CSE 638: Advanced Algorithms

Lectures 14 & 15 (Parallel Maximal Independent Set)

Rezaul A. Chowdhury

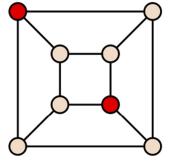
Department of Computer Science SUNY Stony Brook Spring 2013

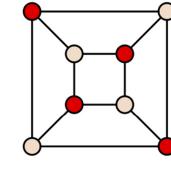
Independent Sets

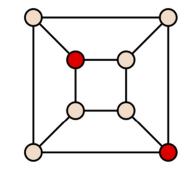
- Let G = (V, E) be an undirected graph.
- **Independent Set:** A subset $I \subseteq V$ is said to be *independent* provided for each $v \in I$ none of its neighbors in G belongs to I.
- **Maximal Independent Set:** An independent set of G is *maximal* if it is not properly contained in any other independent set in G.

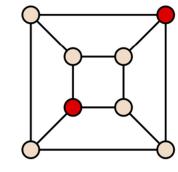
Maximum Independent Set:

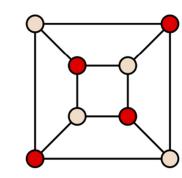
- A maximal independent set of the largest size.
- Finding a maximum
- independent set is NP-hard.
- But finding a maximal independent set is trivial in the sequential setting.

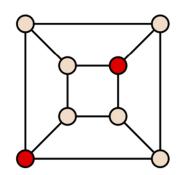












Maximal Independent Sets (red vertices) of the Cube Graph Source: Wikipedia

Finding a Maximal Independent Set Sequentially

Input: *V* is the set of vertices, and *E* is the set of edges. For each $v \in V$, we denote by $\Gamma(v)$ the set of neighboring vertices of *v*.

Output: A maximal independent set *MIS* of the input graph.

```
Serial-Greedy-MIS (V, E)

1. MIS \leftarrow \phi

2. for v \leftarrow 1 to |V| do

3. if MIS \cap \Gamma(v) = \phi then MIS \leftarrow MIS \cup \{v\}

4. return MIS
```

This algorithm can be easily implemented to run in $\Theta(n + m)$ time, where n is the number of vertices and m is the number of edges in the input graph.

The output of this algorithm is called the *Lexicographically First MIS* (LFMIS).

Finding a Maximal Independent Set Sequentially

Input: *V* is the set of vertices, and *E* is the set of edges. For each $v \in V$, we denote by $\Gamma(v)$ the set of neighboring vertices of *v*.

Output: A maximal independent set *MIS* of the input graph.

```
Serial-Greedy-MIS-2 (V, E)

1. MIS \leftarrow \phi

2. while |V| > 0 \ do

3. pick an arbitrary vertex v \in V

4. MIS \leftarrow MIS \cup \{v\}

5. R \leftarrow \{v\} \cup \Gamma(v)

6. V \leftarrow V \setminus R

7. E \leftarrow E \setminus \{(v_1, v_2) \mid v_1 \in R \text{ or } v_2 \in R\}

8. return MIS
```

Always choosing the vertex with the smallest id in the current graph will produce exactly the same MIS as in *Serial-Greedy-MIS*.

Finding a Maximal Independent Set Sequentially

Input: *V* is the set of vertices, and *E* is the set of edges. For each $S \subseteq V$, we denote by $\Gamma(S)$ the set of neighboring vertices of *S*.

Output: A maximal independent set MIS of the input graph.

```
Serial-Greedy-MIS-3 (V, E)

1. MIS \leftarrow \phi

2. while |V| > 0 \ do

3. find an independent set S \subseteq V

4. MIS \leftarrow MIS \cup S

5. R \leftarrow S \cup \Gamma(S)

6. V \leftarrow V \setminus R

7. E \leftarrow E \setminus \{ (v_1, v_2) \mid v_1 \in R \text{ or } v_2 \in R \}

8. return MIS
```

Parallelizing Serial-Greedy-MIS-3

- Number of iterations can be kept small by finding in each iteration an S with large $S \cup \Gamma(S)$. But this is difficult to do.
- Instead in each iteration we choose an S such that a large fraction of current edges are incident on $S \cup \Gamma(S)$.

Serial-Greedy-MIS-3 (V, E) 1. $MIS \leftarrow \phi$ 2. $while |V| > 0 \ do$ 3. find an independent set $S \subseteq V$ 4. $MIS \leftarrow MIS \cup S$ 5. $R \leftarrow S \cup \Gamma(S)$ 6. $V \leftarrow V \setminus R$ 7. $E \leftarrow E \setminus \{ (v_1, v_2) \mid v_1 \in R \text{ or } v_2 \in R \}$ 8. return MIS

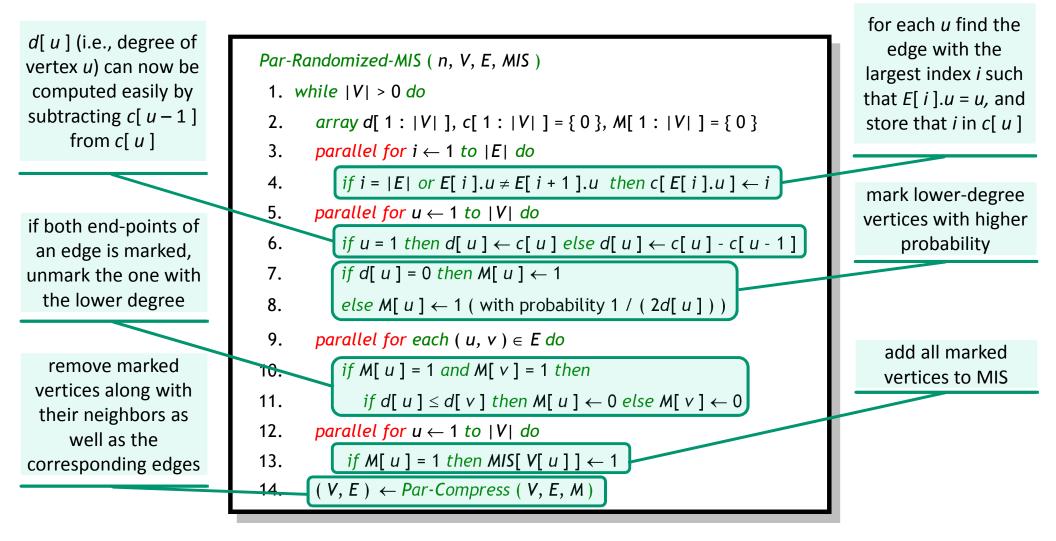
— To select S we start with a random $S' \subseteq V$.

- By choosing lower degree vertices with higher probability we are likely to have very few edges with both end-points in S'.
- We check each edge with both end-points in S', and drop the endpoint with lower degree from S'. Our intention is to keep $\Gamma(S')$ as large as we can.
- After removing all edges as above we are left with an independent set. This is our *S*.
- We will prove that if we remove S ∪ Γ(S) from the current graph a large fraction of current edges will also get removed.

Randomized Maximal Independent Set (MIS)

Input: *n* is the number of vertices, and for each vertex $u \in [1, n]$, V[u] is set to *u*. *E* is the set of edges sorted in non-decreasing order of the first vertex. For every edge (u, v) both (u, v) and (v, u) are included in *E*.

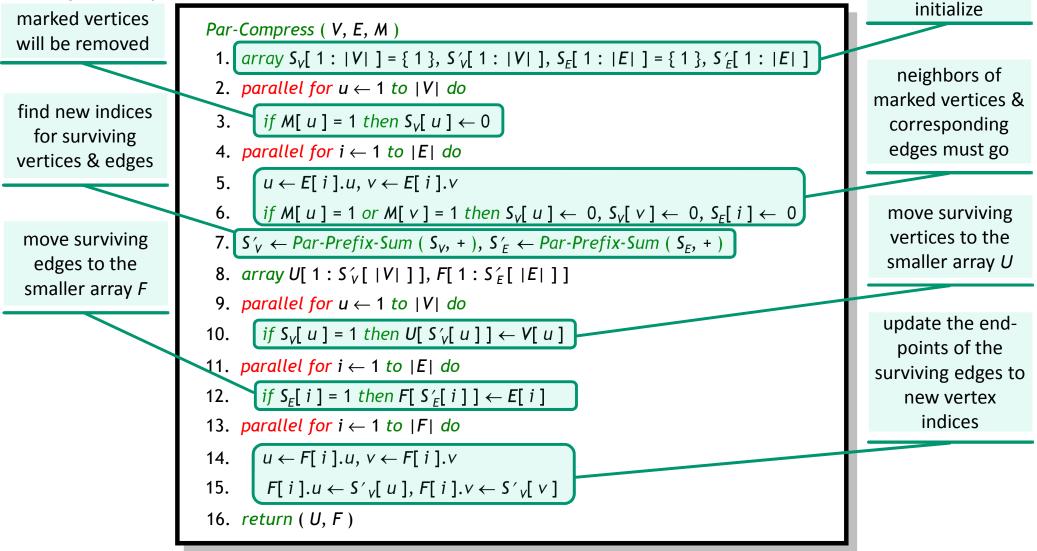
Output: For all $u \in [1, n]$, *MIS*[u] is set to 1 if vertex u is in the MIS.



Removing Marked Vertices and Their Neighbors

Input: Arrays *V* and *E*, and bit array M[1: |V|]. Each entry of *E* is of the form (u, v), where $1 \le u, v \le |V|$. If for some u, M[u] = 1, then u and all v such that $(u, v) \in E$ must be removed from *V* along with all edges (u, v) from *E*.

Output: Updated V and E.



Removing Marked Vertices and Their Neighbors

```
Par-Compress (V, E, M)
 1. array S_{V}[1:|V|] = \{1\}, S'_{V}[1:|V|],
            S_{F}[1:|E|] = \{1\}, S'_{F}[1:|E|]
 2. parallel for u \leftarrow 1 to |V| do
 3. if M[u] = 1 then S_v[u] \leftarrow 0
 4. parallel for i \leftarrow 1 to |E| do
 5. u \leftarrow E[i].u, v \leftarrow E[i].v
 6. if M[u] = 1 or M[v] = 1 then
           S_{v}[u] \leftarrow 0, S_{v}[v] \leftarrow 0, S_{z}[i] \leftarrow 0
 7. S'_{v} \leftarrow Par-Prefix-Sum (S_{v}, +),
     S'_{F} \leftarrow Par-Prefix-Sum(S_{F}, +)
 8. array U[1: S'_{V}[|V|]], F[1: S'_{F}[|E|]]
 9. parallel for u \leftarrow 1 to |V| do
10. if S_v[u] = 1 then U[S'_v[u]] \leftarrow V[u]
11. parallel for i \leftarrow 1 to |E| do
     if S_{F}[i] = 1 then F[S'_{F}[i]] \leftarrow E[i]
12.
13. parallel for i \leftarrow 1 to |F| do
14. u \leftarrow F[i].u, v \leftarrow F[i].v
15. F[i].u \leftarrow S'_v[u], F[i].v \leftarrow S'_v[v]
16. return (U, F)
```

The prefix sums in line 7 perform $\Theta(|V| + |E|)$ work and have $\Theta(\log^2|V| + \log^2|E|)$ depth. The rest of the algorithm also perform $\Theta(|V| + |E|)$ work but in $\Theta(\log|V| + \log|E|)$ depth. Hence,

```
Work: \Theta(|V| + |E|)
```

```
Span: \Theta(\log^2 |V| + \log^2 |E|)
```

Randomized Maximal Independent Set (MIS)

Par-Randomized-MIS (n, V, E, MIS)	
1. while V > 0 do	
2.	array d[1 : V], c[1 : V] = { 0 },
	$M[1: V] = \{0\}$
3.	parallel for $i \leftarrow 1$ to $ E $ do
4.	if $i = E $ or $E[i].u \neq E[i+1].u$ then
	c[<i>E</i> [<i>i</i>]. <i>u</i>] ← <i>i</i>
5.	parallel for $u \leftarrow 1$ to $ V $ do
6.	if $u = 1$ then $d[u] \leftarrow c[u]$
	else d[u] ← c[u] - c[u - 1]
7.	if d[u] = 0 then M[u] \leftarrow 1
8.	else M[u] \leftarrow 1 (with prob 1 / (2 d [u]))
9.	parallel for each $(u, v) \in E$ do
10.	if M[u] = 1 and M[v] = 1 then
11.	if d[u] \leq d[v] then M[u] \leftarrow 0
	else $M[v] \leftarrow 0$
12.	parallel for $u \leftarrow 1$ to $ V $ do
13.	if M[u] = 1 then MIS[V[u]] \leftarrow 1
14.	$(V, E) \leftarrow Par$ -Compress (V, E, M)

Let *n* = #vertices, and *m* = #edges initially.

Let us assume for the time being that at least a constant fraction of the edges are removed in each iteration of the *while* loop (we will prove this shortly). Let this fraction be f(< 1).

This implies that the *while* loop iterates $\Theta(\log_{1/(1-f)} m) = \Theta(\log m)$ times. (how?)

Each iteration performs $\Theta(|V| + |E|)$ work and has $\Theta(\log^2|V| + \log^2|E|)$ depth. Hence,

Work:
$$T_1(n,m) = \Theta\left((n+m)\sum_{i=0}^k (1-f)^i\right)$$

= $\Theta(n+m)$

Span: $T_{\infty}(n,m) = \Theta((\log^2 n + \log^2 m)\log m)$ = $\Theta(\log^3 n)$

Parallelism: $\frac{T_1(n,m)}{T_{\infty}(n,m)} = \Theta\left(\frac{n+m}{\log^3 n}\right)$

Let, d(v) be the degree of vertex v, and $\Gamma(v)$ be its set of neighbors.

Good Vertex: A vertex *v* is *good* provided $|L(v)| \ge \frac{d(v)}{3}$, where, $L(v) = \{ u \mid (u \in \Gamma(v)) \land (d(u) \le d(v)) \}.$

Bad Vertex: A vertex is *bad* if it is not good.

Good Edge: An edge (u, v) is *good* if at least one of u and v is good.

Bad Edge: An edge (u, v) is *bad* if both u and v are bad.

Lemma 1: In some iteration of the *while* loop, let v be a good vertex with d(v) > 0, and let M be the set of vertices that got marked (in lines 7-8). Then

$$\Pr\{\Gamma(v) \cap M \neq \emptyset\} \ge 1 - e^{-1/6}.$$

Proof: We have, $\Pr\{\Gamma(v) \cap M \neq \emptyset\} = 1 - \Pr\{\Gamma(v) \cap M = \emptyset\}$

$$= 1 - \prod_{u \in \Gamma(v)} \Pr\{u \notin M\} \ge 1 - \prod_{u \in L(v)} \Pr\{u \notin M\}$$
$$= 1 - \prod_{u \in L(v)} \left(1 - \frac{1}{2d(u)}\right) \ge 1 - \prod_{u \in L(v)} \left(1 - \frac{1}{2d(v)}\right)$$
$$= 1 - \left(1 - \frac{1}{2d(v)}\right)^{|L(v)|} \ge 1 - \left(1 - \frac{1}{2d(v)}\right)^{d(v)/3}$$
$$\ge 1 - e^{-\frac{d(v)/3}{2d(v)}} = 1 - e^{-\frac{1}{6}}$$

Lemma 2: In any iteration of the *while* loop, let *M* be the set of vertices that got marked (in lines 7-8), and let *S* be the set of vertices that got included in the MIS (in line 13). Then

$$\Pr\{v \in S \mid v \in M\} \ge \frac{1}{2}.$$

Proof: We have, $Pr\{v \in S \mid v \in M\}$

$$\geq 1 - \Pr\{\exists u \in \Gamma(v) \text{ s.t. } (d(u) \geq d(v)) \land (u \in M)\}$$

$$\geq 1 - \sum_{\substack{u \in \Gamma(v) \\ d(u) \geq d(v)}} \frac{1}{2d(u)} \geq 1 - \sum_{\substack{u \in \Gamma(v) \\ d(u) \geq d(v)}} \frac{1}{2d(v)}$$

$$\geq 1 - \sum_{\substack{u \in \Gamma(v) \\ u \in \Gamma(v)}} \frac{1}{2d(v)} = 1 - d(v) \times \frac{1}{2d(v)} = \frac{1}{2}$$

Lemma 3: In any iteration of the *while* loop, let V_G be the set of good vertices, and let S be the vertex set that got included in the MIS. Then

Pr{ *v* ∈ *S* ∪ Γ(*S*) | *v* ∈ *V_G* } ≥
$$\frac{1}{2}$$
 (1 − *e*^{-1/6}).

Proof: We have, $\Pr\{v \in S \cup \Gamma(S) \mid v \in V_G\}$

 $\geq \Pr\{ v \in \Gamma(S) \mid v \in V_G \} = \Pr\{ \Gamma(v) \cap S \neq \phi \mid v \in V_G \}$ $= \Pr\{ \Gamma(v) \cap S \neq \phi \mid \Gamma(v) \cap M \neq \phi, v \in V_G \}$ $\times \Pr\{ \Gamma(v) \cap M \neq \phi \mid v \in V_G \}$ $\geq \Pr\{ u \in S \mid u \in \Gamma(v) \cap M, v \in V_G \}$ $\times \Pr\{ \Gamma(v) \cap M \neq \phi \mid v \in V_G \}$ $\geq \frac{1}{2} (1 - e^{-1/6})$

Lemma 3: In any iteration of the *while* loop, let V_G be the set of good vertices, and let S be the vertex set that got included in the MIS. Then $\Pr\{v \in S \cup \Gamma(S) \mid v \in V_G\} \ge \frac{1}{2} (1 - e^{-1/6}).$

Corollary 1: In any iteration of the *while* loop, a good vertex gets removed (in line 14) with probability at least $\frac{1}{2}(1 - e^{-1/6})$.

Corollary 2: In any iteration of the *while* loop, a good edge gets removed (in line 14) with probability at least $\frac{1}{2}(1 - e^{-1/6})$.

- **Lemma 4:** In any iteration of the *while* loop, let E and E_G be the sets of all edges and good edges, respectively. Then $|E_G| \ge |E|/2$. **Proof:** For each edge $(u, v) \in E$, direct (u, v) from u to v if $d(u) \le d(v)$, and v to u otherwise.
- For every vertex v in the resulting digraph let $d_i(v)$ and $d_o(v)$ denote its in-degree and out-degree, respectively.

Let V_G and V_B be the set of good and bad vertices, respectively.

Then for each
$$v \in V_B$$
, $d_o(v) - d_i(v) \ge \frac{d(v)}{3}$.

Let m_{BB} , m_{BG} , m_{GB} and m_{GG} be the #edges directed from V_B to V_B , from V_B to V_G , from V_G to V_B , and from V_G to V_G , respectively.

Lemma 4: In any iteration of the *while* loop, let E and E_G be the sets of all edges and good edges, respectively. Then $|E_G| \ge |E|/2$. **Proof (continued):** We have,

$$2m_{BB} + m_{BG} + m_{GB}$$

$$= \sum_{v \in V_B} d(v) \le 3 \sum_{v \in V_B} (d_o(v) - d_i(v)) = 3 \sum_{v \in V_G} (d_i(v) - d_o(v))$$

= $3((m_{BG} + m_{GG}) - (m_{GB} + m_{GG})) = 3(m_{BG} - m_{GB})$
 $\le 3(m_{BG} + m_{GB})$

Thus
$$2m_{BB} + m_{BG} + m_{GB} \leq 3(m_{BG} + m_{GB})$$

 $\Rightarrow m_{BB} \leq m_{BG} + m_{GB} \Rightarrow m_{BB} \leq m_{BG} + m_{GB} + m_{GG}$
 $\Rightarrow (m_{BG} + m_{GB} + m_{GG}) + m_{BB} \leq 2(m_{BG} + m_{GB} + m_{GG})$
 $\Rightarrow |E| \leq 2|E_G|$

Lemma 5: In any iteration of the *while* loop, let *E* be the set of all edges. Then the expected number of edges removed (in line 14) during this iteration is at least $\frac{1}{4}(1 - e^{-1/6})|E|$.

Proof: Follows from Lemma 4 and Corollary 2.