
CSE 613: Parallel Programming

Lecture 16

( Distributed-Memory Algorithms:

Sorting & Searching )

Rezaul A. Chowdhury
Department of Computer Science

SUNY Stony Brook

Spring 2012



Parallel QuickSort: A Shared-Memory Version

Input: An array A[ q : r ] of distinct elements.

Output: Elements of A[ q : r ] sorted in increasing order of value.

Par-Randomized-Looping-QuickSort ( A[ q : r ] )

2.  if m > 1 then

3.        k ← 0

6.             k ← Par-Partition (  A[ q : r ],  x )

1.  m ← r ― q + 1

5.             select a random element x from A[ q : r ]

7.       spawn Par-Randomized-Looping-QuickSort ( A[ q : k ― 1 ] )

4.        while max{ r – k, k – q } > 3m / 4 do

8.       Par-Randomized-Looping-QuickSort ( A[ k + 1 : r ] )

9.       sync



Parallel QuickSort: Distributed-Memory Version

Input: An array A[ q : r ] of distinct elements distributed among processing 

nodes Ps, Ps+1, …, Pt such that each nodes contains between α/2 and 2α

elements, where α = n / p = orig #elems / orig #nodes.

Output: Elements of A[ q : r ] sorted in increasing order of value distributed 

among the nodes in the following order: Ps, Ps+1, …, Pt.

Distributed-Randomized-Looping-QuickSort ( A[ q : r ], α, s, t )

1.  if s = t then sort A[ q : r ] locally on Ps using serial quicksort

6.             k ← Distributed-Rank (  A[ q : r ], x , s, t )

3.        m ← r ― q + 1,  k ← 0

5.             select a random element x from A[ q : r ]

7.       parallel: Distributed-Randomized-Looping-QuickSort ( A[ q : k ], α, s, i )

4.        while max{ r – k, k – q } > 3m / 4 do

Distributed-Randomized-Looping-QuickSort ( A[ k + 1 : r ], α, i + 1, t )

2.  else

7. Find an i, and  redistribute A[ q : r ] among the nodes as evenly as possible such that 

( a ) all elements ≤ x are stored among nodes Ps to Pi , 

( b ) all elements > x are stored among nodes Pi+1 to Pt , and

( c ) no node stores fewer α/2 or more than 2α elements



Image Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition

Distributed QuickSort: Example



Distributed QuickSort: Example

Image Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition



Distributed QuickSort: Distributed Rank & Partition

Image Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition



Distributed QuickSort

Distributed-Randomized-Looping-QuickSort ( A[ q : r ], α, s, t )

1.  if s = t then sort A[ q : r ] locally on Ps using serial quicksort

6.             k ← Distributed-Rank (  A[ q : r ], x , s, t )

3.        m ← r ― q + 1,  k ← 0

5.             select a random element x from A[ q : r ]

8.       parallel: Distributed-Randomized-Looping-QuickSort ( A[ q : k ], α, s, i )

4.        while max{ r – k, k – q } > 3m / 4 do

Distributed-Randomized-Looping-QuickSort ( A[ k + 1 : r ], α, i + 1, t )

2.  else

7. Find an i, and  redistribute A[ q : r ] among the nodes as evenly as possible such that 

( a ) all elements ≤ x are stored among nodes Ps to Pi , 

( b ) all elements > x are stored among nodes Pi+1 to Pt , and

( c ) no node stores fewer than α/2 or more than 2α elements

Lines 5-6 ( assuming �� and �� to be constants )

― communication complexity � O � � log � ( why? )

― computation complexity � O
�



( why? )

― overall � O
�



� � � log �



Distributed QuickSort

Distributed-Randomized-Looping-QuickSort ( A[ q : r ], α, s, t )

1.  if s = t then sort A[ q : r ] locally on Ps using serial quicksort

6.             k ← Distributed-Rank (  A[ q : r ], x , s, t )

3.        m ← r ― q + 1,  k ← 0

5.             select a random element x from A[ q : r ]

8.       parallel: Distributed-Randomized-Looping-QuickSort ( A[ q : k ], α, s, i )

4.        while max{ r – k, k – q } > 3m / 4 do

Distributed-Randomized-Looping-QuickSort ( A[ k + 1 : r ], α, i + 1, t )

2.  else

7. Find an i, and  redistribute A[ q : r ] among the nodes as evenly as possible such that 

( a ) all elements ≤ x are stored among nodes Ps to Pi , 

( b ) all elements > x are stored among nodes Pi+1 to Pt , and

( c ) no node stores fewer than α/2 or more than 2α elements

Line 7 ( assuming �� and �� to be constants )

― communication complexity � O � � log � �
�



( why? )

― computation complexity � O 1 ( why? )

― overall � O
�



� � � log �



Distributed QuickSort

Distributed-Randomized-Looping-QuickSort ( A[ q : r ], α, s, t )

1.  if s = t then sort A[ q : r ] locally on Ps using serial quicksort

6.             k ← Distributed-Rank (  A[ q : r ], x , s, t )

3.        m ← r ― q + 1,  k ← 0

5.             select a random element x from A[ q : r ]

8.       parallel: Distributed-Randomized-Looping-QuickSort ( A[ q : k ], α, s, i )

4.        while max{ r – k, k – q } > 3m / 4 do

Distributed-Randomized-Looping-QuickSort ( A[ k + 1 : r ], α, i + 1, t )

2.  else

7. Find an i, and  redistribute A[ q : r ] among the nodes as evenly as possible such that 

( a ) all elements ≤ x are stored among nodes Ps to Pi , 

( b ) all elements > x are stored among nodes Pi+1 to Pt , and

( c ) no node stores fewer α/2 or more than 2α elements

From HW1: Depth of the shared-memory version is O log � w.h.p.

Same bound applies to the distributed-memory version.

Hence, �
 � O
�



� � � log � log � � O

� ��� �



� � log � (w.h.p. )



Distributed Sample Sort

Task: Sort � distinct keys using  � processing nodes.

Steps:

1. Initial Distribution: The master node scatters the � keys among � processing 

nodes as evenly as possible.

2. Pivot Selection: Each node sorts its local keys, and selects � � 1 evenly spaced 

keys from its sorted sequence. The master node gathers these local pivots from 

all nodes, locally sorts those � � � 1 keys, selects � � 1	 evenly spaced global 

pivots from them, and broadcasts them to all nodes.

3. Local Bucketing: Each node inserts the global pivots into its local sorted 

sequence using binary search, and thus divides the keys among � buckets.

4. Distribute Local Buckets: For 1 � � � �, each node sends bucket � to node �.

5. Local Sort: Each node locally sorts the elements it received in step 4.

6. Final Collection: The master node collects all sorted keys from all nodes, and 

for 1 � � � �, places all keys from node � ahead of all keys from node � � 1.



Bound on Bucket Sizes

Proof: HW3.

Theorem: If each node selects � � 1 evenly spaced keys in step 2, 

then no node will sort more than are 
�



�
�

�
keys (in the worst case) 

in step 5.



Analyzing Distributed Sample Sort

Steps: ( assuming � � Θ � , and �� and �� constants )

1. Initial Distribution: O log � �
�



� � 1 � O � � log � [ comm: scatter ]

2. Pivot Selection: O
�



log

�



� �� log �� � O

�



log

�



� �� log � [ comp: sort ]

O log� � � � 1 � � 1 � � � 1 log � � O �� [ comm: gather, broadcast ]

3. Local Bucketing: O � � 1 log
�



� O � log � [ comp: binary search ]

4. Distribute Local Buckets: O
�



�

�



�
�

�
� O

�



[ comm: send, receive ]

5. Local Sort: O
�



�
�

�
log

�



�
�

�
� O

�



log

�



[ comp: sort ]

6. Final Collection: O � � 1
�



�
�

�
� O � [ comm: receive ]



Analyzing Distributed Sample Sort

Overall:

��� 
 � O
�



log

�



� �� log � � � log �

���  � O � � �
�

�
 � ��� 
 � ���  � O � �
�



log

�



� �� log � � � log�

Overall ( excluding steps 1 and 6 ):

��� 
 � O
�



log

�



� �� log � � � log �

���  � O
�



� ��

�
 � ��� 
 � ���  � O
�



log

�



� �� log � � � log�



Depth-First Search ( DFS )

Input: A directed/undirected graph ! � "#, $% with vertex set 

# � &1,2,… , �) and edge set $. For each * ∈ #, the adjacency list 

of * is given by the ordered set ,-./*0. Vertex 1 is the root of !.

DFS ( v )

1.  if dfn[ v ] = 0 then

2.        k ← k + 1

5.             DFS ( u )

4.        for each u ∈ adj[ v ] in given order do

3.        dfn[ v ] ← k

DFS-Numbering ( G = ( V, E ), dfn[ 1: n ] )

1.  k ← 0

4.        DFS ( v )        { DFS is a local function }

3.  for v ← 1 to n do

2.  for v ← 1 to n do dfn[ v ] ← 0

Output: An array -1�/1: �0, where for each * ∈ #, -1�/*0 gives the 

rank of * in the order the algorithm visits the vertices of !.



Depth-First Search ( DFS )

DFS ( v )

1.  if dfn[ v ] = 0 then

2.        k ← k + 1

5.             DFS ( u )

4.        for each u ∈ adj[ v ] in given order do

3.        dfn[ v ] ← k

DFS-Numbering ( G = ( V, E ), dfn[ 1: n ] )

1.  k ← 0

4.        DFS ( v )        { DFS is a local function }

3.  for v ← 1 to n do

2.  for v ← 1 to n do dfn[ v ] ← 0

Producing the DFS numbers ( i.e., -1�/1: �0 ) can be shown to be an 

inherently sequential process.

Serial running time is O # � |$| .

Parallel examination of adjacency lists reduces runtime to O # .

No further speedup seems possible.



Depth-First Search ( DFS )

DFS ( v )

1.  if dfn[ v ] = 0 then

2.        k ← k + 1

5.             DFS ( u )

4.        for each u ∈ adj[ v ] in given order do

3.        dfn[ v ] ← k

DFS-Numbering ( G = ( V, E ), dfn[ 1: n ] )

1.  k ← 0

4.        DFS ( v )        { DFS is a local function }

3.  for v ← 1 to n do

2.  for v ← 1 to n do dfn[ v ] ← 0

Producing DFS numbers ( i.e., -1�/1: �0 ) can be shown to be an 

inherently sequential process.

We will see how to perform distributed parallel DFS on a tree when 

the DFS numbering is not required.

We have already explored a way of performing shared-memory 

parallel Breadth-First Search ( BFS ) in HW2.



Parallel DFS on a Tree

Static partitioning of the search space among processing nodes may 

lead to significant load imbalance.

Dynamic partitioning leads to better load balancing.

Image Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition



A Generic Scheme for Dynamic Load Balancing

Image Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition



DFS Maintains a Stack of Unvisited Vertices

Image Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition



Work-Splitting Strategies

Image Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition

― Ideally the donors stack is split into two pieces such that the search 

space represented by each is the same. The recipient gets one piece.

― Vertices near the bottom of the stack tend to have bigger trees 

rooted at them while those near the top tend to have smaller trees.

― To avoid sending very small amounts work, vertices beyond a 

specified stack depth ( called cutoff depth ) are not given away. 



Work-Splitting Strategies

Image Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition

1. Send vertices near the bottom of the stack.

2. Send vertices near the cutoff depth.

3. Send half the vertices between the bottom of the stack and the 

cutoff depth.

Some possible splitting strategies.



Load Balancing Schemes

Asynchronous Round Robin ( ARR )

― Each processor has an independent variable �,456� initialized to 

7,867 � 1 	mod	�, where 7,867	is the local processors label.

― When the processor runs out of work, it attempts to get work from the 

processor with label �,456�, and increments �,456� to �,456� � 1 	mod	�. 

Global Round Robin ( GRR )

― All processors access a single global variable called �,456�.

― Whenever a processor needs work it gets hold of the variable �,456�, and 

tries to get work from a processor whose label is the value of �,456�. 

― �,456� is set to �,456� � 1 	mod	� before another processor gets hold of it. 

Random Polling ( RP )

― When a processor becomes idle it tries to get work from a processor selected 

uniformly at random.



Communication Overhead of Load Balancing

Assumptions

― Too small to partition: Work of size � ; are not partitioned.

― <-splitting: If work = is partitioned into two parts of size >= and "1 � >%= for 

some 0 � > � 1, then there exists an arbitrarily small constant @ 0 � @ � 0.5 , 

such that >= C @= and "1 � >%= C @=. 

After such a split neither processor ( donor and recipient ) has more than               

								"1 � @%= work.



Communication Overhead of Load Balancing

Analysis

― Suppose after every # � work requests each processor receives at least one 

work request.

― Suppose initially, only one processor has D amount of work, and all other 

processors are idle.

― Then after # � requests no processor will have more than 1 � @ D work.

― After E# � requests no processor will have more than 1 � @ FD work.

― So, no processor will have more than ; work, after log G

GHI

J

K
# � �

O # � logD work requests.

― Number of work transfers � number of work requests.

― For simplicity assume that the data associated with a work request and work 

transfer is constant.

― If �� is the time required to communicate a piece of work, then the 

communication overhead, �� � O ��# � logD .



Computation of L M

Asynchronous Round Robin ( ARR )

― Worst case when all request work from the same processor simultaneously. 

― Worst-case scenario: Processor � � 1 has all work, and all other processors are 

pointing to processor 0. Then processor � � 1	 will get its first work request after 

one processor issues � � 1 requests and the remaining � � 2 processors issue 

� � 2	requests each. 

― Hence, # � � � � 1 � � � 2 � � 2 � O �� .

Global Round Robin ( GRR )

― All processors receive requests in sequence. Hence, # � � �.

Random Polling ( RP )

― Need to solve the following balls & bins problem: Suppose there are � bins, 

and balls are being thrown into random bins ( chosen independently and 

uniformly at random ). How many balls need to be thrown to make sure that 

each bin gets at least one ball? This number is # � .



Computation of L M
Random Polling ( RP )

― Need to solve the following balls & bins problem: Suppose there are � bins, 

and balls are being thrown into random bins ( chosen independently and 

uniformly at random ). How many balls need to be thrown to make sure that 

each bin gets at least one ball? This number is # � .

Let N be #balls thrown until each bin received at least one ball. 

Also let NO be #balls thrown when there were exactly � � 1 nonempty bins. 

Then N � ∑ NOQROR
 .

When there are � � 1 nonempty bins, the probability that a ball will fall into an 

empty bin is �O � 1 �
OSQ



.

So, NO is a geometric random variable with parameter �O , and $ NO �
Q


T
�





SOUQ
.

Hence, $ N � $ ∑ NOQROR
 � ∑ $ NOQROR


																								� ∑




SOUQ
� �QROR
 ∑

Q

O
� �V � � � ln� � Θ �QROR


Here, V � � 	∑
Q

O
� ln� � Θ 1QROR
 is known as the harmonic number.

Hence, the expected value of # � is � ln � � Θ � . [ � 2� ln � w.h.p. ]



Termination Detection ( Tree-Based )

How do we know when all processes have become idle?

Suppose, initially, only processor 0 has any work. We set =X � 1, and 

=O � 0	 for � C 0.

When processor �’s work is partitioned it retains half of =O, and gives the 

other half  to the recipient processor.

When a processor completes its work it returns its weight from which it 

received its work.

Termination is signaled when =X � 1 and processor 0 is idle.
Im

a
g

e
 S

o
u

rc
e

:
G

ra
m

a
e

t 
a

l.
, 

“I
n

tr
o

d
u

ct
io

n
 t

o
 P

a
ra

lle
l 

C
o

m
p

u
ti

n
g

”,
 

2
n

d
E

d
it

io
n



Termination Detection ( Tree-Based )

How do we know when all processes have become idle?

Drawback: Due to the finite precision of computers, repeated halving of the 

weight may make the weight so small that it becomes 0.

Solution: Manipulate 
Q

�T
instead of =O.

Im
a

g
e

 S
o

u
rc

e
:

G
ra

m
a

e
t 

a
l.

, 

“I
n

tr
o

d
u

ct
io

n
 t

o
 P

a
ra

lle
l 

C
o

m
p

u
ti

n
g

”,
 

2
n

d
E

d
it

io
n


