In-Class Final Exam (2:35 PM – 3:50 PM : 75 Minutes)

- This exam will account for 25% of your overall grade.
- There are four (4) questions, worth 75 points in total. Please answer all of them in the spaces provided.
- There are 18 pages including four (4) blank pages and two (2) pages of appendix. Please use the blank pages if you need additional space for your answers.
- The exam is *open slides*. So you may consult the lecture slides (hard copies only) during the exam. No additional cheatsheets are allowed.
- Please assume that the span of a parallel *for* loop is $\mathcal{O}(1+t)$, where t is the maximum span of an iteration.

GOOD LUCK!

Question	Pages	Score	Maximum
1. Schröder Numbers	2-3		10
2. Doubly Logarithmic-Depth Tree	5-8		30
3. ϵ -Approximate Median	10-12		15
4. Matrix Transposition	14-15		20
Total			75

NAME:

QUESTION 1. [10 Points] Schröder Numbers. For $k \ge 2$, Schröder Number S_k is the number of lattice paths in the Cartesian plane that go from (1,1) to (k,k) without ever crossing the line y = x, and from any given point (x, y) moving only to one of the following three points: (x, y + 1), (x + 1, y) and (x + 1, y + 1).

Figure 1: Schröder Numbers (Figure adapted from Wolfram Mathworld)

Starting from S_2 the first 20 Schröder numbers are as follows: 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718, 5293446, 27297738, 142078746, 745387038, 3937603038, 20927156706, 111818026018, 600318853926, 3236724317174 and 17518619320890.

1(a) [10 Points] Schröder numbers can be computed from the following recurrence relation:

$$S_{k} = \begin{cases} 1 & \text{if } k < 2, \\ 3\left(2 - \frac{3}{k}\right)S_{k-1} - \left(1 - \frac{3}{k}\right)S_{k-2} & \text{otherwise.} \end{cases}$$

Describe a parallel algorithm that computes the first *n* Schröder numbers in $\mathcal{O}\left(\frac{n}{p} + \log n\right)$ parallel time using $\Theta(n)$ space, where *p* is the number of processing elements.

Hint: The recurrence relation can be rewritten as follows:

$$\begin{bmatrix} S_1 & S_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
, and for $k \ge 2$, $\begin{bmatrix} S_k & S_{k-1} \end{bmatrix} = \begin{bmatrix} S_{k-1} & S_{k-2} \end{bmatrix} \begin{bmatrix} 3(2-\frac{3}{k}) & 1 \\ -(1-\frac{3}{k}) & 0 \end{bmatrix}$.

QUESTION 2. [30 Points] Doubly Logarithmic-Depth Tree. Let $n = 2^{2^h}$ for some integer $h \ge 0$. Then a *doubly logarithmic-depth tree* (\mathcal{DLDT}) with n leaves has exactly h + 2 levels. Assuming that the root node is at level 0, each node at level $k \in [0, h - 1]$ has degree $n^{\frac{1}{2^{k+1}}}$, and each node at level h has degree 2. The leaves are at level h + 1. See Figure 2. Looks familiar¹?

Figure 2: A doubly logarithmic-depth tree (\mathcal{DLDT})

Recall that we saw in the class how to compute the maximum of n numbers in $\Theta(n)$ work and $\Theta(\log n)$ span (e.g., use the parallel prefix sums algorithm given in the first 5–6 slides of lecture 8 with **max** as the binary associative operator \oplus). In this problem, we will use a \mathcal{DLDT} to design a parallel algorithm with a shorter span for finding the maximum in an array A[1:n] of n numbers.

¹If not, no worries. But later compare it with the structure of an n-Funnel (see slide 24 of lectures 18–19)

2(a) [5 Points] Given $p = n^2$ processing elements design an algorithm to find the maximum number in A[1:n] in $\mathcal{O}(1)$ parallel time using $\mathcal{O}(n)$ space (without using a \mathcal{DLDT}).

2(b) [5 Points] Prove that a \mathcal{DLDT} with n leaves has $n^{1-\frac{1}{2^k}}$ internal nodes at level $k \in [0, h]$.

2(c) [10 Points] Suppose we build a \mathcal{DLDT} with *n* leaves, where the *i*-th leaf from the left contains the number A[i], $1 \leq i \leq n$ (see Figure 2). Now given p = n processing elements design a parallel algorithm that terminates in $\Theta(\log \log n)$ parallel time, and for each internal node in the \mathcal{DLDT} computes the maximum number stored among the leaves of the subtree rooted at that node. Thus the root of the \mathcal{DLDT} will hold the maximum number in A[1:n].

Hint: Use your results from parts 2(a) and 2(b).

2(d) [**10 Points**] Is your algorithm from part 2(c) work-optimal? If not, how do you make it work-optimal?

Hint: Use a $\Theta(n)$ work and $\Theta(\log n)$ span algorithm we saw in the class (e.g., the prefix sums algorithm) to reduce the size of the input array first.

QUESTION 3. [15 Points] ϵ -Approximate Median. Let A[1:n] be an array of n distinct numbers. For any number x, we define rank(x) to be the number of items in A that are not larger than x, i.e., $rank(x) = |\{A[i] \mid 1 \le i \le n \land A[i] \le x\}|$.

For any $\epsilon \in (0, \frac{1}{2}]$, an ϵ -approximate median of A is a number x with $rank(x) \in (\frac{n}{2} - \epsilon n, \frac{n}{2} + \epsilon n)$.

Recall that deterministically finding the exact median of A requires time linear in n. In this problem we will see that an ϵ -approximate median (w.h.p. in n) of A can be found in time logarithmic in n.

Approx-Median($A[1:n], \epsilon$) (Inputs are an array A[1:n] of n distinct numbers, and a floating point parameter $\epsilon \in (0, \frac{1}{4}]$. This routine chooses a sample of size $\left\lceil \frac{14}{\epsilon^2} \log n \right\rceil$ from A (with replacement), and returns the median of that sample.) {size of the sample} 1. $m \leftarrow \left[\frac{14}{\epsilon^2} \log n\right]$ {array to store the sample} 2. array B[1:m]3. for $i \leftarrow 1$ to m do $\{sample \ m \ items \ (with \ replacement) \ from \ A\}$ $j \leftarrow \text{Random}(1, n)$ {choose an integer uniformly at random from [1, n]} 4. $B[i] \leftarrow A[j]$ $\{choose \ A[j] \ as the next sample from \ A\}$ 5. 6. $x \leftarrow \text{MEDIAN}(B[1:m])$ {find the median of B[1:m] using a linear time selection algorithm} 7. return x

Figure 3: Find an ϵ -approximate median of A[1:n].

3(a) [**10 Points**] Consider the function APPROX-MEDIAN given in Figure 3 which runs in $\Theta\left(\frac{1}{\epsilon^2}\log n\right)$ worst-case time.

Let
$$\mathcal{L} = \left\{ A[i] \mid i \in [1, n] \land rank(A[i]) \leq \frac{n}{2} - \epsilon n \right\}$$

and $\mathcal{H} = \left\{ A[i] \mid i \in [1, n] \land rank(A[i]) \geq \frac{n}{2} + \epsilon n \right\}$.

Suppose B[1:m] contains l elements from \mathcal{L} , and h elements from \mathcal{H} . Now assuming $\epsilon \in (0, \frac{1}{4}]$, prove that

$$\Pr\left[\ l < \frac{m}{2} \ \right] > 1 - \frac{1}{n^{\frac{7}{6}}} \quad \text{and} \quad \Pr\left[\ h < \frac{m}{2} \ \right] > 1 - \frac{1}{n^{\frac{7}{6}}}.$$

Hint: $\Pr\left[\ l \geq \frac{m}{2} \ \right] \leq \Pr\left[\ l \geq (1+\epsilon)\mu \ \right], \text{ where } \mu = m\left(\frac{1}{2} - \epsilon\right).$

3(b) [**5 Points**] Use your results from part 3(a) to argue that for $\epsilon \in (0, \frac{1}{4}]$, APPROX-MEDIAN returns an ϵ -approximate median of A[1:n] w.h.p. in n.

QUESTION 4. [20 Points] Matrix Transposition. The *transpose* of a matrix X is another matrix X^T obtained by writing the rows of X as the columns of X^T . An example is given below.

X =	$\begin{bmatrix} a_1\\b_1 \end{bmatrix}$	$a_2 \\ b_2$	a_3 b_3	$\begin{bmatrix} a_4 \\ b_4 \end{bmatrix}$	<u>→</u>	$X^T =$	$\begin{bmatrix} a_1\\ a_2 \end{bmatrix}$	$b_1 \\ b_2$	c_1 c_2	$\begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$
				$\begin{vmatrix} c_4 \\ d_4 \end{vmatrix}$	\rightarrow	Λ —	$a_3 \\ a_4$	b_3 b_4	c_3 c_4	$\begin{array}{c c} d_3 \\ d_4 \end{array}$

In this problem we will analyze the cache complexity of a couple of algorithms for transposing square matrices.

4(a) [5 Points] Analyze the cache complexity of ITER-MATRIX-TRANSPOSE given in Figure 4.

ITER-MATRIX-TRANSPOSE(X, Y, n) (Input is an $n \times n$ square matrix X[1:n, 1:n]. This function generates the transpose of X in Y.) 1. for $i \leftarrow 1$ to n do 2. for $j \leftarrow 1$ to n do 3. $Y[i, j] \leftarrow X[j, i]$

Figure 4: Iterative matrix transposition.

4(b) [10 Points] Complete the recursive divide-and-conquer algorithm (REC-MATRIX-TRANSPOSE) for transposing a square matrix given in Figure 5. Analyze its cache complexity assuming a *tall* cache (i.e., $M = \Omega(B^2)$, where M is the cache size and B is the cache block size).

REC-MATRIX-TRANSPOSE(X, Y, n) (Input is an $n \times n$ square matrix X[1:n, 1:n]. This function recursively generates the transpose of X in Y. We assume $n = 2^k$ for some integer $k \ge 0$. If n > 1, let X_{11}, X_{12}, X_{21} and X_{22} denote the top-left, top-right, bottom-left and bottom-right quadrants of X, respectively. Similarly for Y.) 1. if n = 1 then $Y \leftarrow X$ {base case: the transpose of a 1×1 matrix is the matrix itself} 2. else $\{ divide X and Y into quadrants, and generate the transpose of X recursively. \}$ {fill out} 3. **Rec-Matrix-Transpose**() 4. **Rec-Matrix-Transpose**() {fill out} **Rec-Matrix-Transpose**({fill out} 5.) **Rec-Matrix-Transpose**({fill out} 6.)

Figure 5: Iterative matrix transposition.

4(c) [5 Points] Is the cache complexity result of part 4(b) optimal? Why or why not?

APPENDIX: PREFIX SUMS

Input. A sequence of *n* elements $x_1, x_2, \ldots x_n$ drawn from a set *S* with a binary associative operation (e.g., addition, multiplication, maximum, matrix product, union, etc.), denoted by \oplus .

Output. A sequence of *n* partial sums $s_1, s_2, \ldots s_n$, where $s_i = x_1 \oplus x_2 \oplus \ldots x_i$ for $1 \le i \le n$.

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
5	3	7	1	3	6	2	4

		⊕ =	: bina	ry add	lition		
5	8	15	16	19	25	27	31
<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	<i>s</i> ₅	<i>s</i> ₆	<i>S</i> ₇	<i>s</i> ₈

Prefix	$ \{x_1, x_2, \dots, x_n\}, \oplus \} \{n = 2^k \text{ for some } k \ge 0. \\ Return \text{ prefix sums} \\ \{s_1, s_2, \dots, s_n\} \} $
1.	if $n = 1$ then
2.	$s_1 \leftarrow x_1$
3.	else
4.	parallel for $i \leftarrow 1$ to $n/2$ do
5.	$y_i \leftarrow x_{2i-1} \oplus x_{2i}$
6.	$\big\langle z_1, z_2, \dots, z_{n/2} \big\rangle \leftarrow \textit{Prefix-Sum}(\big\langle y_1, y_2, \dots, y_{n/2} \big\rangle, \oplus)$
7.	parallel for $i \leftarrow 1$ to n do
8.	if $i = 1$ then $s_1 \leftarrow x_1$
9.	else if $i = even$ then $s_i \leftarrow z_{i/2}$
10.	else $s_i \leftarrow z_{(i-1)/2} \oplus x_i$
11.	return $\langle s_1, s_2, \dots, s_n \rangle$

Figure 6: A parallel prefix sums algorithm with $\Theta(n)$ work and $\Theta(\log n)$ span (from lecture 8).

APPENDIX: USEFUL TAIL BOUNDS

Markov's Inequality. Let X be a random variable that assumes only nonnegative values. Then for all $\delta > 0$, $Pr[X \ge \delta] \le \frac{E[X]}{\delta}$.

Chebyshev's Inequality. Let X be a random variable with a finite mean E[X] and a finite variance Var[X]. Then for any $\delta > 0$, $Pr[|X - E[X]| \ge \delta] \le \frac{Var[X]}{\delta^2}$.

Chernoff Bounds. Let X_1, \ldots, X_n be independent Poisson trials, that is, each X_i is a 0-1 random variable with $Pr[X_i = 1] = p_i$ for some p_i . Let $X = \sum_{i=1}^n X_i$ and $\mu = E[X]$. Then the following bounds hold.

- (1) For any $\delta > 0$, $Pr\left[X \ge (1+\delta)\mu\right] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$.
- (2) For $0 < \delta < 1$, $Pr[X \ge (1+\delta)\mu] \le e^{-\frac{\mu\delta^2}{3}}$.
- (3) For $0 < \gamma < \mu$, $\Pr[X \ge \mu + \gamma] \le e^{-\frac{\gamma^2}{3\mu}}$.
- (4) For $0 < \delta < 1$, $Pr[X \le (1-\delta)\mu] \le \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}$.
- (5) For $0 < \delta < 1$, $Pr[X \le (1 \delta)\mu] \le e^{-\frac{\mu\delta^2}{2}}$.
- (6) For $0 < \gamma < \mu$, $Pr[X \le \mu \gamma] \le e^{-\frac{\gamma^2}{2\mu}}$.