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Some Basic Techniques

1. Divide-and-Conquer

― Recursive

― Non-recursive

― Contraction

2. Pointer Techniques

― Pointer Jumping

― Graph Contraction

3. Randomization

― Sampling

― Symmetry Breaking



Divide-and-Conquer

1. Divide: divide the original problem into smaller 

subproblems that are easier are to solve

2. Conquer: solve the smaller subproblems

( perhaps recursively )

3. Merge: combine the solutions to the smaller subproblems

to obtain a solution for the original problem



Divide-and-Conquer

― The divide-and-conquer paradigm improves program 

modularity, and often leads to simple and efficient algorithms

― Since the subproblems created in the divide step are often 

independent, they can be solved in parallel

― If the subproblems are solved recursively, each recursive 

divide step generates even more independent subproblems to 

be solved in parallel

― In order to obtain a highly parallel algorithm it is often 

necessary to parallelize the divide and merge steps, too



Merge-Sort ( A, p, r )         { sort the elements in A[ p … r ] }

1.  if p < r then

3.       Merge-Sort (  A,  p,  q )

4. Merge-Sort (  A,  q + 1,  r )

2.       q ←  ( p + r ) / 2 

5.       Merge (  A,  p,  q, r )

Par-Merge-Sort ( A, p, r )    { sort the elements in A[ p … r ] }

1.  if p < r then

3.       spawn Merge-Sort (  A,  p,  q )

4. Merge-Sort (  A,  q + 1,  r )

2.       q ←  ( p + r ) / 2 

6.       Merge (  A,  p,  q, r )

5.       sync

Recursive D&C: Parallel Merge Sort



Par-Merge-Sort ( A, p, r )    { sort the elements in A[ p … r ] }

1.  if p < r then

3.       spawn Merge-Sort (  A,  p,  q )

4. Merge-Sort (  A,  q + 1,  r )

2.       q ←  ( p + r ) / 2 

6.       Merge (  A,  p,  q, r )

5.       sync
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Recursive D&C: Parallel Merge Sort

Too small! 

Must parallelize the 

Merge routine.



Non-Recursive D&C: Parallel Sample Sort

Task: Sort an array � 1,… , � of � distinct keys using �  � processors.

Steps ( without oversampling ):

1. Pivot Selection: Select (uniformly at random) and sort ! � � " 1 pivot 

elements ��, �#, … , �$. These elements define ! � 1 � � buckets: "∞, �� , ��, �# , … , �$&�, �$ , �$, �∞
2. Local Sort: Divide � into � segments of equal size, assign each segment 

to different processor, and sort locally. 

3. Local Bucketing: If !  �
'	, each processor inserts the pivot elements 

into its local sorted sequence using binary search, otherwise inserts its 

local elements into the sorted pivot elements. Thus the keys are divided 

among ! � 1 � � buckets.

4. Merge Local Buckets: Processor 	 1  	  � merges the contents of 

bucket 		from all processors through a local sort. 

5. Final Result: Each processor copies its bucket to a global output array so 

that bucket 	 1  	  � " 1 precedes bucket 	 � 1 in the output.



Steps ( without oversampling ):

1. Pivot Selection: Ο ! log ! � Ο � log � [ worst case ]

2. Local Sort: Ο
�
' log �' [ worst case ]

3. Local Bucketing:

Ο !	� ! log �' , �' log! � Ο
�
' log �' [ worst case ]

4. Merge Local Buckets: Ο
�
$ log �$ � Ο

�
' log �' [ expected ]

( not quite correct as the largest bucket can have 

Θ
�
$ log! keys with significant probability )

5. Final Result: Ο
�
$ � Ο

�
' [ expected ]

Overall: Ο
�
' log �' � � log � [ expected ]

Non-Recursive D&C: Parallel Sample Sort



Contraction

1. Reduce: reduce the original problem to a smaller problem

2. Conquer: solve the smaller problem  ( often recursively )

3. Expand: use the solution to the smaller problem

to obtain a solution for the original larger problem



Contraction: Prefix Sums

Input: A sequence of � elements (�, (#, … , (� drawn from a 

set ) with a binary associative operation, denoted by ⊕.

Output: A sequence of � partial sums ��, �#, … , �� , where �* � (�⊕(#⊕ … ⊕(* for 1  	  �.

5 3 7 1 3 6 2 4

(� (# (+ (, (- (. (/ (0

5 8 15 16 19 25 27 31�� �# �+ �, �- �. �/ �0

⊕ = binary addition



Contraction: Prefix Sums

Prefix-Sum ( (� , (# , … , (� , ⊕ )    { � � 21 for some 2 3 0. 
Return prefix sums ��, �#, … , �� }

4.      parallel for 	 ← 1 to � 2⁄ do

5.           7* ← (#*&�⊕(#*
6.      8�, 8#, … , 8� #⁄ ← Prefix-Sum(	 7� , 7# , … , 7� #⁄ , ⊕ )

1.  if � � 1 then

3.  else

2.      �� ← (�

7.      parallel for 	 ← 1 to � do

8.           if 	 � 1 then �� ← (�
9.           else if 	 � �9�� then �* ← 8* #⁄

10.                 else  �* ← 8 *&� #⁄ ⊕	(*
11.  return ��, �#, … , ��



Contraction: Prefix Sums

(� (# (+ (, (- (. (/ (0

�� �# �+ �, �- �. �/ �0

7� 7# 7+ 7,
7′� 7′#

7′′�

8� 8# 8+ 8,
8′� 8′#

8′′�



Contraction: Prefix Sums

5 3 7 1 3 6 2 4

5 8 15 16 19 25 27 31

8 8 9 6
16 15

31

8 16 25 31
16 31

31



Contraction: Prefix Sums
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Prefix-Sum ( (� , (# , … , (� , ⊕ )    { � � 21 for some 2 3 0. 

Return prefix sums ��, �#, … , �� }

4.      parallel for 	 ← 1 to � 2⁄ do

5.           7* ← (#*&�⊕(#*
6.      8�, 8#, … , 8� #⁄ ← Prefix-Sum(	 7� , 7# , … , 7� #⁄ , ⊕ )

1.  if � � 1 then

3.  else

2.      �� ← (�

7.      parallel for 	 ← 1 to � do

8.           if 	 � 1 then �� ← (�
9.           else if 	 � �9�� then �* ← 8* #⁄

10.                 else  �* ← 8 *&� #⁄ ⊕	(*
11.  return ��, �#, … , ��

Observe that we have assumed here that a parallel for loop can be 

executed in Θ 1 time. But recall that cilk_for is implemented using 

divide-and-conquer, and so in practice, it will take Θ log � time. In that 

case, we will have �� � � Θ log2� , and parallelism � Θ
�

BCD# � .



Pointer Techniques: Pointer Jumping

The pointer jumping ( or path doubling ) technique allows  fast 

processing of data stored in the form of a set of rooted directed trees.

For every node 9 in the set pointer jumping involves replacing 9 → ��(� with 9 → ��(� → ��(� at every step.

Some Applications

― Finding the roots of a forest of directed trees

― Parallel prefix on rooted directed trees

― List ranking



Pointer Jumping: Roots of a Forest of Directed Trees

Find-Roots ( �, F, ) )    { Input: A forest of rooted directed trees, each 

with a self-loop at its root, such that each 

edge is specified by 9, F 9 for 1  9  �. 
Output: For each 9, the root ) 9 of the tree 

containing 9. }
1.  parallel for 9 ← 1 to � do

2.       ) 9 ← F 9

7.               ) 9 ← ) ) 9
8.               if ) 9 G ) ) 9 then 
HIJ ← ��K�
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3.  
HIJ ← ��K�
4.  while 
HIJ � ��K� do

5.       
HIJ ← 
IH��
6.       parallel for 9 ← 1 to � do



Pointer Jumping: Roots of a Forest of Directed Trees

Let � be the maximum 

height of any tree in the 

forest.

Observe that the distance 

between 9 and ) 9
doubles after each 

iteration until ) ) 9 is 

the root of the tree 

containing 9.

Work: �� � � Ο � log � and  Span: �� � � Θ log �
Parallelism:

�� ��� � � Ο �

Find-Roots ( �, F, ) )    { Input: A forest of rooted directed trees, each 

with a self-loop at its root, such that each 

edge is specified by 9, F 9 for 1  9  �. 
Output: For each 9, the root ) 9 of the tree 

containing 9. }
1.  parallel for 9 ← 1 to � do

2.       ) 9 ← F 9

7.               ) 9 ← ) ) 9
8.               if ) 9 G ) ) 9 then 
HIJ ← ��K�

3.  
HIJ ← ��K�
4.  while 
HIJ � ��K� do

5.       
HIJ ← 
IH��
6.       parallel for 9 ← 1 to � do

Hence, the number of iterations is log �. Thus ( assuming that each 

parallel for loop takes Θ 1 time to execute ),



Pointer Techniques: Graph Contraction

1. Contract: the graph is reduced in size while maintaining 

some of its original properties (depending on the problem)

2. Conquer: solve the problem on the contracted graph  

( often recursively )

3. Expand: use the solution to the contracted graph

to obtain a solution for the original graph

Some Applications

― Finding connected components of a graph

― Minimum spanning trees



Graph Contraction: Connected Components ( CC )

1. Direct the edges to form a forest of rooted directed trees

2. Use pointer jumping to contract each such tree to a single vertex

3. Recursively find the CCs of the contracted graph

4. Expand those CCs to label the vertices of the original graph with 

CC numbers

contraction



Randomization: Symmetry Breaking

A technique to break symmetry in a structure, e.g., a graph which 

can locally look the same to all vertices.

Some Applications

― Prefix sums in a linked list ( list ranking )

― Selecting a large independent set from a graph

― Graph contraction



Symmetry Breaking: List Ranking

1. Flip a coin for each list node

2. If a node K points to a node 9, and K got a head while 9 got a tail, 

combine K and 9
3. Recursively solve the problem on the contracted list

4. Project this solution back to the original list

1 1 1 1 1 11 1 1

t h t h h t t h

1 2 1 2 1 11

8 7 5 4 2 11

8 7 6 5 4 13 2 1

solve recursively

break symmetry:

contract:

expand:



Symmetry Breaking: List Ranking

In every iteration a node gets removed with probability 
�
,

( as a node gets head with probability 
�
# and the next node gets tail 

with probability 
�
# ).

Hence, a quarter of the nodes get removed in each iteration 

( expected number ).

Thus the expected number of iterations is Θ log � .

In fact, it can be shown that with high probability,

�� � � Ο � and �� � � Ο log �


