟  into 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1  and 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟  such that everything in 

                 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1  is ≤ 𝐴𝐴 𝑞𝑞  and everything in 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟  is ≥ 𝐴𝐴 𝑞𝑞

3.      𝑞𝑞 = PARTITION ( A, p, r ) 

4.      // recursively sort the left part

5.      QUICKSORT ( A, p, q ‒ 1 )

6.      // recursively sort the right part

7.      QUICKSORT ( A, q + 1, r )
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Partition

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 1

𝑖𝑖 = 0

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 1

𝑖𝑖 = 0

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 2

𝑖𝑖 = 1

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 2

𝑖𝑖 = 1

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 3

𝑖𝑖 = 2

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 3

𝑖𝑖 = 2

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 4

𝑖𝑖 = 2

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 4

𝑖𝑖 = 2

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 5

𝑖𝑖 = 2

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 5

𝑖𝑖 = 2

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 5

𝑖𝑖 = 3

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 5

𝑖𝑖 = 3

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 6

𝑖𝑖 = 3

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 6

𝑖𝑖 = 3

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 7

𝑖𝑖 = 3

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 7

𝑖𝑖 = 3

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 8

𝑖𝑖 = 3

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 8

𝑖𝑖 = 3

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 20 13 15 19 6 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 8

𝑖𝑖 = 4

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 13 15 19 20 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 8

𝑖𝑖 = 4

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 13 15 19 20 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 9

𝑖𝑖 = 4

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 13 15 19 20 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 9

𝑖𝑖 = 4

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 13 15 19 20 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 10

𝑖𝑖 = 4

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 13 15 19 20 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 10

𝑖𝑖 = 4

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 13 15 19 20 12 6 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 10

𝑖𝑖 = 5

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 15 19 20 12 13 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 10

𝑖𝑖 = 5

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 15 19 20 12 13 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 11

𝑖𝑖 = 5

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 15 19 20 12 13 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 11

𝑖𝑖 = 5

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 15 19 20 12 13 3 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 11

𝑖𝑖 = 6

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 11

𝑖𝑖 = 6

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 12

𝑖𝑖 = 6

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 12

𝑖𝑖 = 6

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 13

𝑖𝑖 = 6

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 13

𝑖𝑖 = 6

𝐴𝐴 𝑗𝑗 > 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 14

𝑖𝑖 = 6

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 14

𝑖𝑖 = 6

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 19 20 12 13 15 17 15 5 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 14

𝑖𝑖 = 7

𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 20 12 13 15 17 15 19 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑗𝑗 = 14

𝑖𝑖 = 7

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 20 12 13 15 17 15 19 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑖𝑖 = 7

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 20 12 13 15 17 15 19 10Input:

𝑥𝑥 = 𝐴𝐴 15
   = 10

𝑖𝑖 = 7

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 10 12 13 15 17 15 19 20Input:

𝑖𝑖 = 7

swap

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition

46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 10 12 13 15 17 15 19 20Input:

𝑖𝑖 = 7

item known to be ≤ 𝑥𝑥
item known to be > 𝑥𝑥
item known to be at correct sorted location

item yet to be compared with 𝑥𝑥



Partition
Input: A subarray 𝐴𝐴[ 𝑝𝑝 ∶ 𝑟𝑟 ] of 𝑟𝑟 − 𝑝𝑝 + 1 numbers, where 𝑝𝑝 ≤ 𝑟𝑟.
 

Output: Elements of 𝐴𝐴[ 𝑝𝑝 ∶ 𝑟𝑟 ] are rearranged such that for some 𝑞𝑞 ∈ 𝑝𝑝, 𝑟𝑟  
everything in 𝐴𝐴[ 𝑝𝑝 ∶ 𝑞𝑞 − 1 ] is ≤ 𝐴𝐴 𝑞𝑞  and everything in 𝐴𝐴[ 𝑞𝑞 + 1: 𝑟𝑟 ] is ≥
𝐴𝐴 𝑞𝑞 . Index 𝑞𝑞 is returned.

PARTITION ( A, p, r )

1.  𝑥𝑥 = 𝐴𝐴 𝑟𝑟

2.  𝑖𝑖 = 𝑝𝑝 − 1 

3.  for 𝑗𝑗 = 𝑝𝑝 to 𝑟𝑟 − 1

4.      if 𝐴𝐴 𝑗𝑗 ≤ 𝑥𝑥

5.           𝑖𝑖 = 𝑖𝑖 + 1

6.           exchange 𝐴𝐴 𝑖𝑖  with 𝐴𝐴 𝑗𝑗

7.  exchange 𝐴𝐴 𝑖𝑖 + 1  with 𝐴𝐴 𝑟𝑟

8.  return 𝑖𝑖 + 1
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Running Time of Partition
Input: A subarray 𝐴𝐴[ 𝑝𝑝 ∶ 𝑟𝑟 ] of 𝑟𝑟 − 𝑝𝑝 + 1 numbers, where 𝑝𝑝 ≤ 𝑟𝑟.
 

Output: Elements of 𝐴𝐴[ 𝑝𝑝 ∶ 𝑟𝑟 ] are rearranged such that for some 𝑞𝑞 ∈ 𝑝𝑝, 𝑟𝑟  
everything in 𝐴𝐴[ 𝑝𝑝 ∶ 𝑞𝑞 − 1 ] is ≤ 𝐴𝐴 𝑞𝑞  and everything in 𝐴𝐴[ 𝑞𝑞 + 1: 𝑟𝑟 ] is ≥
𝐴𝐴 𝑞𝑞 . Index 𝑞𝑞 is returned.

Let 𝑛𝑛 = 𝑟𝑟 − 𝑝𝑝 + 1.

The loop of lines 3‒6 takes 
Θ 𝑟𝑟 − 1 − 𝑝𝑝 + 1 = Θ 𝑛𝑛  time. 

Lines 1, 2, 7 and 8 take Θ 1  time each.

Hence, the overall running time is Θ 𝑛𝑛 .
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Running Time of Partition
Input: A subarray 𝐴𝐴[ 𝑝𝑝 ∶ 𝑟𝑟 ] of 𝑟𝑟 − 𝑝𝑝 + 1 numbers, where 𝑝𝑝 ≤ 𝑟𝑟.
 

Output: Elements of 𝐴𝐴[ 𝑝𝑝 ∶ 𝑟𝑟 ] are rearranged such that for some 𝑞𝑞 ∈ 𝑝𝑝, 𝑟𝑟  
everything in 𝐴𝐴[ 𝑝𝑝 ∶ 𝑞𝑞 − 1 ] is ≤ 𝐴𝐴 𝑞𝑞  and everything in 𝐴𝐴[ 𝑞𝑞 + 1: 𝑟𝑟 ] is ≥
𝐴𝐴 𝑞𝑞 . Index 𝑞𝑞 is returned.

Let 𝑛𝑛 = 𝑟𝑟 − 𝑝𝑝 + 1.

The loop of lines 3‒6 takes 
Θ 𝑟𝑟 − 1 − 𝑝𝑝 + 1 = Θ 𝑛𝑛  time. 

Lines 1, 2, 7 and 8 take Θ 1  time each.

Hence, the overall running time is Θ 𝑛𝑛 .
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Quicksort

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

item determined to be at correct sorted location



Quicksort

51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 13 20 4 15 19 6 12 6 3 17 15 5 10Input:

Partition 𝐴𝐴 1. . 15  around 10

item determined to be at correct sorted location



Quicksort

52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 1. . 15  around 10

item determined to be at correct sorted location



Quicksort

53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 9 1 4 6 6 3 5 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 1. . 7  around 5

item determined to be at correct sorted location



Quicksort

54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 4 3 5 6 9 6 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 1. . 7  around 5

item determined to be at correct sorted location



Quicksort

55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 4 3 5 6 9 6 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 1. . 3  around 3

item determined to be at correct sorted location



Quicksort

56

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 9 6 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 1. . 3  around 3

item determined to be at correct sorted location



Quicksort

57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 9 6 10 12 13 15 17 15 19 20Input:

𝐴𝐴 1. . 1  is trivially sorted

item determined to be at correct sorted location



Quicksort

58

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 9 6 10 12 13 15 17 15 19 20Input:

𝐴𝐴 1. . 1  is trivially sorted

item determined to be at correct sorted location



Quicksort

59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 9 6 10 12 13 15 17 15 19 20Input:

𝐴𝐴 3. . 3  is trivially sorted

item determined to be at correct sorted location



Quicksort

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 9 6 10 12 13 15 17 15 19 20Input:

𝐴𝐴 3. . 3  is trivially sorted

item determined to be at correct sorted location



Quicksort

61

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 9 6 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 5. . 7  around 6

item determined to be at correct sorted location



Quicksort

62

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 5. . 7  around 6

item determined to be at correct sorted location



Quicksort

63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

𝐴𝐴 5. . 5  is trivially sorted

item determined to be at correct sorted location



Quicksort

64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

𝐴𝐴 5. . 5  is trivially sorted

item determined to be at correct sorted location



Quicksort

65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

𝐴𝐴 7. . 7  is trivially sorted

item determined to be at correct sorted location



Quicksort

66

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

𝐴𝐴 7. . 7  is trivially sorted

item determined to be at correct sorted location



Quicksort

67

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 9. . 15  around 20

item determined to be at correct sorted location



Quicksort

68

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 9. . 15  around 20

item determined to be at correct sorted location



Quicksort

69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 9. . 14  around 19

item determined to be at correct sorted location



Quicksort

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 9. . 14  around 19

item determined to be at correct sorted location



Quicksort

71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 17 15 19 20Input:

Partition 𝐴𝐴 9. . 13  around 15

item determined to be at correct sorted location



Quicksort

72

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

Partition 𝐴𝐴 9. . 13  around 15

item determined to be at correct sorted location



Quicksort

73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

Partition 𝐴𝐴 9. . 11  around 15

item determined to be at correct sorted location



Quicksort

74

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

Partition 𝐴𝐴 9. . 11  around 15

item determined to be at correct sorted location



Quicksort

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

Partition 𝐴𝐴 9. . 10  around 13

item determined to be at correct sorted location



Quicksort

76

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

Partition 𝐴𝐴 9. . 10  around 13

item determined to be at correct sorted location



Quicksort

77

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

𝐴𝐴 9. . 9  is trivially sorted

item determined to be at correct sorted location



Quicksort

78

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

𝐴𝐴 9. . 9  is trivially sorted

item determined to be at correct sorted location



Quicksort

79

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

𝐴𝐴 13. . 13  is trivially sorted

item determined to be at correct sorted location



Quicksort

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

𝐴𝐴 13. . 13  is trivially sorted

item determined to be at correct sorted location



Quicksort

81

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 1 3 4 5 6 6 9 10 12 13 15 15 17 19 20Input:

item determined to be at correct sorted location

𝐴𝐴 1. . 15  is now fully sorted



Quicksort
Input: A subarray 𝐴𝐴[ 𝑝𝑝 ∶ 𝑟𝑟 ] of 𝑟𝑟 − 𝑝𝑝 + 1 numbers, where 𝑝𝑝 ≤ 𝑟𝑟.
 

Output: Elements of 𝐴𝐴[ 𝑝𝑝 ∶ 𝑟𝑟 ] rearranged in non-decreasing order of value.

QUICKSORT ( A, p, r )

1.  if 𝑝𝑝 < 𝑟𝑟 then

2.      // partition 𝐴𝐴 𝑝𝑝. . 𝑟𝑟  into 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1  and 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟  such that everything in 

                 𝐴𝐴 𝑝𝑝. . 𝑞𝑞 − 1  is ≤ 𝐴𝐴 𝑞𝑞  and everything in 𝐴𝐴 𝑞𝑞 + 1. . 𝑟𝑟  is ≥ 𝐴𝐴 𝑞𝑞

3.      𝑞𝑞 = PARTITION ( A, p, r ) 

4.      // recursively sort the left part

5.      QUICKSORT ( A, p, q ‒ 1 )

6.      // recursively sort the right part

7.      QUICKSORT ( A, q + 1, r )
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Worst-case Running Time of Quicksort

𝑇𝑇 𝑛𝑛 = �
Θ 1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1,

max
𝑝𝑝≤𝑞𝑞≤𝑟𝑟

𝑇𝑇 𝑞𝑞 − 𝑝𝑝 + 𝑇𝑇 𝑟𝑟 − 𝑞𝑞 + Θ 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑛𝑛 > 1.

𝑇𝑇 𝑛𝑛 = �
Θ 1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1,

max
1≤𝑘𝑘≤𝑛𝑛

𝑇𝑇 𝑘𝑘 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑘𝑘 + Θ 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑛𝑛 > 1.

Replacing 𝑞𝑞 with 𝑘𝑘 + 𝑝𝑝 − 1, we get:

Assuming 𝑛𝑛 = 𝑟𝑟 − 𝑝𝑝 + 1, the worst-case running time of quicksort:
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Worst-case Running Time of Quicksort (Upper Bound)
For 𝑛𝑛 > 1 and a constant 𝑐𝑐 > 0,

           𝑇𝑇 𝑛𝑛 = max
1≤𝑘𝑘≤𝑛𝑛

𝑇𝑇 𝑘𝑘 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑘𝑘 + 𝑐𝑐𝑛𝑛

Our guess for upper bound: 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2 for constant 𝑐𝑐1 > 0.
Using this bound on the right side of the recurrence equation, we get.

           𝑇𝑇 𝑛𝑛 ≤ max
1≤𝑘𝑘≤𝑛𝑛

𝑐𝑐1 𝑘𝑘 − 1 2 + 𝑐𝑐1 𝑛𝑛 − 𝑘𝑘 2 + 𝑐𝑐𝑛𝑛

     ⇒ 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1 max
1≤𝑘𝑘≤𝑛𝑛

𝑘𝑘 − 1 2 + 𝑛𝑛 − 𝑘𝑘 2 + 𝑐𝑐𝑛𝑛

But 𝑘𝑘 − 1 2 + 𝑛𝑛 − 𝑘𝑘 2 reaches its maximum value for 𝑘𝑘 = 1 and 𝑘𝑘 = 𝑛𝑛. 
Hence, 

        𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1 1 − 1 2 + 𝑛𝑛 − 1 2 + 𝑐𝑐𝑛𝑛
    ⇒ 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1 𝑛𝑛 − 1 2 + 𝑐𝑐𝑛𝑛
    ⇒ 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2 − 𝑐𝑐1 2𝑛𝑛 − 1 − 𝑐𝑐𝑛𝑛
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But for 𝑐𝑐1 ≥ 𝑐𝑐, we have,
           𝑐𝑐1 2𝑛𝑛 − 1 ≥ 𝑐𝑐 2𝑛𝑛 − 1
      ⇒ 𝑐𝑐1 2𝑛𝑛 − 1 ≥ 2𝑐𝑐𝑛𝑛 − 𝑐𝑐
      ⇒ 𝑐𝑐1 2𝑛𝑛 − 1 − 𝑐𝑐𝑛𝑛 ≥ 𝑐𝑐𝑛𝑛 − 𝑐𝑐

But  𝑛𝑛 ≥ 1 ⇒ 𝑐𝑐𝑛𝑛 ≥ 𝑐𝑐 ⇒ 𝑐𝑐𝑛𝑛 − 𝑐𝑐 ≥ 0, and thus
            𝑐𝑐1 2𝑛𝑛 − 1 − 𝑐𝑐𝑛𝑛 ≥ 0

⇒ − 𝑐𝑐1 2𝑛𝑛 − 1 − 𝑐𝑐𝑛𝑛 ≤ 0
         ⇒ 𝑐𝑐1𝑛𝑛2 − 𝑐𝑐1 2𝑛𝑛 − 1 − 𝑐𝑐𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2

But 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2 − 𝑐𝑐1 2𝑛𝑛 − 1 − 𝑐𝑐𝑛𝑛 .

Hence, 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2 for 𝑐𝑐1 ≥ 𝑐𝑐. 

Worst-case Running Time of Quicksort (Upper Bound)
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For 𝑛𝑛 > 1 and a constant 𝑐𝑐 > 0,

           𝑇𝑇 𝑛𝑛 = max
1≤𝑘𝑘≤𝑛𝑛

𝑇𝑇 𝑘𝑘 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑘𝑘 + 𝑐𝑐𝑛𝑛

Our guess for lower bound: 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2𝑛𝑛2 for constant 𝑐𝑐2 > 0.
Using this bound on the right side of the recurrence equation, we get.

           𝑇𝑇 𝑛𝑛 ≥ max
1≤𝑘𝑘≤𝑛𝑛

𝑐𝑐2 𝑘𝑘 − 1 2 + 𝑐𝑐1 𝑛𝑛 − 𝑘𝑘 2 + 𝑐𝑐𝑛𝑛

     ⇒ 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2 max
1≤𝑘𝑘≤𝑛𝑛

𝑘𝑘 − 1 2 + 𝑛𝑛 − 𝑘𝑘 2 + 𝑐𝑐𝑛𝑛

But 𝑘𝑘 − 1 2 + 𝑛𝑛 − 𝑘𝑘 2 reaches its maximum value for 𝑘𝑘 = 1 and 𝑘𝑘 = 𝑛𝑛. 
Hence, 

        𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2 1 − 1 2 + 𝑛𝑛 − 1 2 + 𝑐𝑐𝑛𝑛
    ⇒ 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2 𝑛𝑛 − 1 2 + 𝑐𝑐𝑛𝑛
    ⇒ 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2𝑛𝑛2 + 𝑐𝑐𝑛𝑛 − 𝑐𝑐2 2𝑛𝑛 − 1

Worst-case Running Time of Quicksort (Lower Bound)
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But for 𝑐𝑐2 ≤
𝑐𝑐
2
, we have,

           𝑐𝑐2 2𝑛𝑛 − 1 ≤ 𝑐𝑐
2
2𝑛𝑛 − 1

      ⇒ 𝑐𝑐2 2𝑛𝑛 − 1 ≤ 𝑐𝑐𝑛𝑛 − 𝑐𝑐
2

      ⇒ 𝑐𝑐𝑛𝑛 − 𝑐𝑐2 2𝑛𝑛 − 1 ≥ 𝑐𝑐
2

But  𝑐𝑐 > 0, and thus
       𝑐𝑐𝑛𝑛 − 𝑐𝑐2 2𝑛𝑛 − 1 > 0

⇒ 𝑐𝑐2𝑛𝑛2 + 𝑐𝑐𝑛𝑛 − 𝑐𝑐2 2𝑛𝑛 − 1 > 𝑐𝑐2𝑛𝑛2

But 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2𝑛𝑛2 + 𝑐𝑐𝑛𝑛 − 𝑐𝑐2 2𝑛𝑛 − 1 .

Hence, 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2𝑛𝑛2 for 𝑐𝑐2 ≤
𝑐𝑐
2
. 

Worst-case Running Time of Quicksort (Lower Bound)
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We have proved that
                         𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2 for 𝑐𝑐1 ≥ 𝑐𝑐,

                       and 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐2𝑛𝑛2 for 𝑐𝑐2 ≤
𝑐𝑐
2
.

Worst-case Running Time of Quicksort (Tight Bound)

Thus 𝑐𝑐2𝑛𝑛2 ≤ 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛2 for constants  𝑐𝑐1 ≥ 𝑐𝑐 and 𝑐𝑐2 ≤
𝑐𝑐
2
.

Hence, 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛2 .
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[ Optional ]
Average Case 

Running Time of Quicksort
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Average Case Running Time of Quicksort

𝑇𝑇 𝑛𝑛 = �
Θ 1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1,

1
𝑛𝑛 �
1≤𝑘𝑘≤𝑛𝑛

𝑇𝑇 𝑘𝑘 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑘𝑘 + Θ 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑛𝑛 > 1.
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Average Case Running Time of Quicksort
For 𝑛𝑛 > 1 and a constant 𝑐𝑐 > 0,

           𝑇𝑇 𝑛𝑛 = 1
𝑛𝑛
∑1≤𝑘𝑘≤𝑛𝑛 𝑇𝑇 𝑘𝑘 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑘𝑘 + 𝑐𝑐𝑛𝑛

   ⇒ 𝑛𝑛𝑇𝑇 𝑛𝑛 = ∑1≤𝑘𝑘≤𝑛𝑛 𝑇𝑇 𝑘𝑘 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑘𝑘 + 𝑐𝑐𝑛𝑛2 
   ⇒ 𝑛𝑛𝑇𝑇 𝑛𝑛 = 2∑0≤𝑘𝑘≤𝑛𝑛−1 𝑇𝑇 𝑘𝑘 + 𝑐𝑐𝑛𝑛2    ⋯ 1

Replacing 𝑛𝑛 with 𝑛𝑛 − 1,
   ⇒ 𝑛𝑛 − 1 𝑇𝑇 𝑛𝑛 − 1 = 2∑0≤𝑘𝑘≤𝑛𝑛−2 𝑇𝑇 𝑘𝑘 + 𝑐𝑐 𝑛𝑛 − 1 2    ⋯ 2

Subtracting equation 2  from equation 1 , we get
   𝑛𝑛𝑇𝑇 𝑛𝑛 − 𝑛𝑛 − 1 𝑇𝑇 𝑛𝑛 − 1 = 2𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐 2𝑛𝑛 − 1
      ⇒ 𝑛𝑛𝑇𝑇 𝑛𝑛 − 𝑛𝑛 + 1 𝑇𝑇 𝑛𝑛 − 1 = 𝑐𝑐 2𝑛𝑛 − 1

Dividing both sides by 𝑛𝑛 𝑛𝑛 + 1 , we get

 𝑇𝑇 𝑛𝑛
𝑛𝑛+1

− 𝑇𝑇 𝑛𝑛−1
𝑛𝑛

= 𝑐𝑐 2𝑛𝑛−1
𝑛𝑛 𝑛𝑛+1
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Average Case Running Time of Quicksort

Assuming 𝑇𝑇 𝑛𝑛
𝑛𝑛+1

= 𝐴𝐴 𝑛𝑛 , we get from the equation from the previous slide,

   𝐴𝐴 𝑛𝑛 − 𝐴𝐴 𝑛𝑛 − 1 = 𝑐𝑐 2𝑛𝑛−1
𝑛𝑛 𝑛𝑛+1

   ⇒ 𝐴𝐴 𝑛𝑛 = 𝐴𝐴 𝑛𝑛 − 1 + 𝑐𝑐 2𝑛𝑛−1
𝑛𝑛 𝑛𝑛+1

   ⇒ 𝐴𝐴 𝑛𝑛 = 𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐
𝑛𝑛+1

− 𝑐𝑐
𝑛𝑛 𝑛𝑛+1

   ⇒ 𝐴𝐴 𝑛𝑛 < 𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐
𝑛𝑛+1

   ⇒ 𝐴𝐴 𝑛𝑛 < 𝐴𝐴 𝑛𝑛 − 2 + 2𝑐𝑐
𝑛𝑛

+ 2𝑐𝑐
𝑛𝑛+1

   ⇒ 𝐴𝐴 𝑛𝑛 < 𝐴𝐴 𝑛𝑛 − 3 + 2𝑐𝑐
𝑛𝑛−1

+ 2𝑐𝑐
𝑛𝑛

+ 2𝑐𝑐
𝑛𝑛+1

   ⇒ 𝐴𝐴 𝑛𝑛 < 𝐴𝐴 𝑛𝑛 − 𝑘𝑘 + 2𝑐𝑐
𝑛𝑛−𝑘𝑘+2

+ 2𝑐𝑐
𝑛𝑛−𝑘𝑘+3

+ ⋯+ 2𝑐𝑐
𝑛𝑛

+ 2𝑐𝑐
𝑛𝑛+1

   ⇒ 𝐴𝐴 𝑛𝑛 < 𝐴𝐴 1 + 2𝑐𝑐
3

+ 2𝑐𝑐
4

+ ⋯+ 2𝑐𝑐
𝑛𝑛

+ 2𝑐𝑐
𝑛𝑛+1
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Average Case Running Time of Quicksort

Since 𝐴𝐴 1 = 𝑇𝑇 1
2

= Θ 1 , we get,

   ⇒ 𝐴𝐴 𝑛𝑛 < Θ 1 + 2𝑐𝑐 1
3

+ 1
4

+ ⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

 

   ⇒ 𝐴𝐴 𝑛𝑛 < Θ 1 + 2𝑐𝑐 1 + 1
2

+ 1
3

+ ⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

− 2𝑐𝑐 1 + 1
2

But 𝐻𝐻𝑛𝑛+1 = 1 + 1
2

+ 1
3

+ ⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

 is the 𝑛𝑛 + 1’st Harmonic Number, 

and lim
𝑛𝑛→∞

𝐻𝐻𝑛𝑛+1 = ln 𝑛𝑛 + 1 + 𝛾𝛾, where 𝛾𝛾 ≈ 0.5772 is known as the 

Euler-Mascheroni constant.
Hence, for 𝑛𝑛 → ∞: 𝐴𝐴 𝑛𝑛 < 2𝑐𝑐 ln 𝑛𝑛 + 1 + 𝛾𝛾 − 3𝑐𝑐 + Θ 1
                        ⇒ 𝐴𝐴 𝑛𝑛 < 2𝑐𝑐 ln 𝑛𝑛 + 1 + Θ 1

     ⇒ 𝑇𝑇 𝑛𝑛
𝑛𝑛+1

< 2𝑐𝑐 ln 𝑛𝑛 + 1 + Θ 1

          ⇒ 𝑇𝑇 𝑛𝑛 < 2𝑐𝑐 𝑛𝑛 + 1 ln 𝑛𝑛 + 1 + Θ 𝑛𝑛
          ⇒ 𝑇𝑇 𝑛𝑛 = 𝑂𝑂 𝑛𝑛 log𝑛𝑛
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of Partition
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Correctness of Partition
Input: A subarray 𝐴𝐴[ 𝑝𝑝 ∶ 𝑟𝑟 ] of 𝑟𝑟 − 𝑝𝑝 + 1 numbers, where 𝑝𝑝 ≤ 𝑟𝑟.
 

Output: Elements of 𝐴𝐴[ 𝑝𝑝 ∶ 𝑟𝑟 ] are rearranged such that for some 𝑞𝑞 ∈ 𝑝𝑝, 𝑟𝑟  
everything in 𝐴𝐴[ 𝑝𝑝 ∶ 𝑞𝑞 − 1 ] is ≤ 𝐴𝐴 𝑞𝑞  and everything in 𝐴𝐴[ 𝑞𝑞 + 1: 𝑟𝑟 ] is ≥
𝐴𝐴 𝑞𝑞 . Index 𝑞𝑞 is returned.

Loop Invariant
At the start of each iteration of the 
for loop of lines 3‒6, for any array 
index 𝑘𝑘,
 

1.  if 𝑝𝑝 ≤ 𝑘𝑘 ≤ 𝑖𝑖, 
 then 𝐴𝐴 𝑘𝑘 ≤ 𝑥𝑥.

2.  if 𝑖𝑖 + 1 ≤ 𝑘𝑘 ≤ 𝑗𝑗 − 1, 
 then 𝐴𝐴 𝑘𝑘 > 𝑥𝑥.

3.  if 𝑘𝑘 = 𝑟𝑟, 
 then 𝐴𝐴 𝑘𝑘 = 𝑥𝑥. 
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