CSE 613: Parallel Programming

Lecture 7 (Basic Parallel Algorithmic Techniques)

Rezaul A. Chowdhury

Department of Computer Science SUNY Stony Brook Spring 2012

Some Basic Techniques

- 1. Divide-and-Conquer
 - Recursive
 - Non-recursive
 - Contraction
- 2. Pointer Techniques
 - Pointer Jumping
 - Graph Contraction
- 3. Randomization
 - Sampling
 - Symmetry Breaking

Divide-and-Conquer

- 1. **Divide:** divide the original problem into smaller subproblems that are easier are to solve
- 2. Conquer: solve the smaller subproblems (perhaps recursively)
- 3. **Merge:** combine the solutions to the smaller subproblems to obtain a solution for the original problem

Divide-and-Conquer

- The divide-and-conquer paradigm improves program
 modularity, and often leads to simple and efficient algorithms
- Since the subproblems created in the divide step are often independent, they can be solved in parallel
- If the subproblems are solved recursively, each recursive divide step generates even more independent subproblems to be solved in parallel
- In order to obtain a highly parallel algorithm it is often necessary to parallelize the divide and merge steps, too

Recursive D&C: Parallel Merge Sort

```
Merge-Sort (A, p, r) { sort the elements in A[p \dots r]}

1. if p < r then

2. q \leftarrow \lfloor (p+r)/2 \rfloor

3. Merge-Sort (A, p, q)

4. Merge-Sort (A, q+1, r)
```


5. Merge(A, p, q, r)

```
Par-Merge-Sort (A, p, r) { sort the elements in A[p \dots r]}

1. if p < r then

2. q \leftarrow \lfloor (p+r)/2 \rfloor

3. spawn Merge-Sort (A, p, q)

4. Merge-Sort (A, q+1, r)

5. sync

6. Merge (A, p, q, r)
```

Recursive D&C: Parallel Merge Sort

```
Par-Merge-Sort ( A, p, r ) { sort the elements in A[ p ... r ] }
```

- 1. if p < r then
- 2. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. spawn Merge-Sort (A, p, q)
- 4. Merge-Sort(A, q+1, r)
- 5. sync
- 6. Merge(A, p, q, r)

Work:
$$T_1(n) = \begin{cases} \Theta(1), & if \ n = 1, \\ 2T_1\left(\frac{n}{2}\right) + \Theta(n), & otherwise. \end{cases}$$

$$= \Theta(n\log n)$$

Span:
$$T_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_{\infty}\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise.} \end{cases}$$

Parallelism: $\frac{T_1(n)}{T_{co}(n)} = \Theta(\log n)$

Too small!
Must parallelize the *Merge* routine.

Non-Recursive D&C: Parallel Sample Sort

Task: Sort an array A[1, ..., n] of n distinct keys using $p \le n$ processors. **Steps (without oversampling):**

- 1. **Pivot Selection:** Select (uniformly at random) and sort m=p-1 pivot elements $e_1, e_2, ..., e_m$. These elements define m+1=p buckets: $(-\infty, e_1), (e_1, e_2), ..., (e_{m-1}, e_m), (e_m, +\infty)$
- **2.** Local Sort: Divide A into p segments of equal size, assign each segment to different processor, and sort locally.
- 3. Local Bucketing: If $m \le \frac{n}{p}$, each processor inserts the pivot elements into its local sorted sequence using binary search, otherwise inserts its local elements into the sorted pivot elements. Thus the keys are divided among m+1=p buckets.
- 4. Merge Local Buckets: Processor i $(1 \le i \le p)$ merges the contents of bucket i from all processors through a local sort.
- 5. **Final Result:** Each processor copies its bucket to a global output array so that bucket i ($1 \le i \le p-1$) precedes bucket i+1 in the output.

Non-Recursive D&C: Parallel Sample Sort

Steps (without oversampling):

- 1. Pivot Selection: $O(m \log(m)) = O(p \log p)$ [worst case]
- 2. Local Sort: $O\left(\frac{n}{n}\log\frac{n}{n}\right)$ [worst case]
- 3. Local Bucketing:

$$O\left(\min\left(m\log\frac{n}{p},\frac{n}{p}\log m\right)\right) = O\left(\frac{n}{p}\log\frac{n}{p}\right)$$
 [worst case]

4. Merge Local Buckets: $O\left(\frac{n}{m}\log\frac{n}{m}\right) = O\left(\frac{n}{p}\log\frac{n}{p}\right)$ [expected]

(not quite correct as the largest bucket can have

 $\Theta\left(\frac{n}{m}\log m\right)$ keys with significant probability)

- 5. Final Result: $O\left(\frac{n}{m}\right) = O\left(\frac{n}{n}\right)$ [expected]
- **Overall:** $O\left(\frac{n}{p}\log\frac{n}{p} + p\log p\right)$ [expected]

Contraction

- 1. Reduce: reduce the original problem to a smaller problem
- 2. Conquer: solve the smaller problem (often recursively)
- 3. **Expand:** use the solution to the smaller problem to obtain a solution for the original larger problem

Input: A sequence of n elements $\{x_1, x_2, ..., x_n\}$ drawn from a set S with a binary associative operation, denoted by \oplus .

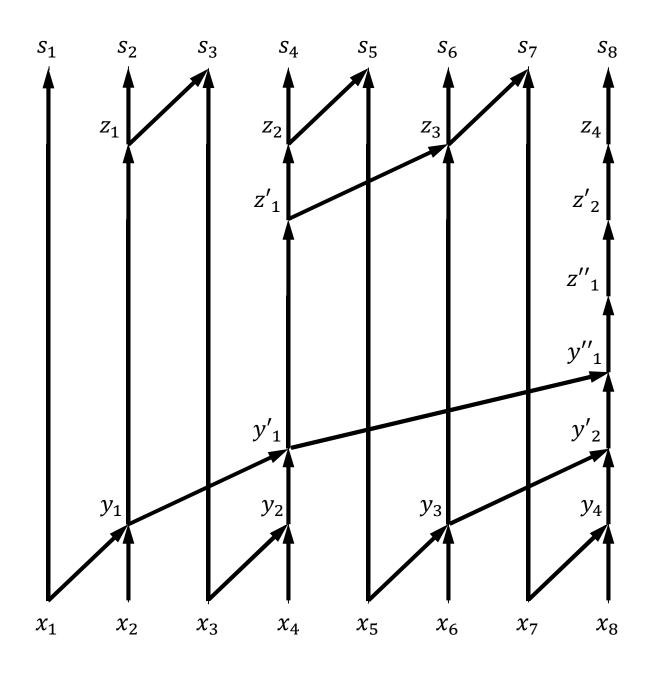
Output: A sequence of n partial sums $\{s_1, s_2, ..., s_n\}$, where $s_i = x_1 \oplus x_2 \oplus ... \oplus x_i$ for $1 \le i \le n$.

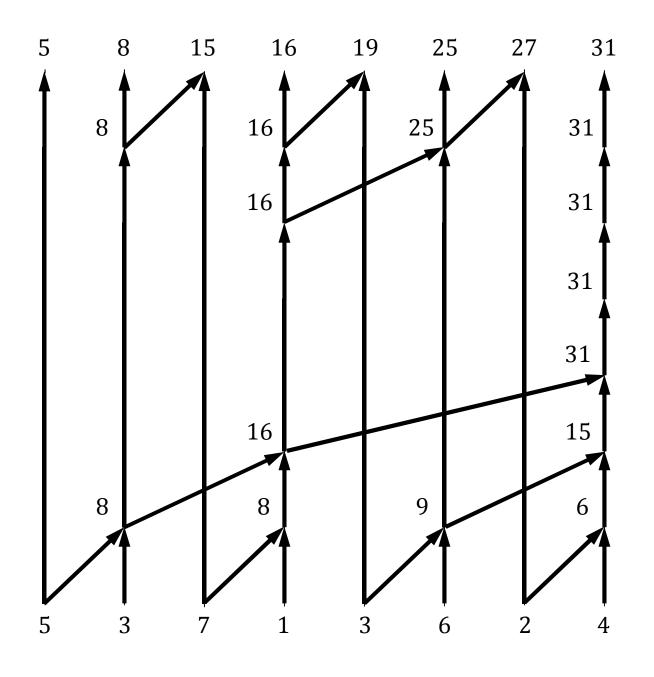
x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
5	3	7	1	3	6	2	4

⊕ = binary addition

5	8	15	16	19	25	27	31
S_1	s_2	s_3	S_4	S_5	<i>S</i> ₆	S_7	s_8

```
\textit{Prefix-Sum}\;(\;\langle x_1,x_2,\ldots,x_n\rangle,\;\oplus\;)\quad\{\;n=2^k\;\textit{for some}\;k\geq 0.
                                                     Return prefix sums
                                                      \langle s_1, s_2, ..., s_n \rangle
   1. if n = 1 then
   2. s_1 \leftarrow x_1
   3. else
   4. parallel for i \leftarrow 1 to n/2 do
    5. y_i \leftarrow x_{2i-1} \oplus x_{2i}
    6. \langle z_1, z_2, \dots, z_{n/2} \rangle \leftarrow \operatorname{Prefix-Sum}(\langle y_1, y_2, \dots, y_{n/2} \rangle, \oplus)
   7. parallel for i \leftarrow 1 to n do
    8. if i = 1 then s_1 \leftarrow x_1
    9. else if i = even then s_i \leftarrow z_{i/2}
  10. else s_i \leftarrow z_{(i-1)/2} \oplus x_i
  11. return \langle s_1, s_2, ..., s_n \rangle
```





```
\textit{Prefix-Sum}\;(\;\langle x_1,x_2,\ldots,x_n\rangle,\,\oplus\;)\quad\{\;n=2^k\;\textit{for some}\;k\geq 0.
                                                                                           Return prefix sums
                                                                                           \langle s_1, s_2, ..., s_n \rangle \}
     1. if n = 1 then
     2. s_1 \leftarrow x_1
     3. else
               parallel for i \leftarrow 1 to n/2 do
                           y_i \leftarrow x_{2i-1} \oplus x_{2i}
   5. y_i \leftarrow x_{2i-1} \oplus x_{2i}
6. \langle z_1, z_2, ..., z_{n/2} \rangle \leftarrow \operatorname{Prefix-Sum}(\langle y_1, y_2, ..., y_{n/2} \rangle, \oplus)
7. parallel for i \leftarrow 1 to n do
8. if i = 1 then s_1 \leftarrow x_1
9. else if i = \operatorname{even} then s_i \leftarrow z_{i/2}
10. else s_i \leftarrow z_{(i-1)/2} \oplus x_i
11. \operatorname{return}\langle s_1, s_2, ..., s_n \rangle

Parallelism: \frac{T_1(n)}{T_{\infty}(n)} = \Theta\left(\frac{n}{\log n}\right)
```

Work:

$$T_1(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_1(\frac{n}{2}) + \Theta(n), & \text{otherwise.} \end{cases}$$
$$= \Theta(n)$$

$$T_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_{\infty}(\frac{n}{2}) + \Theta(1), & \text{otherwise.} \end{cases}$$

$$= \Theta(\log n)$$

Observe that we have assumed here that a parallel for loop can be executed in $\Theta(1)$ time. But recall that *cilk_for* is implemented using divide-and-conquer, and so in practice, it will take $\Theta(\log n)$ time. In that case, we will have $T_{\infty}(n) = \Theta(\log^2 n)$, and parallelism $= \Theta\left(\frac{n}{\log^2 n}\right)$.

Pointer Techniques: Pointer Jumping

The *pointer jumping* (or *path doubling*) technique allows fast processing of data stored in the form of a set of rooted directed trees.

For every node v in the set pointer jumping involves replacing $v \to next$ with $v \to next \to next$ at every step.

Some Applications

- Finding the roots of a forest of directed trees
- Parallel prefix on rooted directed trees
- List ranking

Pointer Jumping: Roots of a Forest of Directed Trees

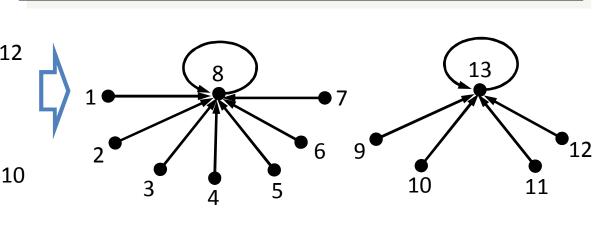


11

Find-Roots (n, P, S) { Input: A forest of rooted directed trees, each with a self-loop at its root, such that each edge is specified by $\langle v, P(v) \rangle$ for $1 \le v \le n$.

Output: For each v, the root S(v) of the tree containing v. }

- 1. parallel for $v \leftarrow 1$ to n do
- 2. $S(v) \leftarrow P(v)$
- 3. flag ← true
- 4. while flag = true do
- 5. $flag \leftarrow false$
- 6. parallel for $v \leftarrow 1$ to n do
- 7. $S(v) \leftarrow S(S(v))$
- 8. if $S(v) \neq S(S(v))$ then $flag \leftarrow true$



Pointer Jumping: Roots of a Forest of Directed Trees

Let h be the maximum height of any tree in the forest.

Observe that the distance between v and S(v) doubles after each iteration until S(S(v)) is the root of the tree containing v.

```
Find-Roots (n, P, S) { Input: A forest of rooted directed trees, each with a self-loop at its root, such that each edge is specified by \langle v, P(v) \rangle for 1 \leq v \leq n.

Output: For each v, the root S(v) of the tree containing v. }

1. parallel for v \leftarrow 1 to n do

2. S(v) \leftarrow P(v)

3. flag \leftarrow true

4. while flag = true do

5. flag \leftarrow false

6. parallel for v \leftarrow 1 to n do

7. S(v) \leftarrow S(S(v))

8. if S(v) \neq S(S(v)) then flag \leftarrow true
```

Hence, the number of iterations is $\log h$. Thus (assuming that each parallel for loop takes $\Theta(1)$ time to execute),

Work: $T_1(n) = O(n \log h)$ and Span: $T_{\infty}(n) = \Theta(\log h)$

Parallelism: $\frac{T_1(n)}{T_{\infty}(n)} = O(n)$

Pointer Techniques: Graph Contraction

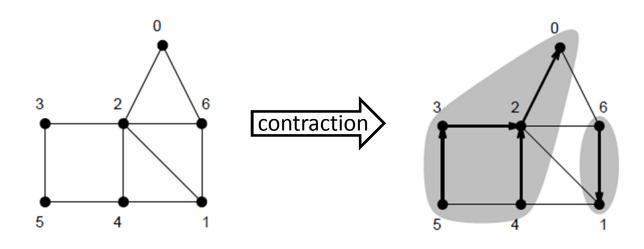
- Contract: the graph is reduced in size while maintaining some of its original properties (depending on the problem)
- Conquer: solve the problem on the contracted graph (often recursively)
- 3. **Expand:** use the solution to the contracted graph to obtain a solution for the original graph

Some Applications

- Finding connected components of a graph
- Minimum spanning trees

Graph Contraction: Connected Components (CC)

- 1. Direct the edges to form a forest of rooted directed trees
- 2. Use pointer jumping to contract each such tree to a single vertex
- 3. Recursively find the CCs of the contracted graph
- Expand those CCs to label the vertices of the original graph with CC numbers



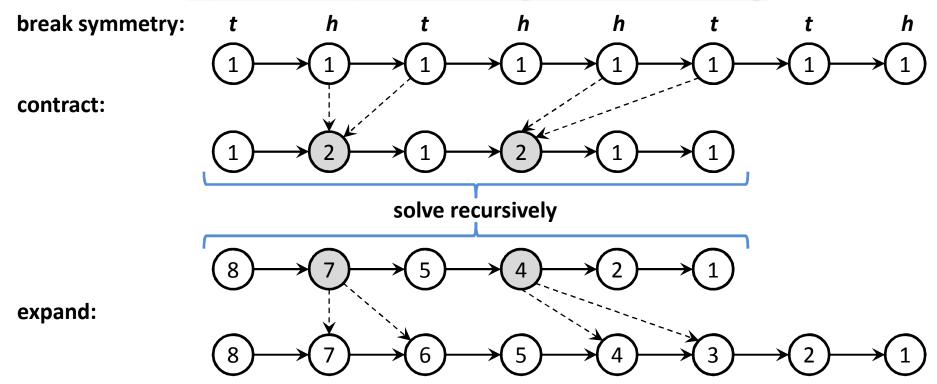
Randomization: Symmetry Breaking

A technique to break symmetry in a structure, e.g., a graph which can locally look the same to all vertices.

Some Applications

- Prefix sums in a linked list (list ranking)
- Selecting a large independent set from a graph
- Graph contraction

Symmetry Breaking: List Ranking



- 1. Flip a coin for each list node
- 2. If a node u points to a node v, and u got a head while v got a tail, combine u and v
- 3. Recursively solve the problem on the contracted list
- 4. Project this solution back to the original list

Symmetry Breaking: List Ranking

In every iteration a node gets removed with probability $\frac{1}{4}$ (as a node gets head with probability $\frac{1}{2}$ and the next node gets tail with probability $\frac{1}{2}$).

Hence, a quarter of the nodes get removed in each iteration (expected number).

Thus the expected number of iterations is $\Theta(\log n)$.

In fact, it can be shown that with high probability,

$$T_1(n) = O(n)$$
 and $T_{\infty}(n) = O(\log n)$